Phytochemicals and Bioactivities of Zingiber cassumunar Roxb
Abstract
:1. Introduction
2. Phytochemicals from Z. cassumunar
2.1. Phenylbutenoids
2.2. Other Compounds
3. Bioactivities of Extracts and Compounds from Z. cassumunar
3.1. Antioxidant Activities
3.2. Anti-Inflammatory Activities
3.3. Anticancer Activities
3.4. Neuroprotective and Neurotrophic Activities
3.5. Dermatological Activities
3.6. Antifungal and Antibacterial Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chongmelaxme, B.; Sruamsiri, R.; Dilokthornsakul, P.; Dhippayom, T.; Kongkaew, C.; Saokaew, S.; Chuthaputti, A.; Chaiyakunapruk, N. Clinical effects of Zingiber cassumunar (Plai): A systematic review. Complement. Ther. Med. 2017, 35, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.M.; Nabney, J. Identification of a novel constituent of the essential oil of Zingiber cassumunar. Int. Flavors Food Addit. 1975, 6, 136–137. [Google Scholar]
- Amatayakul, T.; Cannon, J.R.; Dampawan, P.; Dechatiwongse, T.; Giles, R.G.F.; Huntrakul, C.; Kusamran, K.; Mokkhasamit, M.; Raston, C.L.; Reutrakul, V.; et al. Chemistry and crystal structures of some constituents of Zingiber cassumunar. Aust. J. Chem. 1979, 32, 71–88. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Fukushima, S.; Yoshihira, K.; Natori, S.; Dechatiwongse, T.; Mihashi, K.; Nishi, M.; Hara, S. Further characterization of the constituents of a Thai medicinal plant, Zingiber cassumunar ROXB. Chem. Pharm. Bull. 1980, 28, 2948–2959. [Google Scholar] [CrossRef] [Green Version]
- Tuntiwachwuttikul, P.; Pancharoen, O.; Jaipetch, T.; Reutrakul, V. Phenylbutanoids from Zingiber cassumunar. Phytochemistry 1981, 20, 1164–1165. [Google Scholar] [CrossRef]
- Jitoe, A.; Masuda, T.; Kato, N.; Nakatani, N. Phenybutenoid dimers from the rhizomes of Zingiber cassumunar. Phytochemistry 1993, 32, 357–363. [Google Scholar] [CrossRef]
- Panthong, A.; Kanjanapothi, D.; Niwatananant, W.; Tuntiwachwuttikul, P.; Reutrakul, V. Anti-inflammatory activity of compound D {(E)-4-(3′,4′-dimethoxyphenyl)but-3-en-2-ol} isolated from Zingiber cassumunar Roxb. Phytomedicine 1997, 4, 207–212. [Google Scholar] [CrossRef]
- Han, A.R.; Min, H.Y.; Windono, T.; Jeohn, G.H.; Jang, D.S.; Lee, S.K.; Seo, E.K. A new cytotoxic phenylbutenoid dimer from the rhizomes of Zingiber cassumunar. Planta Med. 2004, 70, 1095–1097. [Google Scholar] [CrossRef]
- Han, A.R.; Kim, M.S.; Jeong, Y.H.; Lee, S.K.; Seo, E.K. Cyclooxygenase-2 inhibitory phenylbutenoids from the rhizomes of Zingiber cassumunar. Chem. Pharm. Bull. 2005, 53, 1466–1468. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Nakamura, S.; Iwami, J.; Li, X.; Pongpiriyadacha, Y.; Nakai, M.; Kubo, M.; Fukuyama, Y.; Yoshikawa, M. Invasion inhibitors of human fibrosarcoma HT 1080 cells from the rhizomes of Zingiber cassumunar: Structures of phenylbutanoids, cassumunols. Chem. Pharm. Bull. 2011, 59, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Sun, C.; Wang, Y.; Pan, Y. Preparative isolation and purification of two phenylbutenoids from the rhizomes of Zingiber cassumunar by upright counter-current chromatography. J. Chromatogr. A 2005, 1089, 258–262. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, R.; Berthod, A.; Pan, Y. Rapid screening of bioactive components from Zingiber cassumunar using elution-extrusion countercurrent chromatography. J. Chromatogr. A 2008, 1181, 33–44. [Google Scholar] [CrossRef]
