A New Coumarin-Acridone Compound as a Fluorescence Probe for Fe3+ and Its Application in Living Cells and Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthetis of Probe S
2.2.1. The Synthesis of Intermediate 1
2.2.2. The Synthesis of Probe S
2.2.3. Crystal Data and Structure Determination of Probe S
2.3. Fluorescence Analysis
2.4. In Vitro Cell Imaging
2.5. Fluorescence Imaging in Zebrafish
3. Results and Discussion
3.1. Synthesis and Structural Characterization of Probe S
3.2. Spectral Studies of Probe S
3.2.1. Selectivity Studies for Metal Ions
3.2.2. Fluorescence Titration of Probe S with Fe3+
3.2.3. pH Effect of the Probe for Fe3+
3.3. Fluorescence Images in Living Cells
3.4. Fluorescent Imaging in Zebrafish
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Takeda, Y.; Iwai, K. Maintenance of cellular and body iron homeostasis. Nihon rinsho. Jpn. J. Clin. Med. 2016, 74, 1094–1102. [Google Scholar]
- Stoyanovsky, D.A.; Tyurina, Y.Y.; Shrivastava, I.; Bahar, I.; Tyurin, V.A.; Protchenko, O.; Jadhav, S.; Bolevich, S.B.; Kozlov, A.V.; Vladimirov, Y.A.; et al. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic. Biol. Med. 2019, 133, 153–161. [Google Scholar] [CrossRef]
- Ding, C.-W.; Luo, W.; Zhou, J.-Y.; Ma, X.-J.; Chen, G.-H.; Zhou, X.-P.; Li, D. Hydroxo Iron(III) Sites in a Metal–Organic Framework: Proton-Coupled Electron Transfer and Catalytic Oxidation of Alcohol with Molecular Oxygen. ACS Appl. Mater. Interfaces 2019, 11, 45621–45628. [Google Scholar] [CrossRef]
- Santiago González, D.A.S.; Cheli, V.T.; Wan, R.; Pabloez, P.M. Iron Metabolism in the Peripheral Nervous System: The Role of DMT1, Ferritin, and Transferrin Receptor in Schwann Cell Maturation and Myelination. J. Neurosci. 2019, 39, 9940–9953. [Google Scholar] [CrossRef]
- Terpilłowska, S.; Siwicki, A.K. Chromium(III) and iron(III) inhibits replication of DNA and RNA viruses. Biometals 2017, 30, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, F.; Pez, S.G.A. A guide to diagnosis of iron deficiency and iron deficiency anemia in digestive diseases. World J. Gastroenterol. 2009, 15, 4638–4643. [Google Scholar] [CrossRef]
- Wang, J.; Song, N.; Jiang, H.; Wang, J.; Xie, J. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Théevenod, F. Iron and Its Role in Cancer Defense: A Double-Edged Sword. Met. Lons. Life Sci. 2018, 5, 437–468. [Google Scholar] [CrossRef]
- Li, S.J.; Ren, Y.D.; Li, J.; Cao, B.; Ma, C.; Qin, S.S.; Li, X.R. The role of iron in Parkinson’’s disease monkeys assessed by susceptibility weighted imaging and inductively coupled plasma mass spectrometry. Life Sci. 2019, 240, 117091. [Google Scholar] [CrossRef] [PubMed]
- Elstrott, B.; Khan, L.; Olson, S.; Raghunathan, V.; Deloughery, T.; Shatzel, J.J. The role of iron repletion in adult iron deficiency anemia and other diseases. Eur. J. Haematol. 2019, 104, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Torben, M.; Tina, S.R.; Lykke, T.L. Iron deficiency and iron treatment in the fetal developing brain-a pilot study introducing an experimental rat model. Reprod. Health 2018, 15, 93. [Google Scholar]
- Machado, I.; Bergmann, G.; Pistón, M. A simple and fast ultrasound-assisted extraction procedure for Fe and Zn determination in milk-based infant formulas using flame atomic absorption spectrometry (FAAS). Food Chem. 2016, 194, 373–376. [Google Scholar] [CrossRef]
- Aleixo, P.C.; Nóbrega, J.A. Direct determination of iron and selenium in bovine milk by graphite furnace atomic absorption spectrometry. Food Chem. 2003, 83, 457–462. [Google Scholar] [CrossRef]
- Xu, T.T.; Tian, P.; Liu, S. Determination of Iron Element in Comb Mushroom by ICP-AES. Appl. Mech. Mater. 2014, 707, 172–175. [Google Scholar] [CrossRef]
