In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking
2.2. Molecular Dynamics (MD) Simulations
2.3. Post-Dynamics Analyses
2.3.1. Binding Energy per Frame
2.3.2. Hydrogen Bond Length
2.3.3. Center-of-Mass Distance
2.3.4. Root-Mean-Square Deviation
2.4. Molecular Target Prediction and Network Analysis
2.5. Pathway Enrichment Analysis (PEA)
3. Materials and Methods
3.1. Mpro Preparation
3.2. Inhibitor Preparation
3.3. Molecular Docking
3.4. Molecular Dynamics Simulations
3.5. Free Binding Energy Calculations
3.6. Protein–Protein Interaction and Pathway Enrichment Analysis (PEA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Vicenzi, E.; Canducci, F.; Pinna, D.; Mancini, N.; Carletti, S.; Lazzarin, A.; Bordignon, C.; Poli, G.; Clementi, M. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg. Infect. Dis. 2004, 10, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Q.; Peng, R.; Yuan, B.; Zhao, J.; Wang, M.; Wang, X.; Wang, Q.; Sun, Y.; Fan, Z.; Qi, J.; et al. Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep. 2020, 31, 107774–107788. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, C.; Xu, X.F.; Xu, W.; Liu, S.W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharm. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [Google Scholar] [CrossRef]
- Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, Y.; Singh, H.; Patel, C.N. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect Public Health 2020, 13, 1210–1223. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Allemailem, K.S.; Almatroudi, A.; Moustafa, M.F.; Hegazy, M.-E.F. In silico evaluation of prospective anti-COVID-19 drug candidates as potential SARS-CoV-2 main protease inhibitors. Protein J. 2021, 1–14. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hussien, T.A.; Badr, E.A.A.; Mohamed, T.A.; El-Seedi, H.R.; Pare, P.W.; Efferth, T.; Hegazy, M.F. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput. Biol. Med. 2020, 126, 104046–104055. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hegazy, M.F. In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.A.; Abdeljawaad, K.A.A.; Abdelrahman, A.H.M.; Hegazy, M.F. Natural-like products as potential SARS-CoV-2 M(pro) inhibitors: In-silico drug discovery. J. Biomol. Struct. Dyn. 2020, 1–13. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Mohamed, E.A.R.; Abdelrahman, A.H.M.; Allemailem, K.S.; Moustafa, M.F.; Shawky, A.M.; Mahzari, A.; Hakami, A.R.; Abdeljawaad, K.A.A.; Atia, M.A.M. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. J. Mol. Graph. Model. 2021, 107904. [Google Scholar] [CrossRef]
- Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol. 2017, 162, 2539–2551. [Google Scholar] [CrossRef] [PubMed]
- Cherrak, S.A.; Merzouk, H.; Mokhtari-Soulimane, N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE 2020, 15, e0240653–e0240666. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, S.; Kim, D.Y.; Kim, M.-S.; Shin, D.H. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J. Enzym. Inhib. Med. Chem. 2020, 35, 1539–1544. [Google Scholar] [CrossRef]
- Mayer, A.M.; Rodriguez, A.D.; Berlinck, R.G.; Hamann, M.T. Marine pharmacology in 2003–4: Marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharm. 2007, 145, 553–581. [Google Scholar]
- Mayer, A.M.; Hamann, M.T. Marine pharmacology in 2000: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar. Biotechnol. 2004, 6, 37–52. [Google Scholar]
