Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Sample Preparation
4.3. Elemental Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Al-fartusie, F.S.; Mohssan, S.N. Essential Trace Elements and Their Vital Roles in Human Body. Indian J. Adv. Chem. Sci. 2017, 5, 127–136. [Google Scholar]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Quintaes, K.D.; Diez-Garcia, R.W. The importance of minerals in the human diet. Handbook of Mineral Elements in Food; John Wiley & Sons: New York, NY, USA, 2015; pp. 1–21, (Wiley Online Books). [Google Scholar]
- Gupta, S.C. Sources and Deficiency Diseases of Mineral Nutrients in Human Health and Nutrition: A Review. Pedosphere 2014, 24, 13–38. [Google Scholar] [CrossRef]
- Stein, A.J. Global impacts of human mineral malnutrition. Plant. Soil 2010, 335, 133–154. [Google Scholar] [CrossRef]
- Verkaik-Kloosterman, J.; McCann, M.; Hoekstra, J.; Verhagen, H. Vitamins and minerals: Issues associated with too low and too high population intakes. Food Nutr. Res. 2012, 56, 5728. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Matés, J.M.; Segura, J.A.; Alonso, F.J.; Márquez, J. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic. Biol. Med. 2010, 49, 1328–1341. [Google Scholar] [CrossRef]
- Cicero, C.E.; Mostile, G.; Vasta, R.; Rapisarda, V.; Signorelli, S.S.; Ferrante, M.; Zappio, M.; Nicoletti, A. Metals and neurodegenerative diseases. A systematic review. Env. Res. 2017, 159, 82–94. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017, 412, 1–20. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M. Bee Products-Chemical and Biological Properties; Springer International Publishing: New York, NY, USA, 2017; pp. 1–306. [Google Scholar]
- Fratellone, P.M.; Tsimis, F.; Fratellone, G. Apitherapy Products for Medicinal Use. J. Altern. Complement Med. 2016, 22, 1020–1022. [Google Scholar] [CrossRef] [PubMed]
- Rzepecka-Stojko, A.; Stojko, J.; Jasik, K.; Buszman, E. Anti-Atherogenic Activity of Polyphenol-Rich Extract from Bee Pollen. Nutrients 2017, 9, 1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A. Composition and functional properties of propolis (bee glue): A review. Saudi. J. Biol. Sci 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bęben, K.; Antosiewicz, B.; et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef] [PubMed]
- Pobiega, K.; Kraśniewska, K.; Derewiaka, D.; Gniewosz, M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J. Food Sci. Technol. 2019, 56, 5386–5395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gucwa, K.; Kusznierewicz, B.; Milewski, S.; Van Dijck, P.; Szweda, P. Antifungal Activity and Synergism with Azoles of Polish Propolis. Pathogens 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pobiega, K.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019, 24, 2965. [Google Scholar] [CrossRef] [Green Version]
- Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol Res. 2016, 192, 130–141. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wang, K.; Zhang, Y.-Z.; Zheng, Y.-F.; Hu, F.-L. In Vitro Anti-Inflammatory Effects of Three Fatty Acids from Royal Jelly. Yin, J.; editor. Mediat. Inflamm 2016, 2016, 3583684. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Kouzuma, Y.; Yonekura, M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem 2009, 113, 238–245. [Google Scholar] [CrossRef]
- Nikokar, M.; Shirzad, M.; Kordyazdi, R.; Shahinfard, N. Does Royal jelly affect tumor cells? J. Herbmed Pharm. 2013, 2, 45–48. [Google Scholar]
- Taulavuori, K.; Julkunen-Tiitto, R.; Hyöky, V.; Taulavuori, E. Blue Mood for Superfood. Nat. Prod. Commun 2013, 8, 1934578X1300800627. [Google Scholar] [CrossRef] [Green Version]
- Lau, P.; Bryant, V.; Ellis, J.D.; Huang, Z.Y.; Sullivan, J.; Schmehl, D.R.; Cabrera, A.R.; Rangel, J. Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States. PLoS ONE 2019, 14, 0217294. [Google Scholar] [CrossRef]
- Sabatini, A.G. Quality and standardization of Royal Jelly. J. Apiproduct Apimedical Sci 2009, 1, 16–21. [Google Scholar] [CrossRef]
