Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context—A Review
Abstract
:1. Introduction
2. Screening-Controlled Drugs by Microextraction-Based Techniques
2.1. Opioids and Related Substances
2.2. Stimulants and Related Substances
2.3. Cannabinoids and Related Substances
2.4. Hallucinogens, Dissociative Drugs, and Related Substances
3. Future Trends in the Forensic Context
3.1. New Psychoactive Substances (NPS)
3.2. Comparison of the Top-Eight Most Applied Microextraction-Based Techniques
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- United Nations Office on Drugs and Crime. World Drug Report 2016; United Nations Publication, Sales No. E.16.XI.7; United Nations: Vienna, Austria, 2016; ISBN 978-92-1-148286-7. eISBN: 978-92-1-057862-2. [Google Scholar]
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2017: Trends and Developments; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- United Nations Office on Drugs and Crime. World Drug Report 2017; United Nations Publication, Sales No. E.17.XI.6; United Nations: Vienna, Austria, 2017; ISBN 978-92-1-148291-1. eISBN 978-92-1-060623-3. [Google Scholar]
- NICE. Controlled Drugs: Safe Use and Management (NG46). Clin. Guidel. 46. 2016. Available online: https://www.nice.org.uk/guidance/ng46/resources/controlled-drugs-safe-use-and-management-pdf-1837456188613 (accessed on 24 June 2020).
- Ganjali, M.R.; Sobhi, H.R.; Farahani, H.; Norouzi, P.; Dinarvand, R.; Kashtiaray, A. Solid drop based liquid-phase microextraction. J. Chromatogr. A 2010, 1217, 2337–2341. [Google Scholar] [CrossRef]
- Chimuka, L.; Cukrowska, E.; Michel, M.; Buszewski, B. Advances in sample preparation using membrane-based liquid-phase microextraction techniques. TrAC Trends Anal. Chem. 2011, 30, 1781–1792. [Google Scholar] [CrossRef]
- Kataoka, H. Recent developments and applications of microextraction techniques in drug analysis. Anal. Bioanal. Chem. 2010, 396, 339–364. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, I.; Fernandes, C. Magnetic solid phase extraction for determination of drugs in biological matrices. TrAC Trends Anal. Chem. 2017, 89, 41–52. [Google Scholar] [CrossRef]
- Raynie, D.E. Modern Extraction Techniques. Anal. Chem. 2006, 78, 3997–4004. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.M.F. Stir-bar sorptive extraction—15 years making sample preparation more environment friendly. TrAC Trends Anal. Chem. 2015, 71, 214–223. [Google Scholar] [CrossRef]
- Barroso, M.; Gallardo, E.; Queiroz, J.A. The role of liquid-phase microextraction techniques in bioanalysis. Bioanalysis 2015, 7, 2195–2201. [Google Scholar] [CrossRef]
- Lucena, R.; Cruz-Vera, M.; Cárdenas, S.; Valcárcel, M. Liquid-phase microextraction in bioanalytical sample preparation. Bioanalysis 2009, 1, 135–149. [Google Scholar] [CrossRef]
- Moldoveanu, S.; David, R.V. Techniques, Modern Sample Preparation for Chromatography; Elsevier: Amesterdam, The Netherlands, 2015; ISBN 978-0-444-54319-6. [Google Scholar]
- Pawliszyn, J. Handbook of Solid Phase Microextractionm; Development of SPME Devices and Coatings; Elsevier: Amesterdam, The Netherlands, 2012; pp. 61–97. ISBN 978-0-12-416017-0. [Google Scholar]
- Getie-Kebtie, M.; Alterman, M. Sample Preparation in Biological Mass Spectrometry; Springer: Berlin, Germany, 2014; ISBN 978-94-007-0758-0. [Google Scholar]
- Pawliszyn, J.; Lord, H.L. Handbook of Sample Preparation; John Wiley & Sons: New York, NY, USA, 2011; ISBN 9780470099346. [Google Scholar]
- Pawliszyn, J. Solid Phase Microextraction. In Headspace Analysis of Foods and Flavors; Rouseff, R.L., Cadwallader, K.R., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2001; Volume 488. [Google Scholar]
- Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review. Anal. Chim. Acta 2008, 624, 253–268. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Amiri, A. Liquid-phase microextraction. TrAC Trends Anal. Chem. 2010, 29, 1–14. [Google Scholar] [CrossRef]
- Sharifi, V.; Abbasi, A.; Nosrati, A. Application of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction techniques in analytical toxicology. J. Food Drug Anal. 2016, 24, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, D.; Row, K.H. Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim. Acta 2012, 176, 1–22. [Google Scholar] [CrossRef]
- Ghambarian, M.; Yamini, Y.; Esrafili, A. Developments in hollow fiber based liquid-phase microextraction: Principles and applications. Microchim. Acta 2012, 177, 271–294. [Google Scholar] [CrossRef]
- Ocaña-González, J.A.; Fernández-Torres, R.; Bello-López, M.Á.; Ramos-Payán, M. New developments in microextraction techniques in bioanalysis. A review. Anal. Chim. Acta 2016, 905, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, K.; Hatami, M.; Matin, A.A. Microextraction techniques in therapeutic drug monitoring. Biomed. Chromatogr. 2012, 26, 972–989. [Google Scholar] [CrossRef]
- Alves, G.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Queiroz, J. A critical review of microextraction by packed sorbent as a sample preparation approach in drug bioanalysis. Bioanalysis 2013, 5, 1409–1442. [Google Scholar] [CrossRef]
- Moein, M.M.; Said, R.; Bassyouni, F.; Abdel-Rehim, M. Solid phase microextraction and related techniques for drugs in biological samples. J. Anal. Methods Chem. 2014, 2014. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38. [Google Scholar] [CrossRef]
- Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta 2014, 119, 34–45. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends Anal. Chem. 2010, 29, 617–628. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Owczarek, K.; Namieśnik, J. Modern solutions in the field of microextraction using liquid as a medium of extraction. TrAC Trends Anal. Chem. 2016, 85, 46–64. [Google Scholar] [CrossRef]
- Maisto, S.A.; Galizio, M.; Connors, G.J. Drug Use and Abuse; Cengage Learning: Belmont, CA, USA, 2011; ISBN 978-0-495-81441-2. [Google Scholar]
- Kuhar, M.J.; Liddle, H. Drugs of Abuse; Marshall Cavendish Corporation: New York, NY, USA, 2012; ISBN 978-0-7614-7944-4. [Google Scholar]
- United Nations Office on Drugs and Crime. The Non-Medical Use of Prescription Drugs; United Nations Office on Drugs and Crime: New York, NY, USA, 2011. [Google Scholar]
- Isralowitz, R.E.; Meyers, P.L. Illicit Drugs; Greedwood: Oxford, UK, 2011; ISBN 978-0-313-36566-9. [Google Scholar]
- Wong, R.C.; Tse, H.Y. Drugs of Abuse: Body Fluid Testing; Humana Press: Totowa, NJ, USA, 2005; ISBN 1-59259-951-6. [Google Scholar]
- Sussman, S.; Ames, S.L. Drug Abuse: Concepts, Prevention, and Cessation; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-521-85892-2. [Google Scholar]
- Pates, R.; McBride, A.; Arnold, K. Injecting Illicit Drugs; Blackwell Publishing: Oxford: UK, 2005; ISBN 1-4051-1360-X. [Google Scholar]
- Milone, M.C. Laboratory Testing for Prescription Opioids. J. Med. Toxicol. 2012, 8, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.S. Opioid metabolism. Mayo Clin. Proc. 2009, 84, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Vlčková, H.; El-Beqqali, A.; Nováková, L.; Solich, P.; Abdel-Rehim, M. Determination of amphetamine and methadone in human urine by microextraction by packed sorbent coupled directly to mass spectrometry: An alternative for rapid clinical and forensic analysis. J. Sep. Sci. 2014, 37, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.F.P.; Neng, N.R.; Mestre, A.S.; Carvalho, A.P.; Nogueira, J.M.F. Development of a powdered activated carbon in bar adsorptive micro-extraction for the analysis of morphine and codeine in human urine. J. Chromatogr. Sci. 2012, 50, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Ranjbari, E.; Golbabanezhad-Azizi, A.A.; Hadjmohammadi, M.R. Preconcentration of trace amounts of methadone in human urine, plasma, saliva and sweat samples using dispersive liquid-liquid microextraction followed by high performance liquid chromatography. Talanta 2012, 94, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Habibi-Khorasani, M.; Mohammadpour, A.H.; Mohajeri, S.A. Development of solid-phase microextraction coupled with liquid chromatography for analysis of tramadol in brain tissue using its molecularly imprinted polymer. Biomed. Chromatogr. 2017, 31, 1–11. [Google Scholar] [CrossRef]
- Mohammadiazar, S.; Hasanli, F.; Maham, M.; Payami Samarin, S. Solid-phase microextraction of methadone in urine samples by electrochemically co-deposited sol–gel/Cu nanocomposite fiber. Biomed. Chromatogr. 2017, 31, 1–7. [Google Scholar] [CrossRef]
