Synthesis and Spectrophotometric Analysis of Microcapsules Containing Immortelle Essential Oil
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of Microcapsules
- Dissolving or dispersing the substance (immortelle EO) together with a wall-forming material (ethyl cellulose, m = 0.6 g) in an organic solvent (ethyl acetate, V = 15 mL) of the type partially miscible with water to form an organic solution or dispersion;
- Mixing the organic solution or dispersion with an aqueous solution, the aqueous solution being saturated with the organic solvent (EA, V = 10 mL) dissolved in 100 mL of distilled water and containing an emulsifier (SDS, m = 1 g) to form an emulsion (the pH of the aqueous phase has been adjusted to pH 3 with citric acid to prevent hydrolysis of EA);
- By mixing the aqueous phase on a magnetic stirrer, the organic phase is gradually added;
- Adding an excess amount of water (200 mL) to initiate the extraction of the organic solvent from the emulsion (10 min mixing on a magnetic stirrer);
- Mixing the emulsion long enough to allow formation of microcapsules in the mixture (centrifugation at 2000 rpm for 5 min); and
- Further removal of the residual organic solvent and formed microcapsules by filtration.
2.3. Optimizing of Immortelle Essential Oil Mass in a Microcapsule
2.4. Morphology Characterization of EC Microcapsules
2.5. Qualitative and Quantitative UV Spectrophotometric Analysis
3. Results and Discussion
3.1. Synthesis of EC Microcapsules
3.2. Morphology Analysis of Synthesised Microcapsules with SEM
3.3. Spectrophotometric Analysis of Immortelle EO
3.3.1. Qualitative Analysis of Microcapsules
3.3.2. Quantitative Analysis of Microcapsules
3.3.3. Utilization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bezerra, F.M.; Carmona, O.G.; Carmona, C.G.; Lis, M.J.; de Moraes, F.F. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose 2016, 23, 1459–1470. [Google Scholar] [CrossRef]
- Wan, J.; Li, R.; Zhou, Y.; Liu, C.; Pei, C.; Shu, W.; Zhang, C.; Liu, L.; Zhou, L. Design of multi-shelled hollow Cr2O3 spheres for metabolic fingerprinting. Angew. Chem. Int. Ed. 2021, 1–9. [Google Scholar] [CrossRef]
- Xu, L.; Cai, J.; Vedarethinam, V.; Tang, Y.; Guo, Q.; Huang, H.; Shen, N.; Di, W.; Ding, H.; Huang, L. Zirconia Hybrid Nanoshells for Nutrient and Toxin Detection. Small 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Sun, S.; Wang, R.; Huang, Y.; Xu, J.; Yao, K.; Liu, W.; Cao, Y.; Qian, K. Design of Hierarchical Beads for Efficient Label-Free Cell Capture. Small 2019, 15, 1–8. [Google Scholar] [CrossRef]
- Su, H.; Price, C.A.H.; Jing, L.; Tian, Q.; Liu, J.; Qian, K. Janus particles: Design, preparation, and biomedical applications. Mater. Today Biol. 2019, 4, 1–19. [Google Scholar] [CrossRef]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2015, 15, 143–182. [Google Scholar] [CrossRef]
- Bah, M.G.; Bilal, H.M.; Wang, J. Fabrication and application of complex microcapsules: A review. Soft Matter 2020, 16, 570–590. [Google Scholar] [CrossRef]
- Ghosh, S.K. Functional Coatings and Microencapsulation: A General Perspective. In Functional Coatings; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 1–26. ISBN 3-527-31296-X. [Google Scholar]
- Brlek, I.; Pušić, T.; Bischof, S. Microcapsule identification methods. Tekstil 2018, 67, 85–96. [Google Scholar]
