Sarracenia alata (Alph.Wood) Alph.Wood Microcuttings as a Source of Volatiles Potentially Responsible for Insects’ Respond
Abstract
:1. Introduction
2. Results
2.1. Efficiency of New Shoots Regeneration after I and II Passage
2.2. Chemical Composition
2.3. Bioassay with Plants
2.4. Bioassay with Pyridine
3. Discussion
4. Materials and Methods
4.1. Optimization of Micropropagation of Sarracenia alata
4.1.1. Induction and Stabilisation of Sarracenia alata In Vitro Culture
4.1.2. PGRs Influence on Sarracenia alata Multiplication
4.2. Chemical Analysis
4.3. Bioassay with Insects
4.3.1. Bioassay with Plants
4.3.2. Bioassays with Pyridine
4.3.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- McPherson, S.; Schnell, D.E. Sarraceniaceae of North America; Redfern Natural History Productions: Poole, Dorset, UK, 2011; ISBN 0955891868. [Google Scholar]
- Stephens, J.D.; Rogers, W.L.; Heyduk, K.; Cruse-Sanders, J.M.; Determann, R.O.; Glenn, T.C.; Malmberg, R.L. Resolving phylogenetic relationships of the recently radiated carnivorous plant genus Sarracenia using target enrichment. Mol. Phylogenet. Evol. 2015, 85, 76–87. [Google Scholar] [CrossRef]
- Zellmer, A.J.; Hanes, M.M.; Hird, S.M.; Carstens, B.C. Deep phylogeographic structure and environmental differentiation in the carnivorous plant Sarracenia alata. Syst. Biol. 2012, 61, 763–777. [Google Scholar] [CrossRef] [Green Version]
- Catalouge of Life. Available online: https://www.catalogueoflife.org (accessed on 1 March 2021).
- Global Biodiversity Information Facility. Available online: www.gbif.org (accessed on 1 March 2021).
- Bayer, R.J.; Hufford, L.; Soltis, D.E. Phylogenetic relationships in Sarraceniaceae based on rbcL and ITS sequences. Syst. Bot. 1996, 21, 121–134. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species; Version 2020–2; IUCN: Cambridge, UK, 2020. [Google Scholar]
- Bres, O. New cultivars. Carniv. Plant Newsl. 2017, 46, 33–38. [Google Scholar]
- Muhammad, A.; Guerrero-Analco, J.A.; Martineau, L.C.; Musallam, L.; Madiraju, P.; Nachar, A.; Saleem, A.; Haddad, P.S.; Arnason, J.T. Antidiabetic compounds from Sarracenia purpurea used traditionally by the Eeyou Istchee Cree First Nation. J. Nat. Prod. 2012, 75, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Northcutt, C.; Davies, D.; Gagliardo, R.; Bucalo, K.; Determann, R.O.; Cruse-Sanders, J.M.; Pullman, G.S. Germination In vitro, Micropropagation, and Cryogenic Storage for Three Rare Pitcher Plants: Sarracenia oreophila (Kearney) Wherry (Federally Endangered), S. leucophylla Raf., and S. purpurea spp. venosa (Raf.) Wherry. HortScience 2012, 47, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Celep, E.; Akyüz, S.; İnan, Y.; Yesilada, E. Assessment of potential bioavailability of major phenolic compounds in Lavandula stoechas L. ssp. stoechas. Ind. Crops Prod. 2018, 118, 111–117. [Google Scholar] [CrossRef]
- Ştefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotti, H.; Gopalacharyulu, P.; Seppänen-Laakso, T.; Rischer, H. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia. PLoS ONE 2017, 12, e0171078. [Google Scholar] [CrossRef]
- Santos, D.I.; Saraiva, J.M.A.; Vicente, A.A.; Moldão-Martins, M. Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds and Nutrients; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128141748. [Google Scholar]
- Thilakarathna, S.H.; Vasantha Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef]
