Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Ageing of the Pigment and Linseed Oil Mixtures
2.3. Derivatisation of the Pigment and Linseed Oil Mixtures
2.4. Preparation of the Calibration Solutions
2.5. Instrumentation
3. Results and Discussion
3.1. Relative Quantification
3.2. Absolute Quantification of Fatty Acids
3.2.1. Intermediate Precision Estimation
3.2.2. Absolute Quantification of the Pigment and Oil Mixtures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sutherland, K. Gas chromatography/mass spectrometry techniques for the characterisation of organic materials in works of art. Phys. Sci. Rev. 2018, 4. [Google Scholar] [CrossRef]
- Bonaduce, I.; Carlyle, L.; Colombini, M.P.; Duce, C.; Ferrari, C.; Ribechini, E.; Selleri, P.; Tinè, M.R. New Insights into the Ageing of Linseed Oil Paint Binder: A Qualitative and Quantitative Analytical Study. PLOS ONE 2012, 7, e49333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombini, M.P.; Modugno, F. Organic Mass Spectrometry in Art and Archaeology, 1st ed.; John Wiley & Sons, Ltd: Chichester, UK, 2009. [Google Scholar]
- Castellá, F.; Pérez-Estebanez, M.; Mazurek, J.; Monkes, P.; Learner, T.; Niello, J.F.; Tascón, M.; Marte, F. A multi-analytical approach for the characterization of modern white paints used for Argentine concrete art paintings during 1940–1960. Talanta 2020, 208, 120472. [Google Scholar] [CrossRef]
- Andersen, C.K.; Bonaduce, I.; Andreotti, A.; Van Lanschot, J.; Vila, A. Characterisation of preparation layers in nine Danish Golden Age canvas paintings by SEM–EDX, FTIR and GC–MS. Heritage Sci. 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Kasprzok, L.M.; Fabbri, D.; Rombolà, A.G.; Rovetta, T.; Malagodi, M. Identification of organic materials in historical stringed instruments by off-line analytical pyrolysis solid-phase microextraction with on-fiber silylation and gas chromatography-mass spectrometry. J. Anal. Appl. Pyrolysis 2020, 145, 104727. [Google Scholar] [CrossRef]
- Winter, J.; Mills, J.S.; White, R. The Organic Chemistry of Museum Objects. Stud. Conserv. 1988, 33, 102. [Google Scholar] [CrossRef]
- Mills, J.S. The Gas Chromatographic Examination of Paint Media. Part I. Fatty Acid Composition and Identification of Dried Oil Films. Stud. Conserv. 1966, 11, 92–107. [Google Scholar] [CrossRef]
- Colombini, M.P.; Andreotti, A.; Bonaduce, I.; Modugno, F.; Ribechini, E. Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Accounts Chem. Res. 2010, 43, 715–727. [Google Scholar] [CrossRef]
- Keune, K.; Hoogland, F.; Boon, J.J.; Peggie, D.; Higgit, C. Comparative study of the effect of traditional pigments on artificially aged oil paint systems using complementary analytical techniques. In Preprints of 15th Triennal Meeting of ICOM Committee for Conservation; Allied Publishers Pvt. Ltd: New Delhi, India, 2008; Volume II, pp. 833–842. [Google Scholar]
- Schilling, M.R.; Carson, D.M.; Khanjian, H.P. Evaporation of Fatty Acids and the Formation of Ghost Images by Framed Oil Paintings, WAAC Newsl. 1998. Available online: https://cool.culturalheritage.org/waac/wn/wn21/wn21-1/wn21-106.html (accessed on 9 February 2021).