- Ara, K.M.; Raofie, F. Low-voltage electrochemically stimulated stir membrane liquid-liquid microextraction as a novel technique for the determination of methadone. Talanta 2017, 168, 105–112. [Google Scholar] [CrossRef]
- Lamei, N.; Ezoddin, M.; Abdi, K. Air assisted emulsification liquid-liquid microextraction based on deep eutectic solvent for preconcentration of methadone in water and biological samples. Talanta 2017, 165, 176–181. [Google Scholar] [CrossRef]
- El-Beqqali, A.; Abdel-Rehim, M. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: I. Determination of methadone in human plasma utilizing liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2016, 936, 116–122. [Google Scholar] [CrossRef]
- Taghvimi, A.; Hamishehkar, H.; Ebrahimi, M. Development and validation of a magnetic solid-phase extraction with high-performance liquid chromatography method for the simultaneous determination of amphetamine and methadone in urine. J. Sep. Sci. 2016, 39, 2307–2312. [Google Scholar] [CrossRef]
- Taheri, S.; Jalali, F.; Fattahi, N.; Jalili, R.; Bahrami, G. Sensitive determination of methadone in human serum and urine by dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by HPLC-UV. J. Sep. Sci. 2015, 38, 3545–3551. [Google Scholar] [CrossRef] [PubMed]
- Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Panahi-Azar, V.; Shayanfar, A.; Mohammadzadeh, L.; Jouyban, A.G. Extraction and analysis of methadone in exhaled breath condensate using a validated LC-UV method. J. Pharm. Pharm. Sci. 2015, 18, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimzadeh, H.; Mirbabaei, F.; Asgharinezhad, A.A.; Shekari, N.; Mollazadeh, N. Optimization of solvent bar microextraction combined with gas chromatography for preconcentration and determination of methadone in human urine and plasma samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 947–948, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lafuente, A.; Mirnaghi, F.S.; Pawliszyn, J. Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry Anti-doping Analysis. Anal. Bioanal. Chem. 2013, 405, 9723–9727. [Google Scholar] [CrossRef] [PubMed]
- Saracino, M.A.; Marcheselli, C.; Somaini, L.; Pieri, M.C.; Gerra, G.; Ferranti, A.; Raggi, M.A. A novel test using dried blood spots for the chromatographic assay of methadone. Anal. Bioanal. Chem. 2012, 404, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, H.; Mehdinia, A.; Kamarei, F.; Moradi, E. A sensitive method for the determination of methadone in biological samples using nano-structured α-carboxy polypyrrol as a sorbent of SPME. Chromatographia 2012, 75, 149–155. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Khezri, E.; Kamarei, F. Determination of methadone in biological samples using liquid phase microextraction with back extraction combined with LC. Chromatographia 2010, 72, 231–238. [Google Scholar] [CrossRef]
- El-Beqqali, A.; Abdel-Rehim, M. Quantitative analysis of methadone in human urine samples by microextraction in packed syringe-gas chromatography-mass spectrometry (MEPS-GC-MS). J. Sep. Sci. 2007, 30, 2501–2505. [Google Scholar] [CrossRef]
- dos Santos Lucas, A.C.; Bermejo, A.; Fernández, P.; Tabernero, M.J. Solid-Phase Microextraction in the Determination of Methadone in Human Saliva by Gas Chromatography-Mass Spectrometry. J. Anal. Toxicol. 2000, 24, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.C.S.; Bermejo, A.M.; Tabernero, M.J.; Fernández, P.; Strano-Rossi, S. Use of solid-phase microextraction (SPME) for the determination of methadone and EDDP in human hair by GC-MS. Forensic Sci. Int. 2000, 107, 225–232. [Google Scholar] [CrossRef]
- Bermejo, A.M.; Seara, R.; Dos Santos Lucas, A.C.; Tabernero, M.J.; Fernández, P.; Marsili, R. Use of solid-phase microextraction (SPME) for the determination of methadone and its main metabolite, EDDP, in plasma by gas chromatography-mass spectrometry. J. Anal. Toxicol. 2000, 24, 66–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sporkert, F.; Pragst, F. Determination of methadone and its metabolites EDDP and EMDP in human hair by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2000, 746, 255–264. [Google Scholar] [CrossRef]
- Myung, S.-W.; Kim, S.; Park, J.-H.; Kim, M.; Lee, J.-C.; Kim, T.-J. Solid-phase microextraction for the determination of pethidine and methadone in human urine using gas chromatography with nitrogen–phosphorus detection. Analyst 1999, 124, 1283–1286. [Google Scholar] [CrossRef]
- Abbasian, M.; Balali-Mood, M.; Mozaffari, S.A.; Amoli, H.S. Solid-phase microextraction of ultra-trace amounts of tramadol from human urine by using a carbon nanotube/flower-shaped zinc oxide hollow fiber. J. Sep. Sci. 2016, 39, 4449–4457. [Google Scholar] [CrossRef]
- Habibollahi, S.; Tavakkoli, N.; Nasirian, V.; Khani, H. Determination of Tramadol by Dispersive Liquid—Liquid Microextraction Combined with GC—MS. J. Chromatogr. Sci. 2015, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimzadeh, H.; Mollazadeh, N.; Asgharinezhad, A.A.; Shekari, N.; Mirbabaei, F. Multivariate optimization of surfactant-assisted directly suspended droplet microextraction combined with GC for the preconcentration and determination of tramadol in biological samples. J. Sep. Sci. 2013, 36, 3783–3790. [Google Scholar] [CrossRef]
- Kiarostami, V.; Rouini, M.-R.; Mohammadian, R.; Lavasani, H.; Ghazaghi, M. Binary Solvents Dispersive Liquid—Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography. DARU J. Pharm. Sci. 2014, 22, 25. [Google Scholar] [CrossRef] [Green Version]
- Mirmahdieh, S.; Khayamian, T. Electrospun nanofibers of poly(methylmethacrylate)/polystyrene blend as a microcolumn extraction sorbent followed by corona discharge ion mobility spectrometry for analysis of tramadol in biological fluids. Chromatographia 2013, 76, 541–548. [Google Scholar] [CrossRef]
- Ghasemi, E. Optimization of solvent bar microextraction combined with gas chromatography mass spectrometry for preconcentration and determination of tramadol in biological samples. J. Chromatogr. A 2012, 1251, 48–53. [Google Scholar] [CrossRef]
- Ghambarian, M.; Yamini, Y.; Esrafili, A. Three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents for determination of tramadol in urine and plasma samples. J. Pharm. Biomed. Anal. 2011, 56, 1041–1045. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Yamini, Y.; Sedighi, A.; Rouini, M.R. Determination of tramadol in human plasma and urine samples using liquid phase microextraction with back extraction combined with high performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 863, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.F.; Shen, S.; Duan, G.L. Rapid determination of tramadol in human plasma by headspace solid-phase microextraction and capillary gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2005, 37, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Ahmar, H.; Tabani, H.; Hossein Koruni, M.; Davarani, S.S.H.; Fakhari, A.R. A new platform for sensing urinary morphine based on carrier assisted electromembrane extraction followed by adsorptive stripping voltammetric detection on screen-printed electrode. Biosens. Bioelectron. 2014, 54, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Boojaria, A.; Masrournia, M.; Ghorbani, H.; Ebrahimitalab, A.; Miandarhoie, M. Silane modified magnetic nanoparticles as a novel adsorbent for determination of morphine at trace levels in human hair samples by high-performance liquid chromatography with diode array detection. Forensic Sci. Med. Pathol. 2015, 11, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Moller, M.; Aleksa, K.; Walasek, P.; Karaskov, T.; Koren, G. Solid-phase microextraction for the detection of codeine, morphine and 6-monoacetylmorphine in human hair by gas chromatography-mass spectrometry. Forensic Sci. Int. 2010, 196, 64–69. [Google Scholar] [CrossRef]
- Yamini, Y.; Pourali, A.; Seidi, S.; Rezazadeh, M. Electromembrane extraction followed by high performance liquid chromatography: An efficient method for extraction and determination of morphine, oxymorphone, and methylmorphine from urine samples. Anal. Methods 2014, 6, 5554. [Google Scholar] [CrossRef]
- Somaini, L.; Saracino, M.A.; Marcheselli, C.; Zanchini, S.; Gerra, G.; Raggi, M.A. Combined liquid chromatography-coulometric detection and microextraction by packed sorbent for the plasma analysis of long acting opioids in heroin addicted patients. Anal. Chim. Acta 2011, 702, 280–287. [Google Scholar] [CrossRef]