- De Freitas Queiroz Barros, H.D.; Maróstica Junior, M.R. Phenolic Compound Bioavailability Using In Vitro and In Vivo Models; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128147757. [Google Scholar]
- Gibson, T.C. Differential escape of insects from carnivorous plant traps. Am. Midl. Nat. 1991, 125, 55–62. [Google Scholar] [CrossRef]
- Jürgens, A.; El-Sayed, A.M.; Suckling, D.M. Do carnivorous plants use volatiles for attracting prey insects? Funct. Ecol. 2009, 23, 875–887. [Google Scholar] [CrossRef]
- Heil, M. Direct defense or ecological costs: Responses of herbivorous beetles to volatiles released by wild lima bean (Phaseolus lunatus). J. Chem. Ecol. 2004, 30, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Natale, D.; Mattiacci, L.; Hern, A.; Pasqualini, E.; Dorn, S. Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bull. Entomol. Res. 2003, 93, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, V. Olfactory behavior of Drosophila melanogaster. In Development and Neurobiology of Drosophila; Springer: Berlin/Heidelberg, Germany, 1980; pp. 361–371. [Google Scholar]
- Banasiuk, R.; Kawiak, A.; Królicka, A. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Biotechnol. J. Biotechnol. Comput. Biol. Bionanotechnol. 2012, 93, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Miclea, I.; Bernat, R. In vitro Multiplication of the Pitcher Plant Sarracenia Purpurea. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2018, 75, 134–136. [Google Scholar] [CrossRef]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; García-Garví, J.-M.; Carbonell-Barrachina, A.A.; Szumny, A. Determination of Various Drying Methods’ Impact on Odour Quality of True Lavender (Lavandula angustifolia Mill.) Flowers. Molecules 2019, 24, 2900. [Google Scholar] [CrossRef] [Green Version]
- Łyczko, J.; Masztalerz, K.; Lipan, L.; Iwiński, H.; Lech, K.; Carbonell-Barrachina, Á.A.; Szumny, A. Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile. Foods 2021, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Łyczko, J.; Piotrowski, K.; Kolasa, K.; Galek, R.; Szumny, A. Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition. Molecules 2020, 25, 2652. [Google Scholar] [CrossRef]
- Shebaby, W.; Saliba, J.; Faour, W.H.; Ismail, J.; El Hage, M.; Daher, C.F.; Taleb, R.I.; Nehmeh, B.; Dagher, C.; Chrabieh, E. In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. indica (Lam.). J. Ethnopharmacol. 2021, 270, 113743. [Google Scholar] [CrossRef]
- Nöfer, J.; Lech, K.; Figiel, A.; Szumny, A.; Carbonell-Barrachina, Á.A. The Influence of Drying Method on Volatile Composition and Sensory Profile of Boletus edulis. J. Food Qual. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gioffrè, G.; Ursino, D.; Labate, M.L.C.; Giuffrè, A.M. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): A review. Emir. J. Food Agric. 2020, 835–845. [Google Scholar] [CrossRef]
- Lasekan, O.; Juhari, N.H.; Pattiram, P.D. Headspace Solid-phase Microextraction Analysis of the Volatile Flavour Compounds of Roasted Chickpea (Cicer arietinum L). J. Food Process. Technol. 2011, 2. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.A.; Booth, W.E.; Charles, J.K. Aspects of Pitcher Morphology and Spectral Characteristics of Six Bornean Nepenthes Pitcher Plant Species: Implications for Prey Capture. Ann. Bot. 1999, 83, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Anholt, R.R.H.; Fanara, J.J.; Fedorowicz, G.M.; Ganguly, I.; Kulkarni, N.H.; Mackay, T.F.C.; Rollmann, S.M. Functional genomics of odor-guided behavior in Drosophila melanogaster. Chem. Senses 2001, 26, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, L.M. Feeding behavior of a plant: Differential prey capture in old and new leaves of the pitcher plant (Sarracenia purpurea). Am. Midl. Nat. 1981, 106, 352–359. [Google Scholar] [CrossRef]
