Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Microwave Digestion Method
2.2. Performance of the Method
2.3. Application
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Sample Collection
3.3. Sample Analysis
3.4. iCAPQ ICP-MS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cui, X.-Y.; Li, S.-W.; Zhang, S.-J.; Fan, Y.-Y.; Ma, L.Q. Toxic metals in children’s toys and jewelry: Coupling bioaccessibility with risk assessment. Environ. Pollut. 2015, 200, 77–84. [Google Scholar] [CrossRef]
- Wang, B.; Su, Y.; Tian, L.; Peng, S.; Ji, R. Heavy metals in face paints: Assessment of the health risks to Chinese opera actors. Sci. Total Environ. 2020, 724, 138163. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Noreen, S.; Rehman, A.; Waseem, A.; Zubair, S.; Adnan, M.; Ahmad, I. Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arab. J. Chem. 2017, 10, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.; Pinto, E.; Silva, M.V.; Almeida, A.A. Chemical safety of children’s play paints: Focus on selected heavy metals. Microchem. J. 2015, 118, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Saadatzadeh, A.; Afzalan, S.; Zadehdabagh, R.; Tishezan, L.; Najafi, N.; Seyedtabib, M.; Noori, S.M.A. Determination of heavy metals (lead, cadmium, arsenic, and mercury) in authorized and unauthorized cosmetics. Cutan. Ocul. Toxicol. 2019, 38, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Achparaki, M.; Thessalonikeos, E.; Tsoukali, H.; Mastrogianni, O.; Zaggelidou, E.; Chatzinikolaou, F.; Vasilliades, N.; Raikos, N. Heavy metals toxicity. Aristotle Univ. Med J. 2012, 39, 29–34. [Google Scholar]
- Paschal, D.; Burt, V.; Caudill, S.; Gunter, E.; Pirkle, J.; Sampson, E.; Miller, D.; Jackson, R. Exposure of the US population aged 6 years and older to cadmium: 1988–1994. Arch. Environ. Contam. Toxicol. 2000, 38, 377–383. [Google Scholar] [CrossRef] [PubMed]
- da Rocha Silva, J.P.; Salles, F.J.; Leroux, I.N.; da Silva Ferreira, A.P.S.; da Silva, A.S.; Assunção, N.A.; Nardocci, A.C.; Sato, A.P.S.; Barbosa, F., Jr.; Cardoso, M.R.A. High blood lead levels are associated with lead concentrations in households and day care centers attended by Brazilian preschool children. Environ. Pollut. 2018, 239, 681–688. [Google Scholar] [CrossRef]
- Morais, S.; Costa, F.G.; Pereira, M.d.L. Heavy metals and human health. Environ. Health Emerg. Issues Pract. 2012, 10, 227–245. [Google Scholar]
- Jose, A.; Ray, J.G. Toxic heavy metals in human blood in relation to certain food and environmental samples in Kerala, South India. Environ. Sci. Pollut. Res. 2018, 25, 7946–7953. [Google Scholar] [CrossRef]
- Sah, D.; Verma, P.K.; Kumari, K.M.; Lakhani, A. Chemical partitioning of fine particle-bound As, Cd, Cr, Ni, Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhal. Toxicol. 2017, 29, 483–493. [Google Scholar] [CrossRef]
- Patrick, L. Lead Toxicity, a review of the literature. Part I: Exposure, Evaluation, and treatment. Altern. Med. Rev. 2006, 11, 2–22. [Google Scholar]
- Hamelink, J.; Landrum, P.F.; Bergman, H.; Benson, W.H. Bioavailability: Physical, Chemical, and Biological Interactions; CRC press: Boca Raton, FL, USA, 1994; 256p, ISBN 9781566700863. [Google Scholar]
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1997; 343p, ISBN 9241561734. [Google Scholar]
- Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. Biomed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartrem, C.; Tirima, S.; von Lindern, I.; von Braun, M.; Worrell, M.C.; Mohammad Anka, S.; Abdullahi, A.; Moller, G. Unknown risk: Co-exposure to lead and other heavy metals among children living in small-scale mining communities in Zamfara State, Nigeria. Int. J. Environ. Health Res. 2014, 24, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Ortega, D.; González Esquivel, D.F.; Blanco Ayala, T.; Pineda, B.; Gómez Manzo, S.; Marcial Quino, J.; Carrillo Mora, P.; Pérez de la Cruz, V. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. Toxics 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Karri, S.K.; Saper, R.B.; Kales, S.N. Lead encephalopathy due to traditional medicines. Curr. Drug Saf. 2008, 3, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, F., Jr.; Tanus-Santos, J.E.; Gerlach, R.F.; Parsons, P.J. A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs. Environ. Health Perspect. 2005, 113, 1669–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flora, S.; Mittal, M.; Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J. Med Res. 2008, 128, 501. [Google Scholar] [PubMed]
- Konduri, G.G.; Bakhutashvili, I.; Eis, A.; Gauthier, K.M. Impaired voltage gated potassium channel responses in a fetal lamb model of persistent pulmonary hypertension of the newborn. Pediatric Res. 2009, 66, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-W.; Lee, C.-H.; Yu, H.-S. Arsenic-induced carcinogenesis and immune dysregulation. Int. J. Environ. Res. Public Health 2019, 16, 2746. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, Y.-M.; Lin, Y.-C.; Huang, Y.-L.; Shiue, H.-S.; Pu, Y.-S.; Huang, C.-Y.; Chung, C.-J. Effect of plasma selenium, red blood cell cadmium, total urinary arsenic levels, and eGFR on renal cell carcinoma. Sci. Total Environ. 2021, 750, 141547. [Google Scholar] [CrossRef]
- Bernard, A. Cadmium & its adverse effects on human health. Indian J. Med Res. 2008, 128, 557. [Google Scholar] [PubMed]
- Emsley, J. Nature’s Building Blocks: An AZ Guide to the Elements; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in health and disease. Interrelat. Between Essent. Met. Ions Hum. Dis. 2013, 199–227. [Google Scholar]
- Liu, Y.; Byrne, P.; Wang, H.; Koltick, D.; Zheng, W.; Nie, L.H. A compact DD neutron generator–based NAA system to quantify manganese (Mn) in bone in vivo. Physiol. Meas. 2014, 35, 1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, K.S.; Meranger, J.C. Graphite furnace atomic absorption spectrometry with nitric acid deproteinization for determination of manganese in human plasma. Anal. Chem. 1985, 57, 2478–2481. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.; Langkammer, C.; Goessler, W.; Ropele, S.; Fazekas, F.; Yen, K.; Scheurer, E. Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J. Trace Elem. Med. Biol. 2014, 28, 1–7. [Google Scholar] [CrossRef]
- Schmitt, C.; Strazielle, N.; Richaud, P.; Bouron, A.; Ghersi-Egea, J.F. Active transport at the blood-CSF barrier contributes to manganese influx into the brain. J. Neurochem. 2011, 117, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Linneberg, A.; Menné, T.; Johansen, J.D. The epidemiology of contact allergy in the general population–prevalence and main findings. Contact Dermat. 2007, 57, 287–299. [Google Scholar] [CrossRef]
- Agnew, U.M.; Slesinger, T.L. Zinc toxicity. Statpearls [Internet]. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554548/ (accessed on 20 January 2021).