- Gardner, M.A.; Sampsel, S.; Jenkins, W.W.; Owens, J.E. Analysis of fentanyl in urine by DLLME-GC-MS. J. Anal. Toxicol. 2015, 39, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, H.; Piri-Moghadam, H.; Bayat, P.; Balalaie, S. Application of sol–gel based molecularly imprinted xerogel for on-line capillary microextraction of fentanyl from urine and plasma samples. Anal. Methods 2013, 5, 7096. [Google Scholar] [CrossRef]
- Wang, C.; Li, E.; Xu, G.; Wang, H.; Gong, Y.; Li, P.; Liu, S.; He, Y. Determination of fentanyl in human breath by solid-phase microextraction and gas chromatography-mass spectrometry. Microchem. J. 2009, 91, 149–152. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Yamini, Y.; Gholizade, A.; Sedighi, A.; Kasraee, S. Determination of fentanyl in biological and water samples using single-drop liquid-liquid-liquid microextraction coupled with high-performance liquid chromatography. Anal. Chim. Acta 2008, 626, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Es-haghi, A.; Khalilian, F.; Rouini, M.R. Determination of fentanyl in human plasma by head-space solid-phase microextraction and gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2007, 43, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, C.; Favetta, P.; Gonin, R.; Bureau, J.; Guitton, J. Simultaneous Determination of Fentanyl and Midazolam in Plasma Using Direct Solid-Phase Microextraction Before Gas Chromatography–Mass Spectrometry Analysis. Anal. Lett. 2002, 35, 1575–1590. [Google Scholar] [CrossRef]
- Saraji, M.; Khalili Boroujeni, M.; Hajialiakbari Bidgoli, A.A. Comparison of dispersive liquid-liquid microextraction and hollow fiber liquid-liquid-liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography. Anal. Bioanal. Chem. 2011, 400, 2149–2158. [Google Scholar] [CrossRef]
- Hashemian, Z.; Khayamian, T.; Saraji, M. Anticodeine aptamer immobilized on a Whatman cellulose paper for thin-film microextraction of codeine from urine followed by electrospray ionization ion mobility spectrometry. Anal. Bioanal. Chem. 2015, 407, 1615–1623. [Google Scholar] [CrossRef]
- Seyyal, E.; Evans-Nguyen, T. Online Sol-gel Capillary Microextraction-Mass Spectrometry (CME-MS) Analysis of Illicit Drugs. J. Am. Soc. Mass Spectrom. 2019, 30, 595–604. [Google Scholar] [CrossRef]
- Riahi-Zanjani, B.; Balali-Mood, M.; Es’haghi, Z.; Asoodeh, A.; Ghorani-Azam, A. Molecular modeling and experimental study of a new peptide-based microextraction fiber for preconcentrating morphine in urine samples. J. Mol. Model. 2019, 25. [Google Scholar] [CrossRef]
- Alahyari, E.; Setareh, M.; Shekari, A.; Roozbehani, G.; Soltaninejad, K. Analysis of opioids in postmortem urine samples by dispersive liquid-liquid microextraction and high performance liquid chromatography with photo diode array detection. Egypt. J. Forensic Sci. 2018, 8. [Google Scholar] [CrossRef]
- Riahi-Zanjani, B.; Balali-Mood, M.; Asoodeh, A.; Es’haghi, Z.; Ghorani-Azam, A. Developing a new sensitive solid-phase microextraction fiber based on carbon nanotubes for preconcentration of morphine. Appl. Nanosci. 2018, 8, 2047–2056. [Google Scholar] [CrossRef]
- Dehnavi, F.; Dadfarnia, S.; Shabani, A.M.H.; Babaei, A. Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Drop for Isolation and Determination of Opium Alkaloids. J. Anal. Chem. 2018, 73, 765–770. [Google Scholar] [CrossRef]
- Gentili, S.; Mortali, C.; Mastrobattista, L.; Berretta, P.; Zaami, S. Determination of different recreational drugs in sweat by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME GC/MS): Application to drugged drivers. J. Pharm. Biomed. Anal. 2016, 129, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Fisichella, M.; Odoardi, S.; Strano-Rossi, S. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and app. Microchem. J. 2015, 123, 33–41. [Google Scholar] [CrossRef]
- Montesano, C.; Simeoni, M.C.; Curini, R.; Sergi, M.; Lo Sterzo, C.; Compagnone, D. Determination of illicit drugs and metabolites in oral fluid by microextraction on packed sorbent coupled with LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 3647–3658. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, W.; Meng, P.; Zhu, B.; Zheng, K. Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 989, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kohler, I.; Schappler, J.; Sierro, T.; Rudaz, S. Dispersive liquid-liquid microextraction combined with capillary electrophoresis and time-of-flight mass spectrometry for urine analysis. J. Pharm. Biomed. Anal. 2013, 73, 82–89. [Google Scholar] [CrossRef]
- Stege, P.W.; Lapierre, A.V.; Martinez, L.D.; Messina, G.A.; Sombra, L.L. A combination of single-drop microextraction and open tubular capillary electrochromatography with carbon nanotubes as stationary phase for the determination of low concentration of illicit drugs in horse urine. Talanta 2011, 86, 278–283. [Google Scholar] [CrossRef]
- Chen, M.L.; Suo, L.L.; Gao, Q.; Feng, Y.Q. Determination of eight illegal drugs in human urine by combination of magnetic solid-phase extraction with capillary zone electrophoresis. Electrophoresis 2011, 32, 2099–2106. [Google Scholar] [CrossRef]
- Merola, G.; Gentili, S.; Tagliaro, F.; MacChia, T. Determination of different recreational drugs in hair by HS-SPME and GC/MS. Anal. Bioanal. Chem. 2010, 397, 2987–2995. [Google Scholar] [CrossRef]
- Strano-Rossi, S.; Molaioni, F.; Botrè, F. Application of solid-phase microextraction to antidoping analysis: Determination of stimulants, narcotics, and other classes of substances excreted free in urine. J. Anal. Toxicol. 2005, 29, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Gentili, S.; Cornetta, M.; Macchia, T. Rapid screening procedure based on headspace solid-phase microextraction and gas chromatography-mass spectrometry for the detection of many recreational drugs in hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 801, 289–296. [Google Scholar] [CrossRef]
- Fernández, P.; Regenjo, M.; Ares, A.; Fernández, A.M.; Lorenzo, R.A.; Carro, A.M. Simultaneous determination of 20 drugs of abuse in oral fluid using ultrasound-assisted dispersive liquid–liquid microextraction. Anal. Bioanal. Chem. 2019, 411, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Montesano, C.; Cellucci, L.; Gregori, A.; Fanti, F.; Compagnone, D.; Curini, R.; Sergi, M. Combination of pressurized liquid extraction with dispersive liquid liquid micro extraction for the determination of sixty drugs of abuse in hair. J. Chromatogr. A 2019, 1605, 360348. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Nojavan, S.; Tabani, H. Inside gel electromembrane extraction: A novel green methodology for the extraction of morphine and codeine from human biological fluids. J. Pharm. Biomed. Anal. 2020, 184, 113175. [Google Scholar] [CrossRef] [PubMed]
- Adlnasab, L.; Shahdousti, P.; Ahmar, H. Layered double hydroxide intercalated with tyrosine for ultrasonic-assisted microextraction of tramadol and methadone from biological samples followed by GC/MS analysis. Microchim. Acta 2020, 187, 265. [Google Scholar] [CrossRef]
- Shekari, A.; Forouzesh, M.; Valipour, R.; Fallah, F.; Shojaei, P. Validation and Optimization of Ultrasound-Assisted Dispersive Liquid- Liquid Microextraction as a Preparation Method for Detection of Methadone in Saliva with Gas Chromatography-Mass Spectrometry Technique. Adv. Pharm. Bull. 2020, 10, 329–333. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, H.; Zhang, Y.; Tang, X.; Lei, W.; Qi, R.; Chu, J.; Li, D.; Zhao, Q. Talanta Graphene oxide-Fe 3 O 4 nanocomposite magnetic solid phase extraction followed by UHPLC-MS / MS for highly sensitive determination of eight psychoactive drugs in urine samples. Talanta 2020, 206, 120212. [Google Scholar] [CrossRef]
- Mirzaei, F.; Fakhari, A.R.; Hashemzadeh, A.; Amini, M.M. Sensitive determination of ketamine, methylphenidate, and tramadol in urine and wastewater samples by Porous Aromatic Framework-48 assisted electromembrane extraction coupled with ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 2020, 23, 29–37. [Google Scholar] [CrossRef]
- Karch, S.B. Drug Abuse Handbook; CRC Press: New York, NY, USA, 1997; ISBN 0-8493-2637-0. [Google Scholar]
- Karch, S.B. Cocaine: History, use, abuse. J. R. Soc. Med. 1999, 92, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.A.; DesLauriers, C.; Burda, A.; Johnson-Arbor, K. Cocaine: History, social implications, and toxicity: A review. Semin. Diagn. Pathol. 2009, 26, 10–17. [Google Scholar] [CrossRef]
- World Drug Report 2018; United Nations publication, Sales No. E.18.XI.9; United Nations: Vienna, Austria, 2018; ISBN 978-92-1-148304-8. ISBN: 978-92-1-045058-4.