- Nakamura, S.; Iwami, J.; Matsuda, H.; Wakayama, H.; Pongpiriyadacha, Y.; Yoshikawa, M. Structures of new phenylbutanoids and nitric oxide production inhibitors from the rhizomes of Zingiber cassumunar. Chem. Pharm. Bull. 2009, 57, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Kubo, M.; Gima, M.; Baba, K.; Nakai, M.; Harada, K.; Suenaga, M.; Matsunaga, Y.; Kato, E.; Hosoda, S.; Fukuyama, Y. Novel neurotrophic phenylbutenoids from Indonesian ginger Bangle, Zingiber purpureum. Bioorg. Med. Chem. Lett. 2015, 25, 1586–1591. [Google Scholar] [CrossRef]
- Han, A.-R.; Lee, E.-J.; Min, H.-Y.; Kim, H.-R.; Lee, S.K.; Seo, E.-K. A potential cytotoxic principle of Zingiber cassumunar. Nat. Prod. Sci. 2003, 9, 109–111. [Google Scholar]
- Jitoe, A.; Masuda, T.; Mabry, T.J. Novel antioxidants, cassumunarin A, B, C, from Zingiber cassumunar. Tetrahedron Lett. 1994, 35, 981–984. [Google Scholar] [CrossRef]
- Li, M.-X.; Bai, X.; Ma, Y.-P.; Zhang, H.-X.; Nama, N.; Pei, S.-J.; Du, Z.-Z. Cosmetic potentials of extracts and compounds from Zingiber cassumunar Roxb. rhizome. Ind. Crops Prod. 2019, 141, 111764. [Google Scholar] [CrossRef]
- Dinter, H.; Haensel, R.; Pelter, A. The structures of cassumunaquinones 1 and 2 from Zingiber cassumunar. Z Naturforsch. C 1980, 35C, 154–155. [Google Scholar] [CrossRef]
- Kongsui, R.; Sriraksa, N.; Thongrong, S. The neuroprotective effect of Zingiber cassumunar Roxb. extract on LPS-induced neuronal cell loss and astroglial activation within the hippocampus. BioMed Res. Int 2020, 2020, 4259316. [Google Scholar] [CrossRef]
- Matsui, N.; Kido, Y.; Okada, H.; Kubo, M.; Nakai, M.; Fukuishi, N.; Fukuyama, Y.; Akagi, M. Phenylbutenoid dimers isolated from Zingiber purpureum exert neurotrophic effects on cultured neurons and enhance hippocampal neurogenesis in olfactory bulbectomized mice. Neurosci. Lett. 2012, 513, 72–77. [Google Scholar] [CrossRef]
- Park, J.; Chung, H.; Hyun, B.S.; Han, A.-R.; Seo, E.K.; Eun, C.S.; Kang, D.-H.; Oh, E.-S. (E)-4-(3,4-dimethoxyphenyl)but-3-en-1-ol enhances melanogenesis through increasing upstream stimulating factor-1-mediated tyrosinase expression. PLoS ONE 2015, 10, e0141988. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Verma, S.K.; Iqbal, H.; Chanda, D.; Verma, R.K.; Darokar, M.P.; et al. Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger. J. Sci. Food Agric. 2018, 98, 321–327. [Google Scholar] [CrossRef]
- Bin Jantan, I.; Yassin, M.S.M.; Chin, C.B.; Chen, L.L.; Sim, N.L. Antifungal activity of the essential oils of nine Zingiberaceae species. Pharm. Biol. 2003, 41, 392–397. [Google Scholar] [CrossRef]
- Pithayanukul, P.; Tubprasert, J.; Wuthi-Udomlert, M. In vitro antimicrobial activity of Zingiber cassumunar (Plai) oil and a 5% Plai oil gel. Phytother. Res. 2007, 21, 164–169. [Google Scholar] [CrossRef]
- Park, G.; Lee, E.-J.; Min, H.-Y.; Choi, H.-Y.; Han, A.-R.; Lee, S.K.; Seo, E.K. Evaluation of cytotoxic potential of Indonesian medicinal plants in cultured human cancer cells. Nat. Prod. Sci. 2002, 8, 165–169. [Google Scholar]
- Lee, J.-W.; Min, H.Y.; Han, A.-R.; Chung, H.-J.; Park, E.J.; Park, H.J.; Hong, J.Y.; Seo, E.-K.; Lee, S.K. Growth inhibition and induction of G1 phase cell cycle arrest in human lung cancer cells by a phenylbutenoid dimer isolated from Zingiber cassumunar. Biol. Pharm. Bull. 2007, 30, 1561–1564. [Google Scholar] [CrossRef] [Green Version]