- Pitthard, V.; Stanêk, S.; Griesser, M.; Muxeneder, T. Gas Chromatography—Mass Spectrometry of Binding Media from Early 20th Century Paint Samples from Arnold Schönberg’s Palette. Chromatographia 2005, 62, 175–182. [Google Scholar] [CrossRef]
- Kalinina, K.B.; Bonaduce, I.; Colombini, M.P.; Artemieva, I.S. An analytical investigation of the painting technique of Italian Renaissance master Lorenzo Lotto. J. Cult. Heritage 2012, 13, 259–274. [Google Scholar] [CrossRef]
- Izzo, F.C. 20th Century Artists’ Oil Paints: A Chemical-Physical Survey; Ca’ Foscari University of Venice: Venice, Italy, 2010. [Google Scholar]
- Colombini, M.P.; Modugno, F.; Giacomelli, M.; Francesconi, S. Characterisation of proteinaceous binders and drying oils in wall painting samples by gas chromatography–mass spectrometry. J. Chromatogr. A 1999, 846, 113–124. [Google Scholar] [CrossRef]
- Berg, J.V.D.; Berg, K.V.D.; Boon, J. Determination of the degree of hydrolysis of oil paint samples using a two-step derivatisation method and on-column GC/MS. Prog. Org. Coatings 2001, 41, 143–155. [Google Scholar] [CrossRef]
- Berg, J.D.V.D.; Vermist, N.D.; Carlyle, L.; Holčapek, M.; Boon, J.J. Effects of traditional processing methods of linseed oil on the composition of its triacylglycerols. J. Sep. Sci. 2004, 27, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Bonaduce, I.; Ribechini, E.; Modugno, F.; Colombini, M.P. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects. Top. Curr. Chem. 2016, 374, 1–37. [Google Scholar] [CrossRef]
- Colombini, M.P.; Modugno, F.; Fuoco, R.; Tognazzi, A. A GC-MS study on the deterioration of lipidic paint binders. Microchem. J. 2002, 73, 175–185. [Google Scholar] [CrossRef]
- La Nasa, J.; Modugno, F.; Aloisi, M.; Lluveras-Tenorio, A.; Bonaduce, I. Development of a GC/MS method for the qualitative and quantitative analysis of mixtures of free fatty acids and metal soaps in paint samples. Anal. Chim. Acta 2018, 1001, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martínez, E.; Domínguez-Vidal, A.; Rubio-Domene, R.; Pascual-Reguera, M.; Ruiz-Medina, A.; Ayora-Cañada, M. Identification of lipidic binding media in plasterwork decorations from the Alhambra using GC–MS and chemometrics: Influence of pigments and aging. Microchem. J. 2014, 115, 11–18. [Google Scholar] [CrossRef]
- Šefců, R.; Pitthard, V.; Chlumská, Š.; Turková, I. A multianalytical study of oil binding media and pigments on Bohemian Panel Paintings from the first half of the 14th century. J. Cult. Heritage 2017, 23, 77–86. [Google Scholar] [CrossRef]
- Chiavari, G.; Fabbri, D.; Prati, S. Effect of pigments on the analysis of fatty acids in siccative oils by pyrolysis methylation and silylation. J. Anal. Appl. Pyrolysis 2005, 74, 39–44. [Google Scholar] [CrossRef]
- Fuster-López, L.; Izzo, F.C.; Piovesan, M.; Yusá-Marco, D.J.; Sperni, L.; Zendri, E. Study of the chemical composition and the mechanical behaviour of 20th century commercial artists’ oil paints containing manganese-based pigments. Microchem. J. 2016, 124, 962–973. [Google Scholar] [CrossRef] [Green Version]