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2018: Trends and Developments; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Rosado, T.; Gonçalves, A.; Margalho, C.; Barroso, M.; Gallardo, E. Rapid analysis of cocaine and metabolites in urine using microextraction in packed sorbent and GC/MS. Anal. Bioanal. Chem. 2017, 409, 2051–2063. [Google Scholar] [CrossRef]
- Silveira, G.d.; Belitsky, Í.T.; Loddi, S.; de Oliveira, C.D.R.; Zucoloto, A.D.; Fruchtengarten, L.V.G.; Yonamine, M. Development of a method for the determination of cocaine, cocaethylene and norcocaine in human breast milk using liquid phase microextraction and gas chromatography-mass spectrometry. Forensic Sci. Int. 2016, 265, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, J.; Barreiro-Grille, T.; Cabarcos, P.; Tabernero, M.J.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Magnetic molecularly imprinted polymer based—Micro-solid phase extraction of cocaine and metabolites in plasma followed by high performance liquid chromatography—Tandem mass spectrometry. Microchem. J. 2016, 127, 206–212. [Google Scholar] [CrossRef]
- Yang, F.; Zou, Y.; Ni, C.; Wang, R.; Wu, M.; Liang, C.; Zhang, J.; Yuan, X.; Liu, W. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by HPLC-MS. J. Sep. Sci. 2017, 40. [Google Scholar] [CrossRef] [PubMed]
- Cocovi-Solberg, D.J.; Esteve-Turrillas, F.A.; Armenta, S.; de la Guardia, M.; Miró, M. Towards an automatic lab-on-valve-ion mobility spectrometric system for detection of cocaine abuse. J. Chromatogr. A 2017, 1512, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Pego, A.M.F.; Roveri, F.L.; Kuninari, R.Y.; Leyton, V.; Miziara, I.D.; Yonamine, M. Determination of cocaine and its derivatives in hair samples by liquid phase microextraction (LPME) and gas chromatography–mass spectrometry (GC–MS). Forensic Sci. Int. 2017, 274, 83–90. [Google Scholar] [CrossRef]
- Sánchez-González, J.; García-Carballal, S.; Cabarcos, P.; Tabernero, M.J.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1451, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, J.; Tabernero, M.J.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction for analysis of urinary cocaine and its metabolites using liquid chromatography - Tandem mass spectrometry. Anal. Chim. Acta 2015, 898, 50–59. [Google Scholar] [CrossRef]
- Fucci, N.; Gambelunghe, C.; Aroni, K.; Rossi, R. A direct immersion solid-phase microextraction gas chromatography/mass spectrometry method for the simultaneous detection of levamisole and minor cocaine congeners in hair samples from chronic abusers. Ther. Drug Monit. 2014, 36, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Yamini, Y.; Seidi, S.; Feizbakhsh, R.; Baheri, T.; Rezazadeh, M. Liquid-phase microextraction based on two immiscible organic solvents followed by gas chromatography with mass spectrometry as an efficient method for the preconcentration and determination of cocaine, ketamine, and lidocaine in human urine samples. J. Sep. Sci. 2014, 37, 2364–2371. [Google Scholar] [CrossRef] [PubMed]
- Mozaner Bordin, D.C.; Alves, M.N.R.; Cabrices, O.G.; de Campos, E.G.; De Martinis, B.S. A Rapid Assay for the Simultaneous Determination of Nicotine, Cocaine and Metabolites in Meconium Using Disposable Pipette Extraction and Gas Chromatography-Mass Spectrometry (GC-MS). J. Anal. Toxicol. 2014, 38, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, I.; Bermejo, A.M.; Tabernero, M.J.; Fernández, P.; López, P. Determination of cocaine and cocaethylene in plasma by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 845, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, A.M.; López, P.; Álvarez, I.; Tabernero, M.J.; Fernández, P. Solid-phase microextraction for the determination of cocaine and cocaethylene in human hair by gas chromatography-mass spectrometry. Forensic Sci. Int. 2006, 156, 2–8. [Google Scholar] [CrossRef]
- Follador, M.J.D.; Yonamine, M.; Moreau, R.L.D.M.; Silva, O.A. Detection of cocaine and cocaethylene in sweat by solid-phase microextraction and gas chromatography/mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 811, 37–40. [Google Scholar] [CrossRef]
- Pereira De Toledo, F.C.; Yonamine, M.; De Moraes Moreau, R.L.; Silva, O.A. Determination of cocaine, benzoylecgonine and cocaethylene in human hair by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 798, 361–365. [Google Scholar] [CrossRef]
- de Jager, L.S.; Andrews, A.R. Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography. J. Chromatogr. A 2001, 911, 97–105. [Google Scholar] [CrossRef]
- de Jager, L.S.; Andrews, A.R.J. Preliminary studies of a fast screening method for cocaine and cocaine metabolites in urine using hollow fibre membrane solvent microextraction (HFMSME). Analyst 2001, 126, 1298–1303. [Google Scholar] [CrossRef]
- Ares, A.M.; Fernández, P.; Regenjo, M.; Fernández, A.M.; Carro, A.M.; Lorenzo, R.A. A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta 2017, 174, 454–461. [Google Scholar] [CrossRef]
- Sergi, M.; Compagnone, D.; Curini, R.; D’Ascenzo, G.; Del Carlo, M.; Napoletano, S.; Risoluti, R. Micro-solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry for the determination of stimulants, hallucinogens, ketamine and phencyclidine in oral fluids. Anal. Chim. Acta 2010, 675, 132–137. [Google Scholar] [CrossRef]
- Napoletano, S.; Montesano, C.; Compagnone, D.; Curini, R.; D’Ascenzo, G.; Roccia, C.; Sergi, M. Determination of illicit drugs in urine and plasma by micro-SPE followed by HPLC-MS/MS. Chromatographia 2012, 75, 55–63. [Google Scholar] [CrossRef]
- Sorribes-Soriano, A.; Valencia, A.; Esteve-Turrillas, F.A.; Armenta, S.; Herrero-Martínez, J.M. Development of pipette tip-based poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith for the extraction of drugs of abuse from oral fluid samples. Talanta 2019, 205, 120158. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.V.M.; Pereira, F.V.; Nascentes, C.C.; Moreira, J.S.; Boratto, V.H.M.; Orlando, R.M. Cellulose cone tip as a sorbent material for multiphase electrical field- assisted extraction of cocaine from saliva and determination by LC-MS / MS. Talanta 2020, 208, 120353. [Google Scholar] [CrossRef]
- Lizot, L.D.L.F.; da Silva, A.C.C.; Bastiani, M.F.; Maurer, T.F.; Hahn, R.Z.; Perassolo, M.S.; Antunes, M.V.; Linden, R. Simultaneous Determination of Cocaine and Metabolites in Human Plasma Using Solid Phase Micro-Extraction Fiber Tips C18 and UPLC – MS / MS. J. Anal. Toxicol. 2019. [Google Scholar] [CrossRef]
- Rasmussen, N. Amphetamine-Type Stimulants: The Early History of Their Medical and Non-Medical Uses, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Kalant, H. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Cmaj 2001, 165, 917–928. [Google Scholar] [PubMed]
- Song, A.; Yang, J. Efficient determination of amphetamine and methylamphetamine in human urine using electro-enhanced single-drop microextraction with in-drop derivatization and gas chromatography. Anal. Chim. Acta 2019, 1045, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Taghvimi, A.; Tabrizi, A.B.; Dastmalchi, S.; Javadzadeh, Y. Metal organic framework based carbon porous as an efficient dispersive solid phase extraction adsorbent for analysis of methamphetamine from urine matrix. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1109, 149–154. [Google Scholar] [CrossRef]
- Maddadi, S.; Qomi, M.; Rajabi, M. Extraction, preconcentration, and determination of methylphenidate in urine sample using solvent bar microextraction in combination with HPLC–UV: Optimization by experimental design. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 806–812. [Google Scholar] [CrossRef]
- Abbasian, M.; Balali-Mood, M.; Salar Amoli, H.; Masoumi, A. A new solid-phase microextraction fiber for separation and determination of methamphetamines in human urine using sol–gel technique. J. Sol-Gel Sci. Technol. 2017, 81, 247–260. [Google Scholar] [CrossRef]
- Rajabi, M.; Ghassab, N.; Hemmati, M.; Asghari, A. Emulsification microextraction of amphetamine and methamphetamine in complex matrices using an up-to-date generation of eco-friendly and relatively hydrophobic deep eutectic solvent. J. Chromatogr. A 2018, 1576, 1–9. [Google Scholar] [CrossRef]
- Song, A.; Wang, J.; Lu, G.; Jia, Z.; Yang, J.; Shi, E. Oxidized multiwalled carbon nanotubes coated fibers for headspace solid-phase microextraction of amphetamine-type stimulants in human urine. Forensic Sci. Int. 2018, 290, 49–55. [Google Scholar] [CrossRef]
- Shahvandi, S.K.; Banitaba, M.H.; Ahmar, H. Development of a new pH assisted homogeneous liquid-liquid microextraction by a solvent with switchable hydrophilicity: Application for GC-MS determination of methamphetamine. Talanta 2018, 184, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Mercieca, G.; Odoardi, S.; Cassar, M.; Strano Rossi, S. Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. J. Pharm. Biomed. Anal. 2018, 149, 494–501. [Google Scholar] [CrossRef] [PubMed]