- Wheal, M.S.; DeCourcy-Ireland, E.; Bogard, J.R.; Thilsted, S.H.; Stangoulis, J.C.R. Measurement of haem and total iron in fish, shrimp and prawn using ICP-MS: Implications for dietary iron intake calculations. Food Chem. 2016, 201, 222–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abduljabbar, T.N.; Sharp, B.L.; Reid, H.J.; Barzegar-Befroeid, N.; Peto, T.; Lengyel, I. Determination of Zn, Cu and Fe in human patients’ serum using micro-sampling ICP-MS and sample dilution. Talanta 2019, 204, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Joao, H.; Santos, N.; Icaro, A.S.; Porto, M.; Schneider, P. Speciation analysis based on digital image colorimetry: Iron (II/III) in white wine. Talanta 2018, 194, 86–89. [Google Scholar]
- Lemos, V.A.; de Carvalho, A.L. Determination of cadmium and lead in human biological samples by spectrometric techniques: A review. Environ. Monit. Assess. 2010, 171, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dong, X.; Dai, B.; Pan, M.; He, S.; Wang, J. Determination of V, Cr, Cu, As, and Pb Ions in Water and Biological Samples by Combining ICP-MS with Online Preconcentration Using Impregnated Resin. J. AOAC Int. 2015, 98, 218–224. [Google Scholar] [CrossRef]
- Hao, Z.-H.; Yao, J.-Z.; Tang, R.-L.; Zhang, X.-M.; Li, W.-G.; Zhang, Q. Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES). Spectrosc. Spectr. Anal. 2015, 35, 527–533. [Google Scholar]
- Xu, Y.; Xiao, L.; Sun, S.; Pei, Z.; Pei, Y.; Pang, Y. Switchable and selective detection of Zn2+ or Cd2+ in living cells based on 3′-O-substituted arrangement of benzoxazole-derived fluorescent probes. Chem. Commun. 2014, 50, 7514–7516. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Huang, Y.; Chen, Y.; Lu, L.; Wang, C.; Sun, T.; Wang, M.; Zhu, G.; Yang, Y.; Zhang, L.; et al. A coumarin derivative as a “turn-on” fluorescence probe toward Cd2+ in live cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 218, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Wu, S.P. A highly selective turn-on fluorescence chemosensor for Hg(II) and its application in living cell imaging. Sens. Actuators B Chem. 2014, 201, 25–30. [Google Scholar] [CrossRef]
- Wani, M.A.; Singh, P.K.; Pandey, R.; Pandey, M.D. Coumarin-pyrene conjugate: Synthesis, structure and Cu-selective fluorescent sensing in mammalian kidney cells. J. Lumin. 2016, 171, 159–165. [Google Scholar] [CrossRef]
- Biswas, S.; Gangopadhyay, M.; Barman, S.; Sarkar, J.; Singh, N.D.P. Simple and efficient coumarin-based colorimetric and fluorescent chemosensor for F− detection: An ON1–OFF–ON2 fluorescent assay. Sens. Actuators B Chem. 2016, 222, 823–828. [Google Scholar] [CrossRef]
- Li, L.; Yun, S.; YuanHui, Z.; Lan, M.; Xi, Z.; Carl, R.; Gang, W. A single chemosensor for multiple analytes: Fluorogenic and ratiometric absorbance detection of Zn2+, Mg2+ and F−, and its cell imaging. Sens. Actuators B Chem. 2016, 226, 279–288. [Google Scholar] [CrossRef]
- Yanar, U.; Babür, B.; Pekyilmaz, D.; Yahaya, I.; Aydiner, B.; Dede, Y.; Seferoglu, Z. A fluorescent coumarin-thiophene hybrid as a ratiometric chemosensor for anions: Synthesis, photophysics, anion sensing and orbital interactions. J. Mol. Struct. 2016, 1108, 269–277. [Google Scholar] [CrossRef]
- Pathak, S.; Das, D.; Kundu, A.; Maity, S.; Guchhait, N.; Pramanik, A. Synthesis of 4-hydroxyindole fused isocoumarin derivatives and their fluorescence “Turn-off” sensing of Cu (II) and Fe(III) ions. RSC Adv. 2015, 5, 17308–17318. [Google Scholar] [CrossRef]
- Pivetta, T.; Masuri, S.; Cabiddu, M.G.; Caltagirone, C.; Pintus, A.; Massa, M.; Isaia, F.; Cadoni, E. A novel ratiometric and TURN-ON fluorescent coumarin-based probe for Fe(III). New J. Chem. 2019, 43, 12032–12041. [Google Scholar] [CrossRef]
- Peng, M.J.; Shang, H.; Yang, J.M. The synthesis and property research of coumarin-benzothiazole fluorescent sensor. Appl. Sci. Technol. 2018, 45, 96–102. [Google Scholar]