- Frey, C.; Pfeil, J.; Neckernuss, T.; Geiger, D.; Weishaupt, K.; Platzman, I.; Marti, O.; Spatz, J.P. Label-freemonitoring and manipulation of microfluidic water-in-oil droplets. View 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Babtsov, V.; Shapiro, Y.; Kvitnitsky, E. Method of Microencapsulation. U.S. Patent 6,932,984 B1, 23 August 2005. [Google Scholar]
- Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 2010, 27, 187–197. [Google Scholar] [CrossRef]
- Matijević, I.; Bischof, S.; Pušić, T. Cosmetic preparations on textiles: Cosmetotextiles. Tekstil 2016, 65, 13–24. [Google Scholar]
- Abbaspoor, S.; Ashrafi, A.; Salehi, M. Synthesis and characterization of ethyl cellulose micro/nanocapsules using solvent evaporation method. Colloid Polym. Sci. 2018, 296, 1509–1514. [Google Scholar] [CrossRef]
- Teeka, P.; Chaiyasat, A.; Chaiyasat, P. Preparation of Poly (methyl methacrylate) Microcapsule with Encapsulated Jasmine Oil. Energy Procedia 2014, 56, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.L.; Gambari, R. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries—A review. J. Control. Release 2014, 178, 25–45. [Google Scholar] [CrossRef]
- Jaâfar, F.; Lassoued, M.A.; Sahnoun, M.; Sfar, S.; Cheikhrouhou, M. Impregnation of ethylcellulose microcapsules containing jojoba oil onto compressive knits developed for high burns. Fibers Polym. 2012, 13, 346–351. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.-M.; Zheng, W.; Song, Q.-W.; Zhu, H.; Zhou, Y. Preparation and Characterization of Natural Fragrant Microcapsules. J. Fiber Bioeng. Inform. 2008, 1, 293–299. [Google Scholar] [CrossRef]
- Matijević, I.; Pušić, T.; Bischof, S.; Šauperl, O.; Valh, J.V. Synthesis of α-tocopherol microcapsules and it’s grafting onto cotton fabric. In Book of Proceedings of the 8th International Textile, Clothing & Design Conference, Dragčević, Zvonko; Hursa Šajatović, Anica; Vujasinović, E., Ed.; University of Zagreb, Faculty of Textile Technology: Zagreb, Croatia, 2016; pp. 189–194. [Google Scholar]
- Cheng, S.; Yuen, C.; Kan, C.; Cheuk, K. Development of Cosmetic Textiles Using Microencapsulation Technology. Res. J. Text. Appar. 2008, 12, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.F.; Borges, L.L.; dos Santos, T.O.; de Paula, J.R.; Conceição, E.C.; Bara, M.T. Microencapsulation of Essential Oil from Fruits of Pterodon emarginatus Using Gum Arabic and Maltodextrin as Wall Materials: Composition and Stability. Dry. Technol. 2014, 32, 96–105. [Google Scholar] [CrossRef]
- Aguiar, M.C.S.; Fernandes, J.B.; Forim, M.R. Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray-drying process. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Piao, X.; Zhang, L.; Zhang, S.; Yi, F. Nematicidal Action of Microencapsulated Essential Oil of Flesh Fingered Citron. J. Chem. 2020, 2020, 7934605. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, Y.; Wang, M.; Chen, F.; Liu, J.; Meng, K.; Zhao, H. Double-Layered Microcapsules Significantly Improve the Long-Term Effectiveness of Essential Oil. Polymers 2020, 12, 1651. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Li, X.; Chen, F.; Wan, R.; Yu, C.; Li, J.; McClements, D.J.; Deng, Z. Microencapsulation of an essential oil (cinnamon oil) by spray drying: Effects of wall materials and storage conditions on microcapsule properties. J. Food Process. Preserv. 2020, 44, 1–15. [Google Scholar] [CrossRef]
- Mehrana, M.; Masouma, S.; Memarzadehb, M. Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Ind. Crop. Prod. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Viegas, D.A.; Palmeira-De-Oliveira, A.; Salgueiro, L.; Martinez-De-Oliveira, J.; Palmeira-De-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef] [PubMed]