- Rizvi, A.; Parveen, S.; Khan, S.; Naseem, I. Nickel toxicology with reference to male molecular reproductive physiology. Reprod. Biol. 2020, 20, 3–8. [Google Scholar] [CrossRef]
- Barceloux, D.G.; Barceloux, D. Nickel. J. Toxicol. Clin. Toxicol. 1999, 37, 239–258. [Google Scholar] [CrossRef]
- Program, N.T. NTP toxicology and carcinogenesis studies of nickel subsulfide (CAS No. 12035-72-2) in F344 rats and B6C3F1 mice (inhalation studies). Natl. Toxicol. Program Tech. Rep. Ser. 1996, 453, 1–365. [Google Scholar]
- Real, M.I.H.; Azam, H.M.; Majed, N. Consumption of heavy metal contaminated foods and associated risks in Bangladesh. Environ. Monit. Assess. 2017, 189, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Alidadi, H.; Sany, S.B.T.; Oftadeh, B.Z.G.; Mohamad, T.; Shamszade, H.; Fakhari, M. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environ. Health Prev. Med. 2019, 24, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, D.; Song, L.; Mao, X.; Yang, J.; Jin, Z.; Yang, H. One-century sediment records of heavy metal pollution on the southeast Mongolian Plateau: Implications for air pollution trend in China. Chemosphere 2019, 220, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Gohain, M.; Deka, P. Trace metals in indoor dust from a university campus in Northeast India: Implication for health risk. Environ. Monit. Assess. 2020, 192, 1–14. [Google Scholar] [CrossRef]
- Megertu, D.G.; Bayissa, L.D. Heavy metal contents of selected commercially available oil-based house paints intended for residential use in Ethiopia. Environ. Sci. Pollut. Res. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 133–164. [Google Scholar]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev. 2015, 20, 232. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic and arsenic compounds. In Arsenic, Metals, Fibres and Dusts; International Agency for Research on Cancer, IARC Press: Lyon, France, 2012. [Google Scholar]
- World Health Organization. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. 2020. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans (accessed on 16 February 2021).
- Bund, B. Technically avoidable heavy metal contents in cosmetic products. J. Consum. Prot. Food Saf. 2017, 12, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R. Lead-Based Decorative Paints: Where are They Still Sold—And Why? National Institute of Environmental Health Sciences, 2014. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983718/pdf/ehp.122-A96 (accessed on 24 February 2021).
- Apanpa-Qasim, A.F.; Adeyi, A.A.; Mudliar, S.N.; Raghunathan, K.; Thawale, P. Examination of lead and cadmium in water-based paints marketed in Nigeria. J. Health Pollut. 2016, 6, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Massey, I.Y. Exposure routes and health effects of heavy metals on children. Biometals 2019, 32, 563–573. [Google Scholar]
- Kim, S.; Eom, S.; Kim, H.-J.; Lee, J.J.; Choi, G.; Choi, S.; Kim, S.; Kim, S.Y.; Cho, G.; Kim, Y.D. Association between maternal exposure to major phthalates, heavy metals, and persistent organic pollutants, and the neurodevelopmental performances of their children at 1 to 2 years of age-CHECK cohort study. Sci. Total Environ. 2018, 624, 377–384. [Google Scholar] [CrossRef]
- Substances, A.f.T.; Registry, D. CERCLA priority list of hazardous substances. Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. Available online: https://www.atsdr.cdc.gov/spl/index (accessed on 1 March 2021).