- Go, E.J.; Kim, H.R.; Chung, S.Y.; Jeong, Y.H.; Kim, N.H.; Han, A.-R.; Seo, E.-K.; Lee, H.J. Evaluation of the P-glycoprotein inhibitory activity of Indonesian medicinal plants. Nat. Prod. Sci. 2004, 10, 85–88. [Google Scholar]
- Kim, H.R.; Chung, S.Y.; Jeong, Y.H.; Eun Jung, H.; Ah-Reum, K.; Na Hyung, M.; KyungSung, S.; Gina, J.; Ok, J.; Nam, J.W.; et al. P-glycoprotein inhibitory activity of Indonesian medicinal plants in human breast cancer cells. Nat. Prod. Sci. 2004, 10, 268–271. [Google Scholar]
- Chung, S.Y.; Han, A.-R.; Sung, M.K.; Jung, H.J.; Nam, J.W.; Seo, E.-K.; Lee, H.J. Potent modulation of P-glycoprotein activity by naturally occurring phenylbutenoids from Zingiber Cassumunar. Phytother. Res. 2009, 23, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Suh, D.H.; Lee, G.; Han, A.R.; Chae, S.W.; Lee, H.J.; Seo, E.K.; Lim, H.J. Synthesis and biological activity of optically active phenylbutenoid dimers. J. Nat. Prod. 2011, 74, 1817–1821. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.W.; Han, A.R.; Park, J.H.; Rhie, J.Y.; Lim, H.J.; Seo, E.K.; Lee, H.J. In vitro and in vivo evaluation of phenylbutenoid dimers as inhibitors of P-glycoprotein. J. Nat. Prod. 2013, 76, 2277–2281. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-J.; Kim, H.S.; Lee, J.S.; Park, J.; Shin, S.C.; Song, S.; Lee, E.; Choi, J.E.; Suh, J.-W.; Lee, H.; et al. Small molecule activator of Nm23/NDPK as an inhibitor of metastasis. Sci. Rep. 2018, 8, 10909. [Google Scholar] [CrossRef] [Green Version]
- Sabulal, B.; Dan, M.; Kurup, R.; Chandrika, S.P.; George, V. Phenylbutanoid-rich rhizome oil of Zingiber neesanum from Western Ghats, southern India. Flavour Fragr. J. 2007, 22, 521–524. [Google Scholar] [CrossRef]
- Masuda, T.; Andoh, T.; Yonemori, S.; Takeda, Y. Phenylbutenoids from the rhizomes of Alpinia flabellate. Phytochemistry 1998, 50, 163–166. [Google Scholar] [CrossRef]
- Zhao, D.-D.; Zhao, Q.-S.; Liu, L.; Chen, Z.Q.; Zeng, W.-M.; Lei, H.; Zhang, Y.-L. Compounds from Dryopteris fragrans (L.) Schott with cytotoxic activity. Molecules 2014, 19, 3345–3355. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lu, Y.; Lin, L.; Sun, Z.; Sun, C.; Pan, Y. Differentiation of configurations of the phenylbutenoid dimer derivatives from Zingiber cassumunar by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1654–1658. [Google Scholar] [CrossRef]
- Kishore, N.; Dwivedi, R.S. Zerumbone: A potential fungitoxic agent isolated from Zingiber cassumunar Roxb. Mycopathologia 1992, 120, 155–159. [Google Scholar] [CrossRef]
- Leelarungrayub, D.; Suttajit, M. Potential antioxidant and anti-inflammatory activities of Thai plai (Zingiber cassumunar Roxb.) essential oil. Int. J. Essent. Oil Ther. 2009, 3, 25–30. [Google Scholar]
- Mektrirat, R.; Yano, T.; Okonogi, S.; Katip, W.; Pikulkaew, S. Phytochemical and safety evaluations of volatile terpenoids from Zingiber cassumunar Roxb. On mature carp peripheral blood mononuclear cells and embryonic zebrafish. Molecules 2020, 25, 613. [Google Scholar] [CrossRef] [Green Version]
- Pongprayoon, U.; Soontornsaratune, P.; Jarikasem, S.; Sematong, T.; Wasuwat, S.; Claeson, P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part 1. The essential oil. Phytomedicine 1997, 3, 319–322. [Google Scholar] [CrossRef]
- Brophy, T.J.J.; Zwaving, J.H. Analysis of the essential oil of Zingiber cassumunar Roxb. from Indonesia. Flavour Fragr. J. 1991, 6, 161–163. [Google Scholar] [CrossRef]