- El-Beqqali, A.; Andersson, L.I.; Jeppsson, A.D.; Abdel-Rehim, M. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: II. Determination of amphetamine in human urine samples by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1063, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, J.; Zhang, X.; Qiu, M.; Huang, Z.; Rao, Y. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of seven recreational drugs in human whole blood using gas chromatography–mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1046, 177–184. [Google Scholar] [CrossRef]
- de Souza Eller, S.C.W.; de Oliveira, F.; Yonamine, M. Measurement uncertainty for the determination of amphetamines in urine by liquid-phase microextraction and gas chromatography-mass spectrometry. Forensic Sci. Int. 2016, 265, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Qi, X.; Zhao, L.; Liu, S.; Gao, S.; Ma, X.; Deng, Y. Ionic-liquid-based dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the forensic determination of methamphetamine in human urine. J. Sep. Sci. 2016, 39, 2444–2450. [Google Scholar] [CrossRef]
- Bagheri, H.; Zavareh, A.F.; Koruni, M.H. Graphene oxide assisted electromembrane extraction with gas chromatography for the determination of methamphetamine as a model analyte in hair and urine samples. J. Sep. Sci. 2016, 39, 1182–1188. [Google Scholar] [CrossRef]
- Argente-García, A.; Moliner-Martínez, Y.; López-García, E.; Campíns-Falcó, P.; Herráez-Hernández, R. Application of Carbon Nanotubes Modified Coatings for the Determination of Amphetamines by In-Tube Solid-Phase Microextraction and Capillary Liquid Chromatography. Separations 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Cunha, R.L.; Lopes, W.A.; Pereira, P.A.P. Determination of free (unconjugated) amphetamine-type stimulants in urine samples by dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry (DLLME-GC-MS). Microchem. J. 2016, 125, 230–235. [Google Scholar] [CrossRef]
- Akramipour, R.; Fattahi, N.; Pirsaheb, M.; Gheini, S. Combination of counter current salting-out homogenous liquid-liquid extraction and dispersive liquid-liquid microextraction as a novel microextraction of drugs in urine samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1012–1013, 162–168. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Cai, Y.; Wu, Q.; Chen, H. Hollow fiber-based solid-liquid phase microextraction combined with theta capillary electrospray ionization mass spectrometry for sensitive and accurate analysis of methamphetamine. Anal. Methods 2016, 8, 7800–7807. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.; Chung, D.S. In-line coupling of single-drop microextraction with capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 8745–8752. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Chen, J.; Li, M.; Subhan, F.; Chong, F.; Wen, C.; Yu, J.; Cui, B.; Chen, X. Determination of amphetamines in biological samples using electro enhanced solid-phase microextraction-gas chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1000, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, M.; Yamini, Y.; Seidi, S. Application of a new nanocarbonaceous sorbent in electromembrane surrounded solid phase microextraction for analysis of amphetamine and methamphetamine in human urine and whole blood. J. Chromatogr. A 2015, 1396, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Analysis of Methamphetamine in Human Urine Using Ionic Liquid Dispersive Liquid-Phase Microextraction Combined with HPLC. Chromatographia 2015, 78, 515–520. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, Y.; Sun, J.; Xi, Y.; Zhang, C.; Tang, J. Sensitive magnetic solid-phase microextraction based on oxide multi-walled carbon-nanotubes for the determination of methylamphetamine and ketamine in human urine and blood. Anal. Methods 2015, 7, 4209–4215. [Google Scholar] [CrossRef]
- Narimani, O.; Dalali, N.; Rostamizadeh, K. Functionalized carbon nanotube/ionic liquid-coated wire as a new fiber assembly for determination of methamphetamine and ephedrine by gas chromatography-mass spectrometry. Anal. Methods 2014, 6, 8645–8653. [Google Scholar] [CrossRef]
- Schuh, R.S.; Ferranti, P.; Ortiz, R.S.; Souza, D.Z.; Pechansky, F.; Froehlich, P.E.; Limberger, R.P. Simultaneous Analysis of Amphetamine-type Stimulants in Plasma by Solid-phase Microextraction and Gas Chromatography—Mass Spectrometry. J. Anal. Toxicol. 2014, 432–437. [Google Scholar]
- Junkuy, A.; Pengwong, M.; Aramrattana, A.; Celentano, D. Validation and application of hair analysis for the detection of methamphetamine in young Thai adults. Asian Biomed. 2014, 8, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi-Jouibari, T.; Fattahi, N.; Shamsipur, M. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography. J. Pharm. Biomed. Anal. 2014, 94, 145–151. [Google Scholar] [CrossRef]
- Yin, T.; Basheer, C.; Jin, M.; Ang, Y.; Kee, H. Electroenhanced solid-phase microextraction of methamphetamine with commercial fibers. J. Chromatogr. A 2013, 1297, 12–16. [Google Scholar] [CrossRef]
- Racamonde, I.; Rodil, R.; Quintana, J.B.; Cela, R. In-sample derivatization-solid-phase microextraction of amphetamines and ecstasy related stimulants from water and urine. Anal. Chim. Acta 2013, 770, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Airado-rodríguez, D.; Cruces-blanco, C.; García-campa, A.M. Dispersive liquid – liquid microextraction prior to field-amplified sample injection for the sensitive analysis of 3, 4-methylenedioxymethamphetamine, phencyclidine and lysergic acid diethylamide by capillary electrophoresis in human urine. J. Chromatogr. A 2012, 1267, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Djozan, D.; Farajzadeh, M.A. Determination of methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on molecularly imprinted polymer followed by GC-FID determination. Microchim. Acta 2012, 209–217. [Google Scholar] [CrossRef]
- Rezaee, M.; Mashayekhi, H.A.; Garmaroudi, S.S. Simultaneous determination of amphetamine and related compounds in human urine using ultrasound-assisted emulsification microextraction and gas chromatography. Anal. Methods 2012, 4, 3212–3218. [Google Scholar] [CrossRef]
- Pantaleão, N.; Aparecida, B.; Bismara, P.; Yonamine, M. Hollow-fiber liquid-phase microextraction of amphetamine-type stimulants in human hair samples. J. Chromatogr. A 2012, 1254, 1–7. [Google Scholar] [CrossRef]
- Mashayekhi, H.A.; Rezaee, M. Determination of Ecstasy Components in Human Urine by Gas Chromatography using a Dispersive Liquid-Liquid Microextraction Procedure. J. Braz. Chem. Soc. 2012, 23, 1698–1703. [Google Scholar] [CrossRef] [Green Version]
- Djozan, D.; Ali, M.; Mohammad, S.; Baheri, T. Molecularly imprinted-solid phase extraction combined with simultaneous derivatization and dispersive liquid—Liquid microextraction for selective extraction and preconcentration of methamphetamine and ecstasy from urine samples followed by gas chromatog. J. Chromatogr. A 2012, 1248, 24–31. [Google Scholar] [CrossRef]
- Saber Tehrani, M.; Givianrad, M.H.; Mahoor, N. Surfactant-assisted dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of amphetamine and methamphetamine in urine samples. Anal. Methods 2012, 4, 1357–1364. [Google Scholar] [CrossRef]
- Elén, R.; Jamt, G.; Gjelstad, A.; Erik, L.; Eibak, E.; Leere, E.; Solberg, A.; Einar, K.; Pedersen-bjergaard, S. Electromembrane extraction of stimulating drugs from undiluted whole blood. J. Chromatogr. A 2012, 1232, 27–36. [Google Scholar] [CrossRef]
- Seidi, S.; Yamini, Y.; Baheri, T.; Feizbakhsh, R. Electrokinetic extraction on artificial liquid membranes of amphetamine-type stimulants from urine samples followed by high performance liquid chromatography analysis. J. Chromatogr. A 2011, 1218, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zou, J.; Song, X.; Chen, J.; Ji, J.; Wang, B.; Wang, Y.; Ha, J.; Chen, X. A new strategy for basic drug extraction in aqueous medium using electrochemically enhanced solid-phase microextraction. J. Chromatogr. A 2011, 1218, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Chen, J.; He, M.; Hu, B. Simultaneous quantification of amphetamines, caffeine and ketamine in urine by hollow fiber liquid phase microextraction combined with gas chromatography-flame ionization detector. Talanta 2010, 82, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Es’haghi, Z.; Mohtaji, M.; Hasanzade-Meidani, M.; Masrournia, M. The measurement of ecstasy in human hair by triple phase directly suspended droplet microextraction prior to HPLC-DAD analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 903–908. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Pohl, J.; Engel, R.; Rothman, L.; Thomas, M. Preparation of ionic liquid based solid-phase microextraction fiber and its application to forensic determination of methamphetamine and amphetamine in human urine. J. Chromatogr. A 2009, 1216, 4824–4830. [Google Scholar] [CrossRef]