- Hegazy, M.E.; Mohamed, T.A.; Alhammady, M.A.; Shaheen, A.M.; Reda, E.H.; Elshamy, A.I.; Aziz, M.; Pare, P.W. Molecular architecture and biomedical leads of terpenes from red sea marine invertebrates. Mar. Drugs 2015, 13, 3154–3181. [Google Scholar] [CrossRef]
- Koop, K.; Booth, D.; Broadbent, A.; Brodie, J.; Bucher, D.; Capone, D.; Coll, J.; Dennison, W.; Erdmann, M.; Harrison, P.; et al. ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 2001, 42, 91–120. [Google Scholar] [CrossRef]
- Ayyad, S.N.; Alarif, W.M.; Al-Footy, K.O.; Selim, E.A.; Ghandourah, M.A.; Aly, M.M.; Alorfi, H.S. Isolation, antimicrobial and antitumor activities of a new polyhydroxysteroid and a new diterpenoid from the soft coral Xenia umbellata. Z Nat. C J. Biosci. 2017, 72, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.E.; Gamal Eldeen, A.M.; Shahat, A.A.; Abdel-Latif, F.F.; Mohamed, T.A.; Whittlesey, B.R.; Pare, P.W. Bioactive hydroperoxyl cembranoids from the Red Sea soft coral Sarcophyton glaucum. Mar. Drugs 2012, 10, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Horby, P.W.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Emberson, J.; Palfreeman, A.; Raw, J.; Elmahi, E.; Prudon, B.; et al. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2020, 396, 1345–1352. [Google Scholar] [CrossRef]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef]
- Kerrigan, J.E. Molecular dynamics simulations in drug design. In In Silico Models for Drug Discovery; Kortagere, S., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 95–113. [Google Scholar] [CrossRef]
- Noroozi, R.; Branicki, W.; Pyrc, K.; Labaj, P.P.; Pospiech, E.; Taheri, M.; Ghafouri-Fard, S. Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions. Cytokine 2020, 133, 155143–155147. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldham, W.M.; Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2008, 9, 60–71. [Google Scholar] [CrossRef]
- Birch, C.A.; Molinar-Inglis, O.; Trejo, J. Subcellular hot spots of GPCR signaling promote vascular inflammation. Curr. Opin. Endocr. Metab. Res. 2021, 16, 37–42. [Google Scholar] [CrossRef]
- Hameid, R.A.; Cormet-Boyaka, E.; Kuebler, W.M.; Uddin, M.; Berdiev, B.K. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L430–L435. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005, 33, W368–W371. [Google Scholar] [CrossRef]
- Hawkins, P.C.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef] [PubMed]
- OMEGA 2.5.1.4; OpenEye Scientific Software: Santa Fe, NM, USA, 2013.
- SZYBKI 1.9.0.3; OpenEye Scientific Software: Santa Fe, NM, USA, 2016.
- Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 1999, 20, 720–729. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228. [Google Scholar] [CrossRef]
- Case, D.A.; Betz, R.M.; Cerutti, D.S.; Cheatham, T.E.; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Homeyer, N.; et al. AMBER 2016; University of California: San Francisco, CA, USA, 2016. [Google Scholar]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef]
- Roux, B.; Simonson, T. Implicit solvent models. Biophys Chem. 1999, 78, 1–20. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.D.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision E01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; Vangunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular-dynamics with coupling to an external bath. J. Chem Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, S.; Kollman, P.A. Settle—An Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952–962. [Google Scholar] [CrossRef]