- Nagano, T.; Oyama, Y.; Kajita, N.; Chikahisa, L.; Nakata, M.; Okazaki, E.; Masuda, T. New curcuminoids isolated from Zingiber cassumunar protect cells suffering from oxidative stress: A flow-cytometric study using rat thymocytes and H2O2. Jpn. J. Pharmacol. 1997, 75, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indrianingsih, A.W.; Prihantini, A. Indah. In vitro antioxidant and α-glucosidase inhibitory assay of Zingiber cassumunar roxb. AIP Conf. Proc. 2018, 2026, 020005. [Google Scholar]
- Sari, N. Nurkhasanah; Sulistyani, Nanik. The antioxidant effect of bangle (Zingiber cassumunar) rhizome extract on superoxide dismutase (sod) activity in hyperlipidemic rats. Res. J. Chem Environ. 2020, 24, 78–81. [Google Scholar]
- Kaewchoothong, A.; Tewtrakul, S.; Panichayupakaranant, P. Inhibitory effect of phenylbutanoid-rich Zingiber cassumunar extracts on nitric oxide production by murine macrophage-like RAW264.7 cells. Phytother. Res. 2012, 26, 1789–1792. [Google Scholar] [CrossRef]
- Ozaki, Y.; Kawahara, N.; Harada, M. Anti-inflammatory effect of Zingiber cassumunar Roxb. and its active principles. Chem. Pharm. Bull. 1991, 39, 2353–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limvuttegrijerat, T.; Poachanukoon, O.; Koontongkaew, S.; Na Ayudhya, T.D. Crude ethanolic extracts of Zingiber cassumunar ROXB. inhibit PMA-induced MUC2 and MUC5AC expression via ERK inhibition in human airway epithelial cells. Asian Pac. J. Allergy Immunol. 2014, 32, 328–336. [Google Scholar]
- Pongprayoon, U.; Tuchinda, P.; Claeson, P.; Sematong, T.; Reutrakul, V.; Soontornsaratune, P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part 2. Hexane extractives. Phytomedicine 1997, 3, 323–326. [Google Scholar] [CrossRef]
- Aupaphong, V.; Dechatiwongse Na Ayudhya, T.; Koontongkaew, S. Inhibition of lipopolysaccharide-induced expression of cyclooxygenase-2 by Zingiber cassumunar Roxb. constituents in human dental pulp cells. J. Med. Plants Res. 2013, 7, 2451–2458. [Google Scholar]
- Rujirek, C.; Siriwan, O.; Siriwan, T.; Prachya, K.; Ampai, P.; Vichai, R. Chondroprotective potential of bioactive compounds of Zingiber cassumunar Roxb. against cytokineinduced cartilage degradation in explant culture. J. Med. Plants Res. 2012, 6, 5204–5213. [Google Scholar] [CrossRef]
- Chaiwongsa, R.; Ongchai, S.; Boonsing, P.; Kongtawelert, P.; Panthong, A.; Reutrakul, V. Active compound of Zingiber cassumunar Roxb. down-regulates the expression of genes involved in joint erosion in a human synovial fibroblast cell line. Afr. J. Trad. Complement. Altern. Med. 2013, 10, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poachanukoon, O.; Meesuk, L.; Pattanacharoenchai, N.; Monthanapisut, P.; Dechatiwongse Na Ayudhya, T.; Koontongkaew, S. Zingiber cassumunar ROXb. and its active constituent inhibit MMP-9 direct activation by house dust mite allergens and MMP-9 expression in PMA-stimulated human airway epithelial cells. Asian Pac. J. Allergy Immunol. 2015, 33, 42–51. [Google Scholar] [PubMed]
- Jitapunkul, K.; Poachanukoon, O.; Hannongbua, S.; Toochinda, P.; Lawtrakul, L. Simulation Study of Interactions between two bioactive components from Zingiber cassumunar and 5-lipoxygenase. Cell Mol. Bioeng. 2018, 11, 77–89. [Google Scholar] [CrossRef]