- Cresswell, J.E. The morphological correlates of prey capture and resource parasitism in pitchers of the carnivorous plant Sarracenia purpurea. Am. Midl. Nat. 1993, 129, 35–41. [Google Scholar] [CrossRef]
- Delaney, K.J.; Breza-Boruta, B.; Lemańczyk, G.; Bocianowski, J.; Wrzesińska, D.; Kalka, I.; Piesik, D. Maize voc induction after infection by the bacterial pathogen, Pantoea ananatis, alters neighbouring plant VOC emissions. J. Plant Dis. Prot. 2015, 122, 125–132. [Google Scholar] [CrossRef]
- Skoczek, A.; Piesik, D.; Wenda-Piesik, A.; Buszewski, B.; Bocianowski, J.; Wawrzyniak, M. Volatile organic compounds released by maize following herbivory or insect extract application and communication between plants. J. Appl. Entomol. 2017, 141, 630–643. [Google Scholar] [CrossRef]
- Piesik, D.; Wenda-Piesik, A.; Krasińska, A.; Wrzesińska, D.; Delaney, K.J. Volatile organic compounds released by Rumex confertus following Hypera rumicis herbivory and weevil responses to volatiles. J. Appl. Entomol. 2016, 140, 308–316. [Google Scholar] [CrossRef]
- Piesik, D.; Bocianowski, J.; Sendel, S.; Krawczyk, K.; Kotwica, K. Beetle orientation responses of gastrophysa viridula and Gastrophysa polygoni (Coleoptera: Chrysomelidae) to a blend of synthetic volatile organic compounds. Environ. Entomol. 2020, 49, 1071–1076. [Google Scholar] [CrossRef]
- Starr, D.F.; Shaw, J.G. Pyridine as an attractant for the Mexican fruitfly. J. Econ. Entomol. 1944, 37, 760–763. [Google Scholar] [CrossRef]
- Davidson, M.M.; Butler, R.C.; Teulon, D.A.J. Pyridine compounds increase thrips (Thysanoptera: Thripidae) trap capture in an onion crop. J. Econ. Entomol. 2009, 102, 1468–1471. [Google Scholar] [CrossRef]
- Rojas, J.C.; Rios-Candelaria, E.; Cruz-López, L.; Santiesteban, A.; Bond-Compean, J.G.; Brindis, Y.; Malo, E.A. A reinvestigation of Brindley’s gland exocrine compounds of Rhodnius prolixus (Hemiptera: Reduviidae). J. Med. Entomol. 2002, 39, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piesik, D.; Wenda-Piesik, A. Sitophilus granarius responses to blends of five groups of cereal kernels and one group of plant volatiles. J. Stored Prod. Res. 2015, 62, 36–39. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Piesik, D.; Nowak, A.; Wawrzyniak, M. Tribolium confusum responses to blends of cereal kernels and plant volatiles. J. Appl. Entomol. 2016, 140, 558–563. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Piesik, D.; Buszewski, B. Do mated Tribolium confusum adults respond to blends of odors? Pol. J. Environ. Stud. 2017, 26, 447–452. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; Masztalerz, K.; Szumny, A. HS-SPME Analysis of True Lavender (Lavandula angustifolia Mill.) Leaves Treated by Various Drying Methods. Molecules 2019, 24, 764. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Dentification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Carol Stream, IL, USA, 2017; Volume 24, ISBN 9781932633214. [Google Scholar]
- Pettersson, J. An aphid sex attractant. Insect Syst. Evol. 1970, 1, 63–73. [Google Scholar] [CrossRef]
- Webster, B.; Bruce, T.; Dufour, S.; Birkemeyer, C.; Birkett, M.; Hardie, J.; Pickett, J. Identification of volatile compounds used in host location by the black bean aphid. J. Chem. Ecol. 2008, 34, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