- Dassault Systèmes BIOVIA, B.D.S.V., Version 2019; Dassault Systèmes BIOVIA: San Diego, CA, USA, 2019.
- Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov. Des. 2000, 18, 113–135. [Google Scholar] [CrossRef]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004, 55, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J. Comput. Chem. 2011, 32, 866–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef] [PubMed]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ma, X.; Song, Y.; Zhang, Y.; Xiong, W.; Li, L.; Zhou, L. Anti-colorectal cancer targets of resveratrol and biological molecular mechanism: Analyses of network pharmacology, human and experimental data. J. Cell Biochem. 2019, 120, 11265–11273. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Blucher, A.S.; McWeeney, S.K.; Stein, L.; Wu, G. Visualization of drug target interactions in the contexts of pathways and networks with ReactomeFIViz. F1000Research 2019, 8, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MNP Name | Plant Source | 2D Chemical Structure | Docking Score (kcal/mol) | Binding Features a |
---|---|---|---|---|
Lopinavir | --- b | −9.8 | HIS164 (2.62 Å), GLY143 (2.01 Å), LEU141 (1.96 Å), SER144 (3.09 Å) | |
Depresosterol (190) | L. depressum | −12.3 | THR26 (2.15, 2.66 Å), HIS41 (2.17 Å), CYS145 (2.70 Å), ASN142 (1.96, 2.04, 2.24 Å), GLU166 (1.99, 2.55 Å) | |
3β-25-Dihydroxy-4-methyl-5α,8α-epidioxy-2-ketoergost-9-ene (178) | Sinularia candidula | −12.2 | LEU141 (2.08 Å), SER144 (1.97, 2.28, 2.66 Å), HIS163 (2.08 Å), CYS145 (2.49 Å), GLN192 (2.26 Å), THR190 (1.80 Å) | |
Erylosides B (226) | E. lendenfeldi | −12.1 | HIS41 (1.96 Å), TYR54 (3.05 Å), AS142 (1.75, 2.96 Å), GLY143 (2.82 Å), CYS145 (2.04 Å), HIS163 (1.93 Å), GLU166 (2.37 Å), GLN189 (1.91 Å) | |
Sipholenol H (157) | S. siphonella | −12.0 | GLY143 (1.74 Å), CYS145 (2.88 Å), HIS163 (2.56 Å), HIS164 (2.85 Å), MET165 (2.74 Å), THR190 (1.74, 2.17 Å), GLN192 (2.11 Å) | |
Dahabinone A (162) | S. siphonella | −11.9 | CYS145 (2.34 Å), HIS41 (2.43 Å), GLU166 (2.01, 2.23, 2.38 Å), GLY143 (2.12 Å), GLN189 (2.03 Å) | |
Sipholenol I (174) | S. siphonella | −11.8 | GLY143 (2.04 Å), CYS145 (2.89 Å), HIS163 (2.89 Å), HIS164 (2.01 Å), GLU166 (1.62, 2.03, 2.52 Å) | |
Lobophytosterol (188) | L. depressum | −11.5 | TYR54 (2.24, 2.55 Å), ASN142 (1.91, 2.75 Å), GLU166 (1.86, 2.66 Å), ASP187 (2.94 Å) | |
(22R,24E,28E)-5β,6β-Epoxy-22,28-oxido-24-methyl-5αcholestan-3β,25,28-triol (191) | L. depressum | −11.4 | THR26 (2.69 Å), HIS41 (2.14 Å), CYS145 (2.45 Å), ARG188 (2.03 Å), THR190 (2.06, 2.55 Å), GLN192 (2.26 Å) | |
Tasnemoxide A (144) | D. erythraeanus | −11.4 | CYS44 (2.10 Å), TYR54 (2.54, 2.97 Å), GLU166 (1.91, 1.97 Å) | |
Siphonellinol C (172) | S. siphonella | −11.3 | GLY143 (1.95 Å), GLN189 (2.09 Å), THR190 (1.73, 2.41 Å), GLN192 (2.10 Å) | |
Siphonellinol-C-23-hydroperoxide (171) | S. siphonella | −11.2 | GLY143 (2.00 Å), GLN189 (1.97 Å), THR190 (2.03, 2.43 Å), GLN192 (2.46 Å) | |
Erylosides K (224) | Erylus lendenfeldi | −11.1 | GLU166 (3.03 Å), HIS163 (2.18 Å), HIS164 (2.26, 2.10 Å) | |
Sipholenol D (176) | S. siphonella | −11.0 | THR190 (2.08 Å), HIS163 (2.48 Å), GLU166 (2.98 Å), GLN189 (1.91 Å) | |