- Anasamy, T.; Abdul, A.B.; Sukari, M.A.; Abdelwahab, S.I.; Mohan, S.; Kamalidehghan, B.; Azid, M.Z.; Muhammad Nadzri, N.; Andas, A.R.J.; Kuan Beng, N.; et al. A Phenylbutenoid dimer, cis-3-(3′,4′-dimethoxyphenyl)-4-[(E)-3′′′,4′′′-dimethoxystyryl]cyclohex-1-ene, exhibits apoptogenic properties in T-acute lymphoblastic leukemia cells via induction of p53-independent mitochondrial signalling pathway. Evid. Based Complement. Alternat. Med. 2013, 2013, 939810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeenapongsa, R.; Yoovathaworn, K.; Sriwatanakul, K.M.; Pongprayoon, U.; Sriwatanakul, K. Anti-inflammatory activity of (E)-1-(3,4-dimethoxyphenyl) butadiene from Zingiber cassumunar Roxb. J. Ethnopharmacol. 2003, 87, 143–148. [Google Scholar] [CrossRef]
- Koysooko, R.; Varavudhi, P.; Pinthong, T.; Wattanapermpool, J. Development of Zingiber cassumunar for asthmatic treatment: Pharmacokinetics in animals. J. Sci. Soc. Thai. 1988, 14, 197–208. [Google Scholar] [CrossRef]
- Khemawoot, P.; Hunsakunachai, N.; Anukunwithaya, T.; Bangphumi, K.; Ongpipattanakul, B.; Jiratchariyakul, W.; Soawakontha, R.; Inthachart, T.; Dechatiwongse Na Ayudhya, T.; Koontongkaew, S.; et al. Pharmacokinetics of compound D, the major bioactive component of Zingiber cassumunar, in rats. Planta Med. 2016, 82, 1186–1191. [Google Scholar] [CrossRef] [Green Version]
Extracts, Fractions, or Compounds | Bioactivities | Cell Lines or Models | Ref. |
---|---|---|---|
Essential oil | Antioxidant | ABTS scavenging activity; H2O2 scavenging activity in U937 cells | [38] |
SOD enzyme activity in rat induced by HFD | [44] | ||
Anti-inflammatory | Carrageenin-induced hind-paw edema test in rats | [40] | |
LPS-induced NO production in RAW264.7 cells | [45] | ||
Antifungal | Saccharomyces cerevisiae, Cryptococcus neoformans, Candida albicans, Candida tropicalis, and Torulopsis glabrata | [23] | |
Epidermophyton floccosum, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum, Candida albicans, and Cryptococcus neoformans | [24] | ||
Candida albicans (ATCC 14053) and C. albicans (MTCC 1637) | [22] | ||
Antimicrobial | Gram-positive: Staphylococcus aureus ATCC 29737, Streptococcus pyogenes, Bacillus subtilis ATCC6633, Streptococcus epidermidis ATCC 12228, and Propionibacterium acnes; Gram-negative: Escherichia coli ATCC 10536, Salmonella typhi, Pseudomonas aeruginosa ATCC 25619, Klebsiella pneumoniae ATCC 10031, and Proteus vulgaris | [24] | |
Gram-positive: Staphylococcus aureus (MTCC 96), Staphylococcus epidermidis (MTCC 435), and Streptococcus mutans (MTCC 890); Gram-negative: Klebsiella pneumoniae (MTCC 109), Pseudomonas aerugenosa (MTCC 741), Escherichia coli (MTCC 723), Escherichia coli (DH5𝛼), and Salmonella typhimurium (MTCC 98) | [22] | ||
Methanol extract | Anti-inflammatory | Carrageenin-induced hind-paw edema test in rats; acetic acid-induced vascular permeability and writhing test in mice | [46] |
Ethanol extract | Antioxidant | SOD enzyme activity in rat induced by HFD | [44] |
Anti-asthma | PMA-induced mucin production in NCI-H292 cells | [47] | |
Neuroprotective | LPS-induced neuronal cell loss and astroglial activation within the hippocampus using adult male Wistar rats | [19] | |
Ether fraction | Anti-inflammatory | Carrageenin-induced hind-paw edema test in rats; acetic acid-induced vascular permeability and writhing test in mice | [46] |
Hexane fraction | Anti-inflammatory | Carrageenin-induced hind-paw edema test in rats; acetic acid-induced vascular permeability and writhing test in mice | [46] |