- Wise, J.; Danielson, T.; Mozayani, A.; Li, R. Analysis of amphetamine, methamphetamine, methylenedioxyamphetamine and methylenedioxymethamphetamine in whole blood using in-matrix ethyl chloroformate derivatization and automated headspace solid-phase microextraction followed by GC-MS. Forensic Toxicol. 2008, 26, 66–70. [Google Scholar] [CrossRef]
- Namera, A.; Nakamoto, A.; Nishida, M.; Saito, T.; Kishiyama, I.; Miyazaki, S.; Yahata, M.; Yashiki, M.; Nagao, M. Extraction of amphetamines and methylenedioxyamphetamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-diode array detection. J. Chromatogr. A 2008, 1208, 71–75. [Google Scholar] [CrossRef]
- Chiang, J.S.; Huang, S. Da Simultaneous derivatization and extraction of amphetamine and methylenedioxyamphetamine in urine with headspace liquid-phase microextraction followed by gas chromatography-mass spectrometry. J. Chromatogr. A 2008, 1185, 19–22. [Google Scholar] [CrossRef]
- Alizadeh, N.; Mohammadi, A.; Tabrizchi, M. Rapid screening of methamphetamines in human serum by headspace solid-phase microextraction using a dodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry. J. Chromatogr. A 2008, 1183, 21–28. [Google Scholar] [CrossRef]
- He, Y.; Vargas, A.; Kang, Y.J. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop. Anal. Chim. Acta 2007, 589, 225–230. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Kang, Y.J. Single drop liquid-liquid-liquid microextraction of methamphetamine and amphetamine in urine. J. Chromatogr. A 2006, 1133, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Nishida, M.; Yashiki, M.; Namera, A.; Kimura, K. Single hair analysis of methamphetamine and amphetamine by solid phase microextraction coupled with in matrix derivatization. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 842, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zeng, Z. Novel fiber coated with β-cyclodextrin derivatives used for headspace solid-phase microextraction of ephedrine and methamphetamine in human urine. Anal. Chim. Acta 2006, 556, 400–406. [Google Scholar] [CrossRef]
- Chia, K.J.; Huang, S. Da Simultaneous derivatization and extraction of amphetamine-like drugs in urine with headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Anal. Chim. Acta 2005, 539, 49–54. [Google Scholar] [CrossRef]
- Chou, C.C.; Lee, M.R. Solid phase microextraction with liquid chromatography-electrospray ionization-tandem mass spectrometry for analysis of amphetamine and methamphetamine in serum. Anal. Chim. Acta 2005, 538, 49–56. [Google Scholar] [CrossRef]
- Lokhnauth, J.K.; Snow, N.H. Solid phase micro-extraction coupled with ion mobility spectrometry for the analysis of ephedrine in urine. J. Sep. Sci. 2005, 28, 612–618. [Google Scholar] [CrossRef]
- Cháfer-Pericás, C.; Campíns-Falcó, P.; Herráez-Hernández, R. Application of solid-phase microextraction combined with derivatization to the determination of amphetamines by liquid chromatography. Anal. Biochem. 2004, 333, 328–335. [Google Scholar] [CrossRef]
- Raikos, N.; Christopoulou, K.; Theodoridis, G.; Tsoukali, H.; Psaroulis, D. Determination of amphetamines in human urine by headspace solid-phase microextraction and gas chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 789, 59–63. [Google Scholar] [CrossRef]
- Yonamine, M.; Tawil, N.; De Moraes Moreau, R.L.; Alves Silva, O. Solid-phase micro-extraction–gas chromatography–mass spectrometry and headspace-gas chromatography of tetrahydrocannabinol, amphetamine, methamphetamine, cocaine and ethanol in saliva samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 789, 73–78. [Google Scholar] [CrossRef]
- McCooeye, M.A.; Mester, Z.; Ells, B.; Barnett, D.A.; Purves, R.W.; Guevremont, R. Quantitation of amphetamine, methamphetamine, and their methylenedioxy derivatives in urine by solid-phase microextraction coupled with electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal. Chem. 2002, 74, 3071–3075. [Google Scholar] [CrossRef]
- Musshoff, F.; Lachenmeier, D.W.; Kroener, L.; Madea, B. Automated headspace solid-phase dynamic extraction for the determination of amphetamines and synthetic designer drugs in hair samples. J. Chromatogr. A 2002, 958, 231–238. [Google Scholar] [CrossRef]
- Goto, Y.; Takeda, S.; Araki, T.; Fuchigami, T. Method of simultaneous stir bar sorptive extraction of phenethylamines and THC metabolite from urine. J. Toxicol. Sci. 2011, 36, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, L.; Hu, B.; Yu, C. PH-resistant titania hybrid organic-inorganic coating for stir bar sorptive extraction of drugs of abuse in urine samples followed by high performance liquid chromatography-ultraviolet visible detection. J. Chromatogr. A 2010, 1217, 7003–7009. [Google Scholar] [CrossRef] [PubMed]
- Casari, C.; Andrews, A.R.J. Application of solvent microextraction to the analysis of amphetamines and phencyclidine in urine. Forensic Sci. Int. 2001, 120, 165–171. [Google Scholar] [CrossRef]
- Brown, S.D.; Rhodes, D.J.; Pritchard, B.J. A validated SPME-GC-MS method for simultaneous quantification of club drugs in human urine. Forensic Sci. Int. 2007, 171, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Alsenedi, K.A.; Morrison, C. Determination of amphetamine-type stimulants (ATSs) and synthetic cathinones in urine using solid phase micro-extraction fibre tips and gas chromatography-mass spectrometry. Anal. Methods 2018, 10, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Jahed, S.; Arezou, O.; Siavoush, T.; Yousef, D. Silica-Functionalized Nano-Graphene Oxide Composite as Potent-Dispersive Solid-Phase Extraction Adsorbent of Methylphenidate from Urine Samples. Arab. J. Sci. Eng. 2020, 45, 4697–4704. [Google Scholar] [CrossRef]
- Bombana, H.S.; Filonzi, M.; Muñoz, D.R.; Leyton, V. Hollow-fibre liquid-phase microextraction and gas chromatography-mass spectrometric determination of amphetamines in whole blood. J. Chromatogr. B 2020, 1139, 121973. [Google Scholar] [CrossRef]
- Jabbari, N.R.; Taghvimi, A.; Dastmalchi, S.; Javadzadeh, Y. Dispersive solid-phase extraction adsorbent of methamphetamine using in-situ synthesized carbon-based conductive polypyrrole nanocomposite: Focus on clinical applications in human urine. J. Sep. Sci. 2019, 43, 606–613. [Google Scholar] [CrossRef]
- Andersson, M.; Scheidweiler, K.B.; Sempio, C.; Barnes, A.J.; Huestis, M.A. Simultaneous quantification of 11 cannabinoids and metabolites in human urine by liquid chromatography tandem mass spectrometry using WAX-S tips. Anal. Bioanal. Chem. 2016, 408, 6461–6471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-González, J.; Salgueiro-Fernández, R.; Cabarcos, P.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Cannabinoids assessment in plasma and urine by high performance liquid chromatography–tandem mass spectrometry after molecularly imprinted polymer microsolid-phase extraction. Anal. Bioanal. Chem. 2017, 409, 1207–1220. [Google Scholar] [CrossRef]
- de Oliveira Silveira, G.; Loddi, S.; de Oliveira, C.D.R.; Zucoloto, A.D.; Fruchtengarten, L.V.G.; Yonamine, M. Headspace solid-phase microextraction and gas chromatography−mass spectrometry for determination of cannabinoids in human breast milk. Forensic Toxicol. 2017, 35, 125–132. [Google Scholar] [CrossRef]
- Emídio, E.S.; de Menezes Prata, V.; de Santana, F.J.M.; Dórea, H.S. Hollow fiber-based liquid phase microextraction with factorial design optimization and gas chromatography-tandem mass spectrometry for determination of cannabinoids in human hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2175–2183. [Google Scholar] [CrossRef] [PubMed]
- Rosado, T.; Fernandes, L.; Barroso, M.; Gallardo, E. Sensitive determination of THC and main metabolites in human plasma by means of microextraction in packed sorbent and gas chromatography–tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1043, 63–73. [Google Scholar] [CrossRef]
- De Souza Eller, S.C.W.; Flaiban, L.G.; Paranhos, B.A.P.B.; Da Costa, J.L.; Lourenço, F.R.; Yonamine, M. Analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in urine samples by hollow fiber-liquid phase microextraction and gas chromatography-mass spectrometry in consideration of measurement uncertainty. Forensic Toxicol. 2014, 32, 282–291. [Google Scholar] [CrossRef]