- Van Der Weerd, J.; Van Loon, A.; Boon, J.J. FTIR Studies of the Effects of Pigments on the Aging of Oil. Stud. Conserv. 2005, 50, 3–22. [Google Scholar] [CrossRef]
- Gimeno-Adelantado, J.; Mateo-Castro, R.; Doménech-Carbó, M.; Bosch-Reig, F.; Doménech-Carbó, A.; Casas-Catalán, M.; Osete-Cortina, L. Identification of lipid binders in paintings by gas chromatography. J. Chromatogr. A 2001, 922, 385–390. [Google Scholar] [CrossRef]
- Ioakimoglou, E.; Boyatzis, S.; Argitis, P.; Fostiridou, A.; Papapanagiotou, K.; Yannovits, N. Thin-Film Study on the Oxidation of Linseed Oil in the Presence of Selected Copper Pigments. Chem. Mater. 1999, 11, 2013–2022. [Google Scholar] [CrossRef]
- Pitthard, V.; Griesser, M.; Stanek, S. Methodology and application of gc-ms to study altered organic binding media from objects of the Kunsthistorisches Museum, Vienna. Ann. Chim. 2006, 96, 561–573. [Google Scholar] [CrossRef]
- Gautier, G.; Colombini, M.P. GC–MS identification of proteins in wall painting samples: A fast clean-up procedure to remove copper-based pigment interferences. Talanta 2007, 73, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Tammekivi, E.; Vahur, S.; Kekišev, O.; Van Der Werf, I.D.; Toom, L.; Herodes, K.; Leito, I. Comparison of derivatization methods for the quantitative gas chromatographic analysis of oils. Anal. Methods 2019, 11, 3514–3522. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T. Novel analytical methods for characterising binding media and protective coatings in artworks. Anal. Chim. Acta 2008, 621, 109–139. [Google Scholar] [CrossRef] [PubMed]
- Manzano, E.; Rodríguez-Simón, L.; Navas, N.; Checa-Moreno, R.; Romero-Gámez, M.; Capitán-Vallvey, L. Study of the GC–MS determination of the palmitic–stearic acid ratio for the characterisation of drying oil in painting: La Encarnación by Alonso Cano as a case study. Talanta 2011, 84, 1148–1154. [Google Scholar] [CrossRef]
- Banti, D.; La Nasa, J.; Tenorio, A.L.; Modugno, F.; Berg, K.J.V.D.; Lee, J.; Ormsby, B.; Burnstock, A.; Bonaduce, I. A molecular study of modern oil paintings: Investigating the role of dicarboxylic acids in the water sensitivity of modern oil paints. RSC Adv. 2018, 8, 6001–6012. [Google Scholar] [CrossRef] [Green Version]
- Modugno, F.; Di Gianvincenzo, F.; Degano, I.; Van Der Werf, I.D.; Bonaduce, I.; Berg, K.J.V.D. On the influence of relative humidity on the oxidation and hydrolysis of fresh and aged oil paints. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Hermans, J.J.; Keune, K.; Van Loon, A.; Iedema, P.D. An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. J. Anal. At. Spectrom. 2015, 30, 1600–1608. [Google Scholar] [CrossRef] [Green Version]