Sipholenone A (175) | S. siphonella | −11.0 | GLY143 (1.93 Å), HIS163 (2.41 Å), HIS164 (2.54 Å), GLU166 (2.36 Å) | |
Neviotine B (158) | S. siphonella | −10.9 | ASN142 (2.26 Å), GLU166 (1.95 Å), GLN189 (1.80 Å), THR190 (2.57 Å) | |
Eryloside A (197) | Genus Erylus | −10.7 | ASN142 (2.32 Å), GLU166 (1.95 Å), THR190 (1.87 Å) | |
Sipholenone D (155) | S. siphonella | −10.7 | GLN189 (1.77 Å), THR190 (1.83 Å), GLN192 (2.23 Å) | |
24-Methylcholestane-5-en-3β,25-diol (187) | S. polydactyla | −10.6 | MET49 (2.16 Å), PHE140 (1.87 Å), GLN189 (2.97 Å) | |
SipholenolA-4-O-3′,4′-dichlorobenzoate (151) | S. siphonella | −10.5 | HIS163 (2.30 Å), GLN189 (1.78 Å) | |
Stigmasterol (220) | D. coccinea | −10.5 | MET49 (2.18 Å), GLN189 (2.97 Å) | |
Cholest-5-en-3β,7β-diol (206) | A. dichotoma | −10.3 | MET49 (2.17 Å), GLN189 (1.94 Å) | |
Campesterol (221) | D. coccinea | −10.3 | MET49 (2.17 Å), GLN189 (3.01 Å) | |
Cholesterol (184) | Dendronephthya | −10.3 | MET49 (2.10 Å), GLN189 (2.97 Å) | |
Clionasterol (219) | Dragmacidon coccinea | −10.3 | MET49 (2.16 Å), GLN189 (2.95 Å) | |
Brassicasterol (222) | D. coccinea | −10.1 | MET49 (2.17 Å) | |
3β-Hexadecanoylcholest-5-en-7-one (202) | A. dichotoma | −10.0 | GLY143 (1.95 Å) | |
Sipholenone E (163) | S. siphonella | −9.9 | GLN189 (1.83 Å) |
Compound Name | Calculated MM/GBSA Binding Energy (kcal/mol) | ||||||
---|---|---|---|---|---|---|---|
∆EVDW a | ∆Eele b | ∆EGB c | ∆ESUR d | ∆Ggas e | ∆GSolv f | ∆Gbinding g | |
Erylosides B (226) | −71.2 | −30.5 | 58.1 | −8.3 | −101.7 | 49.8 | −51.9 |
Lopinavir | −45.6 | −22.1 | 39.9 | −5.7 | −67.8 | 34.2 | −33.6 |
Compound Name | Acceptor | Donor | Distance (Å) a | Angle (degree) a | Occupied (%) b |
---|---|---|---|---|---|
Erylosides B (226) | GLN_189@O | Erylosides B @O5-H29 | 2.9 | 142 | 95.7 |
GLU166@O | Erylosides B @O3-H16 | 2.8 | 141 | 92.3 | |
CYS145@O | Erylosides B @O12-H44 | 2.9 | 152 | 91.1 | |
ASN142@O | Erylosides B @O16-H29 | 2.7 | 156 | 83.3 | |
Lopinavir | GLN189@O | Lopinavir @O9-H19 | 2.8 | 145 | 85.6 |
GLY143@O | Lopinavir @O12-H28 | 2.7 | 158 | 75.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Mohamed, T.A.; Atia, M.A.M.; Al-Hammady, M.A.M.; Abdeljawaad, K.A.A.; Elkady, E.M.; Moustafa, M.F.; Alrumaihi, F.; Allemailem, K.S.; et al. In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors. Molecules 2021, 26, 2082. https://doi.org/10.3390/molecules26072082
Ibrahim MAA, Abdelrahman AHM, Mohamed TA, Atia MAM, Al-Hammady MAM, Abdeljawaad KAA, Elkady EM, Moustafa MF, Alrumaihi F, Allemailem KS, et al. In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors. Molecules. 2021; 26(7):2082. https://doi.org/10.3390/molecules26072082
Chicago/Turabian StyleIbrahim, Mahmoud A. A., Alaa H. M. Abdelrahman, Tarik A. Mohamed, Mohamed A. M. Atia, Montaser A. M. Al-Hammady, Khlood A. A. Abdeljawaad, Eman M. Elkady, Mahmoud F. Moustafa, Faris Alrumaihi, Khaled S. Allemailem, and et al. 2021. "In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors" Molecules 26, no. 7: 2082. https://doi.org/10.3390/molecules26072082
APA StyleIbrahim, M. A. A., Abdelrahman, A. H. M., Mohamed, T. A., Atia, M. A. M., Al-Hammady, M. A. M., Abdeljawaad, K. A. A., Elkady, E. M., Moustafa, M. F., Alrumaihi, F., Allemailem, K. S., El-Seedi, H. R., Paré, P. W., Efferth, T., & Hegazy, M.-E. F. (2021). In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors. Molecules, 26(7), 2082. https://doi.org/10.3390/molecules26072082