- Silva, F.L.; Duarte, T.A.; Melo, L.S.; Ribeiro, L.P.; Gouveia, S.T.; Lopes, G.S.; Matos, W.O. Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry. Talanta 2016, 146, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Izzo, F.C.; Balliana, E.; Pinton, F.; Zendri, E. A preliminary study of the composition of commercial oil, acrylic and vinyl paints and their behaviour after accelerated ageing conditions. Conserv. Sci. Cult. Herit. 2014, 14, 353–369. [Google Scholar]
- Brady, P. Rethinking Acrylic: Radical Solutions For Exploiting The World’s Most Versatile Medium; Penguin Random House: New York, NY, USA, 2018; ISBN 9781440354137. [Google Scholar]
- Nelms, S. Multi-element determination in pharmaceutical preparations using the Thermo Scientific iCAP Q ICP-MS. Mercury 2012, 1, 7.5. [Google Scholar]
- Wills, J.; Kutscher, D. Analysis of pharmaceutical products for their elemental impurities with the Thermo Scientific iCAP RQ ICP-MS. Power (W) 2016, 1, 200. [Google Scholar]
- Hutton, M. Human health concerns of lead, mercury, cadmium and arsenic. Leadmercurycadmium Arsen. Environ. 1987, 31, 53–68. [Google Scholar]
- Njati, S.Y.; Maguta, M.M. Lead-based paints and children’s PVC toys are potential sources of domestic lead poisoning–A review. Environ. Pollut. 2019, 249, 1091–1105. [Google Scholar] [CrossRef]
- Lidsky, T.I.; Schneider, J.S. Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain 2003, 126, 5–19. [Google Scholar] [CrossRef]
Condition A | |||||
Step | Temperature (°C) | Pressure (bar) | Ramp time (min) | Hold time (min) | Power (%) |
1 | 160 | 90 | 5 | 5 | 60 |
2 | 180 | 90 | 5 | 30 | 70 |
3 | 40 | 90 | 1 | 10 | 0 |
Condition B | |||||
Step | Temperature (°C) | Pressure (bar) | Ramp time (min) | Hold time (min) | Power (%) |
1 | 170 | 90 | 5 | 8 | 70 |
2 | 190 | 90 | 5 | 40 | 80 |
3 | 50 | 90 | 1 | 15 | 0 |
Condition C | |||||
Step | Temperature (°C) | Pressure (bar) | Ramp time (min) | Hold time (min) | Power (%) |
1 | 180 | 90 | 5 | 10 | 80 |
2 | 200 | 90 | 5 | 50 | 100 |
3 | 60 | 90 | 1 | 20 | 0 |
Parameter | Value |
---|---|
Forward power | 1548.6 W |
Interface temperature | 37.9 °C |
Cooling water flow | 3.46 L/min |
Cool gas flow | 13.881 L/min |
Auxiliary gas flow | 0.7977 L/min |
Nebulizer gas flow | 0.9692 L/min |
Pirani pressure | 1.581 × 100 mbar |
Penning pressure | 2.943 × 10−7 mbar |
Mode of operation | STD |
Peristaltic pump rate | 40 rpm |
Nebulizer | Glass concentric type |
Spray chamber temperature | −20 °C |
Injector | Quartz, 2.5 mm ID |
Torch | Two concentric quartz tubes |
Sample tubing | 0.508 mm ID, STD |
Drain tubing | 1.29 mm ID, STD |
Star-end mass | 4.60–245 u |
Dwell time | 0.01 s |
Number of replicates | 3 |
Sample uptake | 40 s |
Wash time | 30 s |
Lens tune | Auto tune |