- Osmond, G. Zinc white: A review of zinc oxide pigment properties and implications for stability in oil-based paintings. AICCM Bull. 2012, 33, 20–29. [Google Scholar] [CrossRef]
Oil Concentration in g/100 g (ca. a) | Chrome Oxide Green | Natural Cinnabar | Red Ochre | Prussian Blue | Hematite + Kaolinite | Yellow Ochre | Zinc White | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P/S | A/P | ∑D | P/S | A/P | ∑D | P/S | A/P | ∑D | P/S | A/P | ∑D | P/S | A/P | ∑D | P/S | A/P | ∑D | P/S | A/P | ∑D | |
10 | 1.0 | 3.0 | 65.4 | ||||||||||||||||||
15 | 0.8 | 2.3 | 55.6 | 1.5 | 0.4 | 15.5 | |||||||||||||||
20 | 0.9 | 2.7 | 54.5 | ||||||||||||||||||
25 | 0.8 | 2.7 | 58.4 | 0.8 | 6.9 | 79.8 | 1.5 | 1.7 | 57.5 | 1.5 | 0.3 | 12.4 | |||||||||
30 | 0.7 | 2.6 | 57.4 | 0.8 | 2.6 | 52.8 | 1.0 | 4.4 | 72.3 | 0.7 | 2.8 | 58.7 | 0.9 | 6.7 | 74.6 | 1.4 | 1.1 | 46.0 | 1.5 | 0.3 | 12.2 |
35 | 0.7 | 2.8 | 58.9 | 0.9 | 2.3 | 51.6 | 0.8 | 4.8 | 70.0 | 0.7 | 1.7 | 46.6 | 1.1 | 5.6 | 72.6 | 1.6 | 1.2 | 48.4 | 1.5 | 0.3 | 13.4 |
39 | 0.8 | 5.0 | 74.4 | ||||||||||||||||||
40 | 0.8 | 2.3 | 55.6 | 0.8 | 2.2 | 50.4 | 0.7 | 2.0 | 49.3 | 1.0 | 3.1 | 59.0 | 1.4 | 1.2 | 47.0 | 1.5 | 0.3 | 13.1 | |||
42 | 0.9 | 5.7 | 75.1 | ||||||||||||||||||
45 | 0.8 | 2.7 | 59.2 | 0.8 | 2.2 | 50.0 | 0.8 | 5.5 | 73.4 | 0.7 | 1.7 | 46.1 | 1.0 | 5.8 | 73.1 | 1.4 | 1.0 | 41.9 | 1.5 | 0.3 | 13.2 |
50 | 0.7 | 2.7 | 58.8 | 0.8 | 1.5 | 39.0 | 0.7 | 6.8 | 75.4 | 0.7 | 2.1 | 50.1 | 0.9 | 4.2 | 65.4 | 1.6 | 1.0 | 44.2 | 1.6 | 0.3 | 13.6 |
55 | 0.7 | 2.7 | 57.2 | 0.8 | 1.6 | 41.9 | 0.9 | 6.5 | 77.1 | 0.7 | 2.0 | 47.0 | 0.9 | 3.9 | 67.1 | 1.6 | 0.9 | 41.1 | 1.5 | 0.3 | 12.6 |
60 | 0.8 | 2.4 | 56.5 | 0.9 | 1.3 | 36.7 | 0.8 | 4.6 | 69.4 | 0.7 | 1.7 | 44.8 | 0.9 | 6.1 | 73.2 | 1.6 | 1.0 | 42.3 | 1.5 | 0.3 | 12.4 |
62 | 0.7 | 2.6 | 52.8 | ||||||||||||||||||
65 | 0.9 | 1.7 | 50.6 | 0.9 | 1.2 | 33.7 | 0.9 | 3.1 | 62.5 | 0.7 | 2.7 | 56.0 | 1.0 | 2.0 | 48.3 | 1.6 | 1.0 | 42.5 | 1.5 | 0.3 | 13.2 |
70 | 0.8 | 2.0 | 52.5 | 0.8 | 1.7 | 42.4 | 0.8 | 3.7 | 66.4 | 0.6 | 2.7 | 53.8 | 1.0 | 4.5 | 68.8 | 1.6 | 0.8 | 39.7 | 1.5 | 0.3 | 12.3 |
75 | 0.9 | 1.5 | 46.2 | 1.0 | 0.9 | 28.6 | 0.9 | 2.9 | 62.5 | 0.7 | 3.1 | 58.2 | 1.0 | 4.9 | 70.4 | 1.6 | 0.8 | 37.6 | 1.5 | 0.3 | 12.5 |
80 | 1.0 | 1.2 | 39.3 | 0.9 | 2.5 | 58.7 | 0.6 | 2.9 | 57.3 | 1.6 | 0.7 | 35.2 | 1.5 | 0.3 | 13.3 | ||||||
85 | 1.0 | 0.9 | 28.4 | 0.7 | 2.4 | 54.1 | 1.6 | 0.7 | 34.4 | 1.6 | 0.3 | 14.4 | |||||||||
90 | 1.0 | 1.1 | 36.2 | 0.9 | 1.9 | 49.4 | 0.7 | 2.7 | 57.1 | 1.6 | 0.6 | 30.0 | 1.5 | 0.3 | 14.1 | ||||||
95 | 1.1 | 0.8 | 31.0 | 1.2 | 0.5 | 20.0 | 0.9 | 2.0 | 51.9 | 0.8 | 2.4 | 54.2 | 1.6 | 0.6 | 27.8 | 1.5 | 0.3 | 14.5 |
g/100 g | Palmitic Acid g/100 g | Stearic Acid g/100 g | Oleic Acid g/100 g | P/S |
---|---|---|---|---|
50 | 1.33 (± 0.05) | 0.86 (± 0.01) | 0.14 (± 0.03) | 0.65 (± 0.02) |
Oil Concentration in g/100 g (ca. a) | Chrome Oxide Green | Natural Cinnabar | Red Ochre | Prussian Blue | Hematite + Kaolinite | Yellow Ochre | Zinc White | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | S | O | P | S | O | P | S | O | P | S | O | P | S | O | P | S | O | P | S | O | |