- D’Abrosca, B.; Buommino, E.; D’Angelo, G.; Coretti, L.; Scognamiglio, M.; Severino, V.; Pacifico, S.; Donnarumma, G.; Fiorentino, A. Spectroscopic identification and anti-biofilm properties of polar metabolites from the medicinal plant Helichrysum italicum against Pseudomonas aeruginosa. Bioorg. Med. Chem. 2013, 21, 7038–7046. [Google Scholar] [CrossRef] [PubMed]
- Maji, T.K.; Baruah, I.; Dube, S.; Hussain, M.R. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresour. Technol. 2007, 98, 840–844. [Google Scholar] [CrossRef]
- Bianchini, A.; Tomi, P.; Costa, J. Composition of Helichrysum italicum (Roth) G. Don fil. subsp.italicum essential oils from Corsica (France). Flavour Fragr. J. 2001, 16, 30–34. [Google Scholar] [CrossRef]
- Mastelič, J.; Politeo, O.; Jerkovič, I. Contribution to the analysis of the essential oil of Helichrysum italicum (Roth) G. Don—Determination of ester bonded acids and phenols. Molecules 2008, 13, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Blažević, N. Variations in yield and composition of immortelle (Helichrysum italicum, Roth Guss.) essential oil from different locations and vegetation periods along Adriatic coast. Acta Pharm. 1995, 45, 517–522. [Google Scholar]
- Moore, R.N.; Fisher, G.S. The Effect of Strained Rings on Ultraviolet Absorption Spectra. J. Am. Chem. Soc. 1956, 78, 4362–4364. [Google Scholar] [CrossRef]
- Matijević, I.; Šauperl, O.; Bischof, S. Application of ethyl cellulose microcapsules with Helichrysum italicum essential oil on modal and cotton fabric. In Proceedings of the 91st Textile Institute World Conference: Integrating Design with Sustainable Technology, TIWC, Leeds, UK, 23–26 July 2018; p. 51. [Google Scholar]
Type of Synthesis | m (EO)/g | m0 (MK)/g | mr (MK Residue on Filter Paper)/g | mr (MK Residue on Filter Paper)/% |
---|---|---|---|---|
0 | / | 0.130 | 0.015 | 11.5 |
A | 0.15 | 0.429 | 0.042 | 9.8 |
B | 0.20 | 0.389 | 0.040 | 10.3 |
C | 0.30 | 0.464 | 0.081 | 17.5 |
No. | Absorbance | γ/mg/mL |
---|---|---|
1 | 0.0324 | 0.01 |
2 | 0.0752 | 0.02 |
3 | 0.1764 | 0.04 |
4 | 0.2589 | 0.06 |
5 | 0.3569 | 0.08 |
Synthesis | Mass of Immortelle EO in Microcapsules, m/g | Absorbance | γ/mg/mL |
---|---|---|---|
0 | 0 | 0 | 0 |
A | 0.15 | 0.2023 | 0.0444 |
B | 0.20 | 0.2915 | 0.0627 |
C | 0.30 | 0.3376 | 0.0721 |
Immortelle EO | A | γ/mg/mL | Utilization/% |
---|---|---|---|
In microcapsules (B-2) | 0.29145 | 0.0627 | 82.83 |
In residual solution | 0.04902 | 0.0130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brlek, I.; Ludaš, A.; Sutlović, A. Synthesis and Spectrophotometric Analysis of Microcapsules Containing Immortelle Essential Oil. Molecules 2021, 26, 2390. https://doi.org/10.3390/molecules26082390
Brlek I, Ludaš A, Sutlović A. Synthesis and Spectrophotometric Analysis of Microcapsules Containing Immortelle Essential Oil. Molecules. 2021; 26(8):2390. https://doi.org/10.3390/molecules26082390
Chicago/Turabian StyleBrlek, Iva, Anja Ludaš, and Ana Sutlović. 2021. "Synthesis and Spectrophotometric Analysis of Microcapsules Containing Immortelle Essential Oil" Molecules 26, no. 8: 2390. https://doi.org/10.3390/molecules26082390
APA StyleBrlek, I., Ludaš, A., & Sutlović, A. (2021). Synthesis and Spectrophotometric Analysis of Microcapsules Containing Immortelle Essential Oil. Molecules, 26(8), 2390. https://doi.org/10.3390/molecules26082390