Medium | Height of Plants | No. of Leaves | No. of New Shoots | No. of Roots | Length of Roots | Fresh Weight | Dry Weight | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Summary influence on analysed traits after subsequent passages | ||||||||||||||
I passage | 6.26 ± 0.10 | a * | 26.90 ± 0.82 | a | 5.81 ± 0.23 | a | 2.36 ± 0.17 | a | 0.99 ± 0.05 | b | 0.57 ± 0.02 | a | 0.07 ± 0.00 | a |
II passage | 6.68 ± 0.15 | b | 22.30 ± 0.77 | b | 3.96 ± 0.16 | b | 2.16 ± 0.14 | a | 1.17 ± 0.05 | a | 0.52 ± 0.00 | b | 0.07 ± 0.00 | a |
Summary effect of medium after subsequent passages | ||||||||||||||
⅓MS | 6.07 ± 0.34 | ab | 23.47 ± 1.78 | a | 4.08 ± 0.45 | ab | 3.58 ± 0.13 | a | 1.16 ± 0.11 | a | 0.31 ± 0.03 | c | 0.04 ± 0.00 | c |
⅓MS_0.5BAP + 0.3IAA | 6.55 ± 0.40 | ab | 23.50 ± 1.37 | a | 4.47 ± 0.29 | ab | 1.70 ± 0.16 | b | 1.01 ± 0.09 | a | 0.38 ± 0.02 | bc | 0.05 ± 0.00 | bc |
⅓MS_1BAP + 0.3IAA | 6.65 ± 0.33 | ab | 22.98 ± 1.47 | a | 4.32 ± 0.34 | ab | 1.99 ± 0.11 | b | 1.11 ± 0.10 | a | 0.56 ± 0.01 | ab | 0.07 ± 0.00 | ab |
⅓MS_1.5BAP + 0.3IAA | 6.70 ± 0.23 | ab | 27.10 ± 1.92 | a | 5.37 ± 0.45 | ab | 1.74 ± 0.15 | b | 1.23 ± 0.09 | a | 0.65 ± 0.02 | a | 0.08 ± 0.00 | a |
⅓MS_2BAP + 0.3IAA | 6.19 ± 0.19 | ab | 26.86 ± 2.15 | a | 5.84 ± 0.42 | a | 2.11 ± 0.11 | b | 1.04 ± 0.10 | a | 0.59 ± 0.04 | a | 0.08 ± 0.00 | a |
⅓MS_2.5BAP + 0.3IAA | 7.12 ± 0.20 | a | 26.00 ± 0.98 | a | 5.26 ± 0.39 | ab | 1.79 ± 0.08 | b | 0.95 ± 0.08 | a | 0.71 ± 0.04 | a | 0.09 ± 0.00 | a |
⅓MS_3BAP + 0.3IAA | 6.11 ± 0.20 | ab | 26.16 ± 1.83 | a | 5.47 ± 0.50 | ab | 1.57 ± 0.18 | b | 0.93 ± 0.00 | a | 0.66 ± 0.01 | a | 0.09 ± 0.00 | a |
⅓MS_2BAP | 6.77 ± 0.21 | ab | 23.72 ± 1.46 | a | 5.37 ± 0.36 | ab | 1.72 ± 0.04 | b | 0.96 ± 0.06 | a | 0.64 ± 0.02 | a | 0.08 ± 0.00 | a |
⅓MS_0.3IAA | 6.02 ± 0.23 | b | 22.10 ± 1.48 | a | 3.95 ± 0.35 | b | 4.20 ± 0.04 | a | 1.27 ± 0.10 | a | 0.37 ± 0.01 | c | 0.05 ± 0.00 | c |
Initial Number of Insects | After 2 Days of Incubation | After 4 Days of Incubation | |
---|---|---|---|
Drosophila hydei | 30 | 26 | 30 |
Acyrthosiphon pisum | 50 | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łyczko, J.; Twardowski, J.P.; Skalny, B.; Galek, R.; Szumny, A.; Gruss, I.; Piesik, D.; Sendel, S. Sarracenia alata (Alph.Wood) Alph.Wood Microcuttings as a Source of Volatiles Potentially Responsible for Insects’ Respond. Molecules 2021, 26, 2406. https://doi.org/10.3390/molecules26092406
Łyczko J, Twardowski JP, Skalny B, Galek R, Szumny A, Gruss I, Piesik D, Sendel S. Sarracenia alata (Alph.Wood) Alph.Wood Microcuttings as a Source of Volatiles Potentially Responsible for Insects’ Respond. Molecules. 2021; 26(9):2406. https://doi.org/10.3390/molecules26092406
Chicago/Turabian StyleŁyczko, Jacek, Jacek Piotr Twardowski, Bartłomiej Skalny, Renata Galek, Antoni Szumny, Iwona Gruss, Dariusz Piesik, and Sebastian Sendel. 2021. "Sarracenia alata (Alph.Wood) Alph.Wood Microcuttings as a Source of Volatiles Potentially Responsible for Insects’ Respond" Molecules 26, no. 9: 2406. https://doi.org/10.3390/molecules26092406
APA StyleŁyczko, J., Twardowski, J. P., Skalny, B., Galek, R., Szumny, A., Gruss, I., Piesik, D., & Sendel, S. (2021). Sarracenia alata (Alph.Wood) Alph.Wood Microcuttings as a Source of Volatiles Potentially Responsible for Insects’ Respond. Molecules, 26(9), 2406. https://doi.org/10.3390/molecules26092406