- Nikolov, P.; Petkova, I.; Köhler, G.; Stojanov, S. Deactivation processes and hydrogen bonding of excited N-substituted acridones. J. Mol. Struct. 1998, 448, 247–254. [Google Scholar] [CrossRef]
- Vezzu, D.A.K.; Deaton, J.C.; Shayeghi, M.; Li, Y.; Huo, S. Acridinone/Amine(carbazole)-Based Bipolar Molecules: Efficient Hosts for Fluorescent and Phosphorescent Emitters. Org. Lett. 2009, 11, 4310–4313. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.C.; Pontinha, A.D.R.; Pineiro, M.; De Melo, J.S.S. A comprehensive spectral, photophysical and electrochemical study of synthetic water-soluble acridones. A new class of pH and polarity sensitive fluorescent probes. Dye. Pigment. 2019, 166, 203–210. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Yi, P.G.; Yang, X.C.; Yu, X.Y.; Liu, Z.J.; Liu, J.; Wang, Z.X.; Li, X.F. Proton Transfer of 2-(2-Amino-3-pyridyl)-benzimidazole Under the Inclusion Interaction with Cucurbit. Chem. J. Chin. Univ. 2012, 12, 2657–2662. [Google Scholar]
- Jana, T.; Ján, I.; Ivan, D.; Stanislav, B.; Pavol, K.; Jana, P.; Marián, S.; Karel, D.K. Regioselectivity and Tautomerism of Novel Five-Membered Ring Nitrogen Heterocycles Formed via Cyclocondensation of Acylthiosemicarbazides. Molecules 2008, 13, 501–518. [Google Scholar]
- Böttcher, R.; Langhammer, H.T.; Kücker, S.; Eisenschmidt, C.; Ebbinghaus, S.G. On the incorporation of iron into hexagonal barium titanate: I. electron paramagnetic resonance (EPR) study. J. Phys. Condens. Matter 2018, 30, 425701. [Google Scholar] [CrossRef]
- Ganeshraja, A.S.; Karthikeyan, V.; Krishnamoorthy, A. New monomeric mixed-ligand complex of iron(III)-3-chloropyridine: Synthesis, structure, luminescence, electrochemical and magnetic properties. J. Mol. Struct. 2020, 1225, 129160. [Google Scholar]
- Fuwa, Y.; Wakeshima, M.; Hinatsu, Y. Crystal structure, magnetic properties, and Mössbauer spectroscopy of new layered iron oxyselenide Nd2Fe2O3Se2. J. Phys. Condens. Matter 2010, 22, 346003. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, R. Determination of Iron(III) by Room Temperature Ionic Liquids/Surfactant Sensitized Fluorescence Quenching Method. J. Fluoresc. 2010, 21, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, L.; Wang, H.; Song, J.; Ding, H.; Tang, X.-H.; Yao, H. A highly selective and sensitive turn-on fluorescent probe for the detection of Al+3 and its bioimaging. Luminescence 2017, 32, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.-W.; Park, K.-W. Determination of iron(III) with salicylic acid by the fluorescence quenching method. Talanta 1998, 46, 1567–1571. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Yan, Z.; Qiu, P.; Mo, Y.; Cao, Q.; Li, Q.; Huo, L.; Zhao, L. A New Coumarin-Acridone Compound as a Fluorescence Probe for Fe3+ and Its Application in Living Cells and Zebrafish. Molecules 2021, 26, 2115. https://doi.org/10.3390/molecules26082115
Huang J, Yan Z, Qiu P, Mo Y, Cao Q, Li Q, Huo L, Zhao L. A New Coumarin-Acridone Compound as a Fluorescence Probe for Fe3+ and Its Application in Living Cells and Zebrafish. Molecules. 2021; 26(8):2115. https://doi.org/10.3390/molecules26082115
Chicago/Turabian StyleHuang, Jiayong, Zhenshuo Yan, Peiling Qiu, Yufeng Mo, Qizhen Cao, Qiuhong Li, Lini Huo, and Lichun Zhao. 2021. "A New Coumarin-Acridone Compound as a Fluorescence Probe for Fe3+ and Its Application in Living Cells and Zebrafish" Molecules 26, no. 8: 2115. https://doi.org/10.3390/molecules26082115
APA StyleHuang, J., Yan, Z., Qiu, P., Mo, Y., Cao, Q., Li, Q., Huo, L., & Zhao, L. (2021). A New Coumarin-Acridone Compound as a Fluorescence Probe for Fe3+ and Its Application in Living Cells and Zebrafish. Molecules, 26(8), 2115. https://doi.org/10.3390/molecules26082115