10 | 0.1 | 0.1 | 0.03 | ||||||||||||||||||
15 | 0.2 | 0.2 | 0.1 | 0.6 | 0.4 | 0.9 | |||||||||||||||
20 | 0.2 | 0.2 | 0.1 | ||||||||||||||||||
25 | 0.3 | 0.4 | 0.1 | 0.1 | 0.1 | 0.0 | 0.4 | 0.3 | 0.0 | 1.1 | 0.8 | 2.1 | |||||||||
30 | 0.5 | 0.5 | 0.1 | 0.3 | 0.4 | 0.2 | 0.1 | 0.1 | 0.0 | 0.3 | 0.4 | 0.0 | 0.1 | 0.1 | 0.1 | 0.7 | 0.5 | 0.02 | 1.4 | 0.9 | 2.5 |
35 | 0.5 | 0.5 | 0.2 | 0.5 | 0.4 | 0.2 | 0.2 | 0.2 | 0.0 | 0.4 | 0.6 | 0.1 | 0.1 | 0.1 | 0.1 | 0.9 | 0.6 | 0.03 | 1.6 | 1.1 | 3.0 |
39 | 0.2 | 0.2 | 0.0 | ||||||||||||||||||
40 | 0.7 | 0.8 | 0.2 | 0.5 | 0.6 | 0.3 | 0.4 | 0.6 | 0.1 | 0.2 | 0.2 | 0.1 | 1.0 | 0.7 | 0.04 | 1.8 | 1.2 | 3.3 | |||
42 | 0.2 | 0.2 | 0.1 | ||||||||||||||||||
45 | 0.6 | 0.8 | 0.2 | 0.5 | 0.6 | 0.3 | 0.2 | 0.3 | 0.1 | 0.5 | 0.7 | 0.1 | 0.2 | 0.3 | 0.1 | 1.2 | 0.9 | 0.1 | 2.0 | 1.4 | 3.8 |
50 | 0.6 | 0.9 | 0.2 | 0.9 | 1.0 | 0.7 | 0.2 | 0.3 | 0.1 | 0.5 | 0.7 | 0.1 | 0.2 | 0.2 | 0.1 | 1.3 | 0.9 | 0.1 | 2.3 | 1.6 | 4.3 |
55 | 0.9 | 1.1 | 0.3 | 0.9 | 1.1 | 0.7 | 0.2 | 0.2 | 0.1 | 0.5 | 0.8 | 0.2 | 0.3 | 0.3 | 0.2 | 1.5 | 1.0 | 0.1 | 2.3 | 1.6 | 4.4 |
60 | 0.9 | 1.1 | 0.3 | 1.2 | 1.4 | 1.4 | 0.4 | 0.6 | 0.2 | 0.7 | 1.0 | 0.2 | 0.3 | 0.3 | 0.2 | 1.8 | 1.2 | 0.2 | 2.6 | 1.8 | 5.1 |
62 | 0.4 | 0.6 | 0.1 | ||||||||||||||||||
65 | 1.3 | 1.5 | 0.4 | 1.6 | 1.9 | 1.8 | 0.7 | 0.9 | 0.2 | 0.6 | 1.0 | 0.2 | 0.4 | 0.4 | 0.3 | 2.0 | 1.3 | 0.2 | 2.8 | 2.0 | 5.4 |
70 | 1.2 | 1.5 | 0.6 | 1.1 | 1.3 | 1.0 | 0.7 | 0.8 | 0.3 | 0.6 | 1.0 | 0.2 | 0.6 | 0.7 | 0.6 | 2.3 | 1.5 | 0.4 | 2.9 | 2.0 | 5.7 |
75 | 1.8 | 2.0 | 0.8 | 2.1 | 2.1 | 2.3 | 0.9 | 1.0 | 0.3 | 0.8 | 1.2 | 0.3 | 1.0 | 1.1 | 1.0 | 2.6 | 1.7 | 0.5 | 3.1 | 2.2 | 6.1 |
80 | 2.3 | 2.4 | 1.5 | 1.1 | 1.3 | 0.4 | 0.9 | 1.4 | 0.3 | 2.8 | 1.9 | 0.7 | 3.4 | 2.4 | 6.3 | ||||||
85 | 2.5 | 2.6 | 3.1 | 1.2 | 1.7 | 0.3 | 3.0 | 2.0 | 0.8 | 3.4 | 2.4 | 5.9 | |||||||||
90 | 2.5 | 2.6 | 2.3 | 1.5 | 1.8 | 0.9 | 1.2 | 1.8 | 0.3 | 3.5 | 2.3 | 1.5 | 3.7 | 2.5 | 6.3 | ||||||
95 | 3.6 | 3.1 | 3.1 | 4.0 | 3.4 | 5.8 | 1.8 | 2.1 | 0.8 | 1.5 | 2.0 | 0.4 | 3.8 | 2.5 | 2.2 | 4.1 | 2.8 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tammekivi, E.; Vahur, S.; Vilbaste, M.; Leito, I. Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules 2021, 26, 2218. https://doi.org/10.3390/molecules26082218
Tammekivi E, Vahur S, Vilbaste M, Leito I. Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules. 2021; 26(8):2218. https://doi.org/10.3390/molecules26082218
Chicago/Turabian StyleTammekivi, Eliise, Signe Vahur, Martin Vilbaste, and Ivo Leito. 2021. "Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios" Molecules 26, no. 8: 2218. https://doi.org/10.3390/molecules26082218
APA StyleTammekivi, E., Vahur, S., Vilbaste, M., & Leito, I. (2021). Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules, 26(8), 2218. https://doi.org/10.3390/molecules26082218