TPA-induced ear edema in rats | [48] | ||
LPS-induced NO production in RAW264.7 cells | [45] | ||
Antioxidant | H2O2 scavenging activity; α-glucosidase inhibition | [43] | |
Anticancer | Cytotoxicity of DNM in MES-SA/DX5 and MCF-7/ADR cell lines | [27,28] | |
Chloroform fraction | Antioxidant | DPPH scavenging activity | [43] |
Anticancer | Cytotoxicity against A549 and SNU-638 cell lines | [25] | |
Cytotoxicity of DNM in MES-SA/DX5 and MCF-7/ADR cell lines | [27,28] | ||
Ethyl acetate fraction | Antiaging, skin whitening, and anti-inflammation | DPPH scavenging, HDFa collagen secretion, tyrosinase inhibition, and LPS-induced NO production in RAW264.7 cells | [17] |
Phenylbutenoid-rich fraction | Anti-inflammatory | LPS-induced NO production in RAW264.7 cells | [45] |
1 | Anti-inflammatory | EPP, AA, TPA, or carrageenan-induced ear edema in rats; collagen, ADP, AA, or PAF-induced platelet aggregation | [42] |
LPS-induced PGE2 production in RAW264.7 cells | [9] | ||
LPS-induced NO production in RAW264.7 cells | [13,45] | ||
LPS-induced PGE2 level and COX-2 expression in human dental pulp cells | [49] | ||
Anticancer | Cytotoxicity against HT-1080 cell line | [8] | |
Cytotoxicity of DNM in MCF-7/ADR cell lines | [29] | ||
Invasion of HT-1080 cells | [10] | ||
2 | Anti-inflammatory | TPA-induced ear edema in rats | [48] |
LPS-induced NO production in RAW264.7 cells | [45] | ||
Chondroprotective effect | Cytokine-induced cartilage degradation in explant culture | [50] | |
Cytokine-induced up-regulation of catabolic genes involved in joint erosion in SW982 cells | [51] | ||
Anti-asthma | Pro-MMP-9 by house dust mite allergens; MMP-9 expression in PMA-stimulated NCI-H292cells | [52] | |
Molecular docking and molecular dynamics simulations with 5-LO enzyme | [53] | ||
Melanogenic effect | Melanin synthesis in B16F10 cells and human primary melanocytes; USF-1-mediated tyrosinase expression; hyperpigmentation in brown guinea pigs. | [21] | |
3 | Anti-inflammatory | TPA-induced ear edema in rats | [48] |
LPS-induced NO production in RAW264.7 cells | [45] | ||
4 | Anti-inflammatory | TPA-induced ear edema in rats | [48] |
LPS-induced PGE2 level and COX-2 expression in human dental pulp cells | [49] | ||
Anticancer | Antiproliferative activity toward CEMss, HepG2, MCF-7, MDA-MB-231, and human blood mononuclear cell lines; apoptosis in CEMss cells via induction of p53-independent mitochondrial signaling pathway | [54] | |
Neurotrophic | Induction of neurite sprouting in PC12 cells; neurogenesis and neurite growth and protection in primary cultured rat cortical neurons; hippocampal neurogenesis in OBX-induced mice | [20] | |
5 | Anti-inflammatory | TPA-induced ear edema in rats | [48] |
Chondroprotective effect | Cytokine-induced cartilage degradation in explant culture | [50] | |
Collagen promoting | HDFa collagen secretion | [17] | |
6 | Anti-inflammatory | TPA-induced ear edema in rats | [48] |
LPS-induced PGE2 level and COX-2 expression in human dental pulp cells | [49] | ||
8 | Anti-inflammatory | Carrageenin-induced hind-paw edema test in rats; acetic acid-induced vascular permeability and writhing test in mice | [46] |
Carrageenin-induced hind-paw edema test in rats | [40] | ||
9 | Anti-inflammatory | LPS-induced NO production in mouse peritoneal macrophages | [13] |