- Anzillotti, L.; Castrignanò, E.; Rossi, S.S.; Chiarotti, M. Cannabinoids determination in oral fluid by SPME-GC/MS and UHPLC-MS/MS and its application on suspected drivers. Sci. Justice 2014, 54, 421–426. [Google Scholar] [CrossRef]
- Scheidweiler, K.B.; Newmeyer, M.N.; Barnes, A.J.; Huestis, M.A. Quantification of cannabinoids and their free and glucuronide metabolites in whole blood by disposable pipette extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1453, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Montesano, C.; Sergi, M.; Odoardi, S.; Simeoni, M.C.; Compagnone, D.; Curini, R. A μ-SPE procedure for the determination of cannabinoids and their metabolites in urine by LC-MS/MS. J. Pharm. Biomed. Anal. 2014, 91, 169–175. [Google Scholar] [CrossRef]
- Sergi, M.; Montesano, C.; Odoardi, S.; Mainero Rocca, L.; Fabrizi, G.; Compagnone, D.; Curini, R. Micro extraction by packed sorbent coupled to liquid chromatography tandem mass spectrometry for the rapid and sensitive determination of cannabinoids in oral fluids. J. Chromatogr. A 2013, 1301, 139–146. [Google Scholar] [CrossRef]
- Emídio, E.S.; de Menezes Prata, V.; Dórea, H.S. Validation of an analytical method for analysis of cannabinoids in hair by headspace solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry. Anal. Chim. Acta 2010, 670, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Araki, T.; Fuchigami, T.; Arizono, K. Analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in urine by LC-MS-MS after stir-bar sorptive extraction and liquid desorption. Forensic Toxicol. 2010, 28, 38–42. [Google Scholar] [CrossRef]
- Luo, D.; Chen, F.; Xiao, K.; Feng, Y.Q. Rapid determination of Δ9-Tetrahydrocannabinol in saliva by polymer monolith microextraction combined with gas chromatography-mass spectrometry. Talanta 2009, 77, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.L.; Marinetti, L.J.; Smith, R.K.; Brewer, W.E.; Clelland, B.L.; Morgan, S.L. The analysis of delta9-tetrahydrocannabinol and metabolite in whole blood and 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid in urine using disposable pipette extraction with confirmation and quantification by gas chromatography-mass spectrometry. J. Anal. Toxicol. 2008, 32, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadulski, T.; Pragst, F. Simple and sensitive determination of??9-tetrahydrocannabinol, cannabidiol and cannabinol in hair by combined silylation, headspace solid phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 846, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues de Oliveira, C.D.; Yonamine, M.; de Moraes Moreau, R.L. Headspace solid-phase microextraction of cannabinoids in human head hair samples. J. Sep. Sci. 2007, 30, 128–134. [Google Scholar] [CrossRef]
- Franklin, T.; Perry, L.; Shih, W.C.; Yu, J. Detection of phytocannabinoids from buccal swabs by headspace solid phase microextraction-gas chromatography/mass spectrometry. Anal. Methods 2018, 10, 942–946. [Google Scholar] [CrossRef]
- Souza, I.D.; Hantao, L.W.; Queiroz, M.E.C. Polymeric ionic liquid open tubular capillary column for on-line in-tube SPME coupled with UHPLC-MS/MS to determine endocannabinoids in plasma samples. Anal. Chim. Acta 2019, 1045, 108–116. [Google Scholar] [CrossRef]
- Anzillotti, L.; Marezza, F.; Calò, L.; Andreoli, R.; Agazzi, S.; Bianchi, F.; Careri, M.; Cecchi, R. Determination of synthetic and natural cannabinoids in oral fluid by solid-phase microextraction coupled to gas chromatography/mass spectrometry: A pilot study. Talanta 2019, 201, 335–341. [Google Scholar] [CrossRef]
- Ncube, S.; Poliwoda, A.; Tutu, H.; Wieczorek, P.; Chimuka, L. Multivariate optimization of the hollow fibre liquid phase microextraction of muscimol in human urine samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1033–1034, 372–381. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J. Metabolism and metabolomics of ketamine: A toxicological approach. Forensic Sci. Res. 2017, 2, 2–10. [Google Scholar] [CrossRef]
- Ishii, A.; Seno, H.; Kumazawa, T.; Watanabe, K.; Hattori, H.; Suzuki, O. Simple Extraction of Phencyclidine from Human Body Fluids by Headspace Solid-Phase Microextraction (SPME). Chromatographia 1996, 43, 331–333. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Oliveira, M.N.; Neng, N.R.; Nogueira, J.M.F. A fast and validated high throughput bar adsorptive microextraction (HT-BAµE) method for the determination of ketamine and norketamine in urine samples. Molecules 2020, 25, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhari, A.R.; Koruni, M.H.; Ahmar, H.; Shahsavani, A.; Movahed, S.K. Electrochemical Determination of Dextromethorphan on Reduced Graphene Oxide Modified Screen-Printed Electrode after Electromembrane Extraction. Electroanalysis 2014, 26, 521–529. [Google Scholar] [CrossRef]
- Mirmahdieh, S.; Khayamian, T.; Saraji, M. Analysis of dextromethorphan and pseudoephedrine in human plasma and urine samples using hollow fiber-based liquid-liquid-liquid microextraction and corona discharge ion mobility spectrometry. Microchim. Acta 2012, 176, 471–478. [Google Scholar] [CrossRef]
- Barnes, B.B.; Snow, N.H. Analysis of Salvinorin A in plants, water, and urine using solid-phase microextraction-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. J. Chromatogr. A 2012, 1226, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fu, R.; Li, M.; Guo, L.P.; Yang, L. Ionic liquid-based dispersive liquid-liquid microextraction coupled with capillary electrophoresis to determine drugs of abuse in urine. Fenxi Huaxue/ Chinese J. Anal. Chem. 2013, 41, 1919–1922. [Google Scholar] [CrossRef]
- Sporkert, F.; Pragst, F. Use of headspace solid-phase microextraction (HS-SPME) in hair analysis for organic compounds. Forensic Sci. Int. 2000, 107, 129–148. [Google Scholar] [CrossRef]
- Moreno, I.; Barroso, M.; Martinho, A.; Cruz, A.; Gallardo, E. Determination of ketamine and its major metabolite, norketamine, in urine and plasma samples using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1004, 67–78. [Google Scholar] [CrossRef]
- Hu, B.; Zheng, B.; Rickert, D.; Gómez-Ríos, G.A.; Bojko, B.; Pawliszyn, J.; Yao, Z.P. Direct coupling of solid phase microextraction with electrospray ionization mass spectrometry: A Case study for detection of ketamine in urine. Anal. Chim. Acta 2019, 1075, 112–119. [Google Scholar] [CrossRef]
- Bagheri, H.; Es-haghi, A.; Rouini, M.R. Sol-gel-based solid-phase microextraction and gas chromatography-mass spectrometry determination of dextromethorphan and dextrorphan in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 818, 147–157. [Google Scholar] [CrossRef]
- de Bairros, A.V.; Lanaro, R.; de Almeida, R.M.; Yonamine, M. Determination of ketamine, norketamine and dehydronorketamine in urine by hollow-fiber liquid-phase microextraction using an essential oil as supported liquid membrane. Forensic Sci. Int. 2014, 243, 47–54. [Google Scholar] [CrossRef]
- Bianchi, F.; Agazzi, S.; Riboni, N.; Erdal, N.; Hakkarainen, M.; Ilag, L.L.; Anzillotti, L.; Andreoli, R.; Marezza, F.; Moroni, F.; et al. Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta 2019, 202, 136–144. [Google Scholar] [CrossRef]
- Odoardi, S.; Fisichella, M.; Romolo, F.S.; Strano-Rossi, S. High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC-MS/MS analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1000, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.H.; Brandt, S.D. New Psychoactive Substances; Pharmacology, Clinical, Forensic and Analytical Toxicology; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2019: Trends and Developments; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Neng, N.R.; Ahmad, S.M.; Gaspar, H.; Nogueira, J.M.F. Determination of mitragynine in urine matrices by bar adsorptive microextraction and HPLC analysis. Talanta 2015, 144. [Google Scholar] [CrossRef]
- Montesano, C.; Vannutelli, G.; Piccirilli, V.; Sergi, M.; Compagnone, D.; Curini, R. Application of a rapid μ-SPE clean-up for multiclass quantitative analysis of sixteen new psychoactive substances in whole blood by LC–MS/MS. Talanta 2017, 167, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.E.D.; da Fonseca, B.M.; Barroso, M.; Costa, S.; Queiroz, J.A.; Gallardo, E. Determination of piperazine-type stimulants in human urine by means of microextraction in packed sorbent and high performance liquid chromatography-diode array detection. J. Pharm. Biomed. Anal. 2012, 61, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.E.D.; da Fonseca, B.M.; Magalhães, A.R.; Geraldes, V.S.; Queiroz, J.A.; Barroso, M.; Costa, S.; Gallardo, E. Rapid determination of piperazine-type stimulants in human urine by microextraction in packed sorbent after method optimization using a multivariate approach. J. Chromatogr. A 2012, 1222, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Peiró, M.D.L.N.; Armenta, S.; Garrigues, S.; De La Guardia, M. Determination of 3,4-methylenedioxypyrovalerone (MDPV) in oral and nasal fluids by ion mobility spectrometry. Anal. Bioanal. Chem. 2016, 408, 3265–3273. [Google Scholar] [CrossRef]