Analyte | Conc. Range (µg/L) | Regression Equation | CoD (R2) | BEC (µg/L) | LOD (µg/L) | LOQ (µg/L) |
---|---|---|---|---|---|---|
55Mn | 5–1000 | Y = 61710.6613x + 19411.8513 | 0.9988 | 0.315 | 0.0248 | 0.0747 |
59Co | 5–1000 | Y = 42657.9176x + 906.7047 | 0.9982 | 0.021 | 0.0033 | 0.0102 |
60Ni | 5–1000 | Y = 8830.1596x + 3527.1885 | 0.9814 | 0.399 | 0.0746 | 0.2242 |
66Zn | 5–1000 | Y = 5123.8806x + 12026.0813 | 0.9784 | 4.421 | 0.3873 | 1.1623 |
75As | 5–1000 | Y = 7302.5973x + 73.3339 | 0.9834 | 2.347 | 0.6055 | 1.8169 |
111Cd | 5–1000 | Y = 7302.5973x + 73.3339 | 0.9847 | 0.010 | 0.0063 | 0.0193 |
208Pb | 5–1000 | Y = 55981.0361x + 14618.7154 | 0.9968 | 0.261 | 0.0093 | 0.0283 |
Sample | 55Mn (µg/g ± sd) | 59Co (µg/g ± sd) | 60Ni (µg/g ± sd) | 66Zn (µg/g ± sd) | 75As (µg/g ± sd) | 111Cd (µg/g ± sd) | 208Pb (µg/g ± sd) |
---|---|---|---|---|---|---|---|
LY | 4.34 ± 0.09 | 2.66 ± 0.92 | 1.23 ± 0.11 | 507.87 ± 8.39 | 3.15 ± 0.05 | 0.19 ± 0.03 | 1.81 ± 0.16 |
VD | 11.87 ± 0.17 | 1.57 ± 0.33 | 1.72 ± 0.06 | 4.27 ± 0.24 | 1.23 ± 0.07 | 0.05 ± 0.03 | 0.74 ± 0.06 |
SL | 3.60 ± 0.19 | 1.65 ± 0.74 | 1.04 ± 0.10 | 4.94 ± 0.14 | 0.92 ± 0.13 | 0.05 ± 0.03 | 0.43 ± 0.06 |
TW | 1.42 ± 0.07 | 1.04 ± 0.75 | 0.70 ± 0.06 | 99.66 ± 3.18 | 2.23 ± 0.17 | 0.09 ± 0.01 | 2.27 ± 0.11 |
BU | 372.59 ± 3.84 | 14.09 ± 2.25 | 18.54 ± 0.38 | 116.49 ± 1.36 | 3.45 ± 0.19 | 0.08 ± 0.01 | 1.34 ± 0.11 |
YO | 12.69 ± 0.64 | 4.18 ± 0.96 | 3.45 ± 0.02 | 121.35 ± 1.21 | 3.94 ± 0.18 | 0.06 ± 0.02 | 0.64 ± 0.01 |
UM | 13.02 ± 0.56 | 1.36 ± 0.23 | 2.30 ± 0.11 | 10.84 ± 0.45 | 1.43 ± 0.20 | 0.16 ± 0.01 | 5.03 ± 0.39 |
PB | 15.18 ± 0.36 | 5.18 ± 1.01 | 12.64 ± 0.80 | 82.81 ± 3.28 | 8.10 ± 0.19 | 0.09 ± 0.02 | 0.62 ± 0.04 |
EG | 11.18 ± 0.41 | 2.18 ± 0.45 | 1.69 ± 0.08 | 288.13 ± 9.69 | 0.82 ± 0.16 | 0.08 ± 0.02 | 1.42 ± 0.05 |
VM | 3.46 ± 0.15 | 2.38 ± 0.09 | 1.56 ± 0.20 | 5.99 ± 0.41 | 0.17 ± 0.07 | 0.07 ± 0.02 | 0.40 ± 0.03 |
BS | 15.82 ± 0.66 | 6.17 ± 1.10 | 13.24 ± 0.62 | 86.34 ± 3.75 | 8.14 ± 0.58 | 0.09 ± 0.02 | 0.60 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.R.; Ahmad, N.; Ouladsmane, M.; Azam, M. Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age. Molecules 2021, 26, 2375. https://doi.org/10.3390/molecules26082375
Khan MR, Ahmad N, Ouladsmane M, Azam M. Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age. Molecules. 2021; 26(8):2375. https://doi.org/10.3390/molecules26082375
Chicago/Turabian StyleKhan, Mohammad Rizwan, Naushad Ahmad, Mohamed Ouladsmane, and Mohammad Azam. 2021. "Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age" Molecules 26, no. 8: 2375. https://doi.org/10.3390/molecules26082375
APA StyleKhan, M. R., Ahmad, N., Ouladsmane, M., & Azam, M. (2021). Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age. Molecules, 26(8), 2375. https://doi.org/10.3390/molecules26082375