11 | Anti-inflammatory | PGE2 production in the LPS-stimulated mouse macrophage RAW264.7 cells | [9] |
Anticancer | Cytotoxicity against A549, Col2, SNU-638, and HT-1080 cell lines | [8] | |
Growth inhibition and induction of G1 phase cell cycle arrest in A549 cells | [26] | ||
Cytotoxicity of DNM in MCF-7/ADR cell line | [29] | ||
Activation of NDPK activity of recombinant human Nm23-H1 and cellular NDPKs in MDA-MB-231 cells; in vitro invasion and migration of MDA-MB-231 cells; in vivo metastasis in MDA-MB-231-Luc-D3H2LN mice | [32] | ||
Neurotrophic | Induction of neurite sprouting in PC12 cells; neurogenesis and neurite growth and protection in primary cultured rat cortical neurons; hippocampal neurogenesis in OBX-induced mice | [20] | |
14 | Anti-inflammatory | PGE2 production in the LPS-stimulated mouse macrophage RAW264.7 cells | [9] |
LPS-induced NO production in mouse peritoneal macrophages | [13] | ||
Anticancer | Cytotoxicity of DNM in MCF-7/ADR cell lines | [29] | |
Invasion of HT-1080 cells | [10] | ||
17 | Anti-inflammatory | Carrageenin-induced paw edema in rats; Carrageenin-induced rat pleurisy; adjuvant-induced arthritis | [7] |
Analgesic | Acetic acid-induced writhing response in mice; tail-flick test in rats | ||
Antipyretic | Yeast-induced hyperthermia in rats | ||
18 | Anti-inflammatory | PGE2 production in the LPS-stimulated mouse macrophage RAW264.7 cells | [9] |
Anticancer | Cytotoxicity against A549, Col2, SNU-638, and HT-1080 cell lines | [8] | |
21 | Anticancer | Cytotoxicity of DNM in MCF-7/ADR cell lines | [30] |
22 | Anticancer | Cellular accumulation and efflux of DNM in MCF-7/ADR cell lines; in vivo application of paclitaxel and co-administration using male Sprague Dawley rats | [30,31] |
25, 27, 55 | Anti-inflammatory | LPS-induced NO production in mouse peritoneal macrophages | [13] |
Anticancer | Invasion of HT-1080 cells | [10] | |
30, 42 | Anti-inflammatory | LPS-induced NO production in mouse peritoneal macrophages | [13] |
43, 44 | Antioxidant | Thymocytes under H2O2-iduced oxidative stress | [42] |
46 | Collagen promoting | HDFa collagen secretion | [17] |
Skin whitening | Tyrosinase inhibition | [17] | |
47 | Anti-inflammatory | LPS-induced NO production in Rwa264.7 cells | [17] |
48 | Neurotrophic | Neurite outgrowth of NGF-mediated PC12 cells | [14] |
49 | Anti-inflammatory | LPS-induced NO production in mouse peritoneal macrophages | [13] |
Neurotrophic | Neurite outgrowth of NGF-mediated PC12 cells | [14] | |
59, 60 | Anti-inflammatory | Carrageenin-induced hind-paw edema test in rats | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.-R.; Kim, H.; Piao, D.; Jung, C.-H.; Seo, E.K. Phytochemicals and Bioactivities of Zingiber cassumunar Roxb. Molecules 2021, 26, 2377. https://doi.org/10.3390/molecules26082377
Han A-R, Kim H, Piao D, Jung C-H, Seo EK. Phytochemicals and Bioactivities of Zingiber cassumunar Roxb. Molecules. 2021; 26(8):2377. https://doi.org/10.3390/molecules26082377
Chicago/Turabian StyleHan, Ah-Reum, Hyunyoung Kim, Donglan Piao, Chan-Hun Jung, and Eun Kyoung Seo. 2021. "Phytochemicals and Bioactivities of Zingiber cassumunar Roxb" Molecules 26, no. 8: 2377. https://doi.org/10.3390/molecules26082377
APA StyleHan, A. -R., Kim, H., Piao, D., Jung, C. -H., & Seo, E. K. (2021). Phytochemicals and Bioactivities of Zingiber cassumunar Roxb. Molecules, 26(8), 2377. https://doi.org/10.3390/molecules26082377