- Rocchi, R.; Simeoni, M.C.; Montesano, C.; Vannutelli, G.; Curini, R.; Sergi, M.; Compagnone, D. Analysis of new psychoactive substances in oral fluids by means of microextraction by packed sorbent followed by ultra-high-performance liquid chromatography–tandem mass spectrometry. Drug Test. Anal. 2018, 10, 865–873. [Google Scholar] [CrossRef]
- Sánchez-González, J.; Odoardi, S.; Bermejo, A.M.; Bermejo–Barrera, P.; Romolo, F.S.; Moreda–Piñeiro, A.; Strano-Rossi, S. HPLC-MS/MS combined with membrane-protected molecularly imprinted polymer micro-solid-phase extraction for synthetic cathinones monitoring in urine. Drug Test. Anal. 2019, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Sorribes-Soriano, A.; Monedero, A.; Esteve-Turrillas, F.A.; Armenta, S. Determination of the new psychoactive substance dichloropane in saliva by microextraction by packed sorbent – Ion mobility spectrometry. J. Chromatogr. A 2019, 1603, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Vårdal, L.; Askildsen, H.M.; Gjelstad, A.; Øiestad, E.L.; Edvardsen, H.M.E.; Pedersen-Bjergaard, S. Parallel artificial liquid membrane extraction of new psychoactive substances in plasma and whole blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1048, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Mercieca, G.; Strano-rossi, S.; Odoardi, S.; Mestria, S.; Cassar, M. Application of ultrasound-assisted liquid–liquid microextraction coupled with gas chromatography and mass spectrometry for the rapid determination of synthetic cannabinoids and metabolites in biological samples. J. Sep. Sci. 2020, 43, 2858–2868. [Google Scholar] [CrossRef] [PubMed]
Drugs | Matrix | Sample Amount | Sample Pretreatment | Microextraction Technique | Optimized Experimental Conditions | Instrumental System | LOD (μg/L) | Absolute Recovery (%) | Precision (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
MTD | Urine | 0.1 mL | - | MEPS |
| MS/MS | 1.5 | 91.7–106.7 | ≤11.1 | [40] |
TMD | Rabbit brain tissue | 2 g |
| DI-SPME |
| HPLC-UV | 1 | 76.2–91.2 | ≤8.2 | [43] |
CODMOR | Urine | 2 mL |
| BAμE |
| HPLC-DAD | 0.06–0.90 | 38.4–41.3 | ≤8.0 | [41] |
MTD | Urine Plasma Saliva Sweat | Urine and plasma: 0.5 mL Saliva and sweat: 0.1 mL | Urine and plasma:
| DLLME |
| HPLC-UV | 4.9 7.3 25.12 24.85 | 98.6–100.3 | ≤6.4 | [42] |
Drugs | Matrix | Sample Amount | Sample Pretreatment | Microextraction Technique | Optimized experimental Conditions | Instrumental System | LOD (μg/L) | Absolute Recovery (%) | Precision (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
CCE COC NC | Breast milk | 0.5 mL |
| HF-LPME |
| GC-MS | 5–7 | 32.0–67.4 | ≤15.9 | [112] |
BE COC ECGME | Urine | 0.2 mL |
| MEPS |
| GC-MS | 25 (LLOQ) | 14.5–83.3 | ≤14.38 | [111] |
BE CCE COC ECGME | Plasma | 0.1–1.0 mL |
| μSPE |
| LC-MS/MS | 0.000013–0.00036 | 91–102 | ≤10 | [113] |
Drugs | Matrix | Sample Amount | Sample Pretreatment | Microextraction Technique | Optimized Experimental Conditions | Instrumental System | LOD (μg/L) | Absolute Recovery (%) | Precision (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
AMP 4-MAMP | Urine | 1 mL |
| EE-SDME |
| GC-FID | 0.14–0.27 | 82.7–96.2 | ≤12.8 | [136] |
HS-SPME |
| 0.05–0.09 | 90.7-112.5 | ≤8.5 | ||||||
MET | Urine | 5 mL |
| dSPE |
| HPLC-UV | 10 | 99.83 | ≤5.1 | [137] |
MPH | Urine | 2.5 mL |
| SBME |
| HPLC-UV | 15 | n.a. | ≤3.9 | [138] |
MDMA MET | Urine | 2 mL |
| HS-SPME |
| GC-FID | 0.097–0.39 | n.a. | ≤7.0 | [139] |
Drugs | Matrix | Sample Amount | Sample Pretreatment | Microextraction Technique | Optimized Experimental Conditions | Instrumental System | LOD (µg/L) | Absolute Recovery (%) | Precision (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
THC CBN CBD | Breast milk | 0.05 mL |
| HS-SPME |
| GC-MS | 10.0 | n.a. | ≤13.3 | [203] |
THC 11-OH-THC THC-COOH CBN CBD THCAA CBG THCV THC-gluc THC-COOH-gluc | Urine | 0.2 mL |
| DPX |
| LC-MS/MS | 0.5–5.0 | 42.4–81.5 | ≤14.3 | [201] |
THC CBN CBD | Hair | 10 mg |
| HF-LPME |
| GC-MS | 0.5–15 pg/mg | 4.4–8.9 | ≤13.7 | [204] |
THC 11-OH-THC THC-COOH | Plasma and urine | Urine: 1 mL Plasma: 0.1 mL |
| μSPE |
| HPLC-MS/MS | Urine: 0.14–0.16 Plasma: 0.11–0.15 | 87–94 | Urine: ≤6 Plasma: ≤11 | [202] |
Drugs | Matrix | Sample Amount | Sample Pretreatment | Microextraction Technique | Optimized Experimental Conditions | Instrumental System | LOD (µg/L) | Absolute Recovery (%) | Precision (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
LSD | Blood | 0.5 mL |
| DLLME |
| UPLC-MS/MS | 0.5 | 90–127 | ≤15 | [90] |
LSD | Urine | 4 mL |
| DLLME |
| CE-UV | 3.9–6.3 | 80.3 | ≤12.0 | [164] |
Psylocibin Mescaline | Oral fluid | 0.090 mL |
| μSPE |
| LC-MS/MS | 0.07–0.1 | 61–64 | ≤9 | [129] |
Mescaline Psylocibin | Urine Plasma | Urine: 0.090 mL Plasma: 0.180 mL |
| μSPE |
| LC-MS/MS | 0.3–1.4 | 57–66 | ≤7 | [130] |
Muscimol Tryptamine Tryptophan | Urine | 2 mL |
| HF-LPME |
| HPLC-UV | 0.7–17 | n.a. | ≤10.2 | [220] |
Mescaline | Hair | 10 mg |
| PLE-DLLME |
| LC-HRMS/MS | 0.1 pg/mg | 39 | ≤19 | [100] |
Drugs | Matrix | Sample Amount | Sample Pretreatment | Microextraction Technique | Optimized Experimental Conditions | Instrumental System | LOD (µg/L) | Absolute Recovery (%) | Precision (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PCP | Urine Whole blood | 1 mL |
| HS-SPME |
| GC-SID | 0.25–1.0 | 9.3–47.8 | ≤27 | [222] |
PCP | Urine | 2 mL |
| SDME |
| GC-PDHID | 70 | n.a. | ≤16.2 | [195] |
KET | Urine Blood | 1 mL |
| HF-LPME |
| GC-MS | 2.5 | 81.3–98.6 | ≤4.5 | [92] |
DLLME |
| 1.5–2.5 | 87.3–103.4 | ≤3.5 | ||||||
KET NorKET | Urine | 0.5 mL |
| HT-BAµE |
| GC-MS | 1.0 | 84.9–105.0 | ≤12.6 | [223] |
Drugs | Matrix | Sample Amount | Sample Pretreatment | Microextraction Technique | Optimized Experimental Conditions | Instrumental System | LOD (μg/L) | Absolute Recovery (%) | Precision (%) | Ref. |
Synthetic cathinones MPD Synthetic cannabinoid UR-144, JWH-250, JWH-200, JWH-122, JWH- 019, AM-2201, JWH-081, HU-211, CP47497 | Oral fluid | 0.025 mL |
| MEPS |
| DESI-HRMS | 0.25–0.5 mg/L (LLOQ) | n.a. | <19.4 | [238] |
Mitragynine | Urine | 1 mL |
| BAµE |
| HPLC-DAD | 0.1 | 103 | ≤15 | [239] |
Synthetic cannabinoids AM-2201, AM-2233, AM-694, CB-13, JWH-007, JWH-019, JWH-015, JWH-018, JWH-030, JWH-073, JWH-081, JWH-098, JWH-122, JWH-147, JWH-200, JWH-201, JWH-250, JWH-251, JWH-307, JWH-398, RCS4, JWH-018 4OH indole, JWH- 018 5OH pentyl, JWH-018-COOH, JWH-073 4OH butyl, JWH-073 5OH indole, JWH-073 COOH, JWH-250 5OH pentyl Synthetic cathinones4-FAMP, 4-MEC, BL, BPD, CAT, EL, EPN, HML, HMO, MBDB, MDAI, MDPV, MPD, MD, ML, 4- MTA, NM-2-AI, PD, PL Piperaine derivatives BZP, mCPP | Blood | 0.5 mL |
| DLLME |
| UHPLC-MS/MS | 0.2 | 4–110 | n.a. | [237] |
Microextraction-Based Techniques | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sorbent-Phase | Liquid-Phase | ||||||||
Analytical Framework | Characteristics | SPME | SBSE | BAµE | MEPS | µSPE | DLLME | HP-LPME | SDME |
Sample Preparation | User-friendly | ++ | +++ | +++ | + | + | ++ | + | + |
Eco-friendly | +++ | ++ | ++ | + | + | ++ | + | ++ | |
Reusability | ++ | +++ | + | + | + | − | ++ | − | |
Cost-effective | + | + | +++ | ++ | ++ | +++ | ++ | +++ | |
Routine work | +++ | ++ | ++ | + | + | + | + | + | |
Instrumental Systems | Online coupling | +++ | ++ | ++ | + | + | + | − | + |
Comprehensive | ++ | ++ | +++ | + | +++ | + | ++ | + | |
Performance | Enrichment factor | +++ | +++ | ++ | + | + | + | ++ | ++ |
Recovery yields | + | ++ | ++ | ++ | ++ | + | + | + | |
Precision level | ++ | ++ | ++ | + | + | + | ++ | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.M.; Gonçalves, O.C.; Oliveira, M.N.; Neng, N.R.; Nogueira, J.M.F. Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context—A Review. Molecules 2021, 26, 2168. https://doi.org/10.3390/molecules26082168
Ahmad SM, Gonçalves OC, Oliveira MN, Neng NR, Nogueira JMF. Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context—A Review. Molecules. 2021; 26(8):2168. https://doi.org/10.3390/molecules26082168
Chicago/Turabian StyleAhmad, Samir M., Oriana C. Gonçalves, Mariana N. Oliveira, Nuno R. Neng, and José M. F. Nogueira. 2021. "Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context—A Review" Molecules 26, no. 8: 2168. https://doi.org/10.3390/molecules26082168
APA StyleAhmad, S. M., Gonçalves, O. C., Oliveira, M. N., Neng, N. R., & Nogueira, J. M. F. (2021). Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context—A Review. Molecules, 26(8), 2168. https://doi.org/10.3390/molecules26082168