- Chaillou, L.L.; Nazareno, M.A. Chemical variability in propolis from Santiago del Estero, Argentina, related to the arboreal environment as the sources of resins. J. Sci. Food Agric. 2009, 89, 978–983. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Sheshnitsan, S.S.; Kapitalchuk, M.V.; Erdenotsogt, E. Variations of chemical element composition of bee and beekeeping products in different taxons of the biosphere. Ecol. Indic. 2016, 66, 452–457. [Google Scholar] [CrossRef]
- Morgano, M.A.; Teixeira Martins, M.C.; Rabonato, L.C.; Milani, R.F.; Yotsuyanagi, K.; Rodriguez-Amaya, D.B. A comprehensive investigation of the mineral composition of Brazilian bee pollen: Geographic and seasonal variations and contribution to human diet. J. Braz. Chem. Soc. 2012, 23, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.; Carreck, N.L. Honey bee colony losses. J. Apic. Res. 2010, 49, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Feldhaar, H.; Otti, O. Pollutants and Their Interaction with Diseases of Social Hymenoptera. Insects 2020, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- Kokot, Z.J.; Matysiak, J. Inductively coupled plasma mass spectrometry determination of metals in honeybee venom. J. Pharm. Biomed. Anal. 2008, 48, 955–959. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Adugna, E.; Hymete, A.; Birhanu, G.; Ashenef, A. Determination of some heavy metals in honey from different regions of Ethiopia. Yildiz, F.; editor. Cogent. Food Agric. 2020, 6, 1764182. [Google Scholar] [CrossRef]
- Lazor, P.; Tomas, J.; Toth, T.; Toth, J.; Ceryova, S. Monitoring of air pollution and atmospheric deposition of heavy metals by analysis of honey. J. Microbiol Biotechnol Food Sci. 2012, 1, 522–533. [Google Scholar]
- Bazeyad, A.Y.; Al-Sarar, A.S.; Rushdi, A.I.; Hassanin, A.S.; Abobakr, Y. Levels of heavy metals in a multifloral Saudi honey. Env. Sci. Pollut. Res. 2019, 26, 3946–3953. [Google Scholar] [CrossRef]
- Temizer, İ.K.; Güder, A.; Temel, F.A.; Avcl, E. A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments. Env. Monit. Assess. 2018, 190, 462. [Google Scholar] [CrossRef]
- Altunatmaz, S.S.; Tarhan, D.; Aksu, F.; Barutçu, U.B.; Or, M.E. Mineral element and heavy metal (Cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Sci. Technol. 2017, 37, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Formicki, G.; Greń, A.; Stawarz, R.; Zyśk, B.; Gał, A. Metal Content in Honey, Propolis, Wax, and Bee Pollen and Implications for Metal Pollution Monitoring. Pol. J. Env. Stud. 2013, 22, 99–106. [Google Scholar]
- Kostić, A.Z.; Pešić, M.B.; Mosić, M.; Dojèinović, B.P.; Natić, M.M.; Trifković, J.D. Mineral content of bee pollen from Serbia. Arh Hig. Rada. Toksikol 2015, 66, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Somerville, D.C.; Nicol, H.I. Mineral content of honeybee-collected pollen from southern New South Wales. Aust. J. Exp. Agric. 2002, 42, 1131–1136. [Google Scholar] [CrossRef]
- Liolios, V.; Tananaki, C.; Papaioannou, A.; Kanelis, D.; Rodopoulou, M.A.; Argena, N. Mineral content in monofloral bee pollen: Investigation of the effect of the botanical and geographical origin. J. Food Meas. Charact. 2019, 13, 1674–1682. [Google Scholar] [CrossRef]
- Roman, A.; Madras-Majewska, B.; Popiela-Pleban, E. Comparative study of selected toxic elements in propolis and honey. J. Apic. Sci. 2011, 55, 97–106. [Google Scholar]
- Finger, D.; Filho, I.K.; Torres, Y.R.; Quináia, S.P. Propolis as an indicator of environmental contamination by metals. Bull. Env. Contam. Toxicol 2014, 92, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Hodel, K.V.S.; Machado, B.A.S.; Santos, N.R.; Costa, R.G.; Menezes-Filho, J.A.; Umsza-Guez, M.A. Metal Content of Nutritional and Toxic Value in Different Types of Brazilian Propolis. Sci. World. J. 2020, 2020, 4395496. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Bermejo, F.J.O. Element content of propolis collected from different areas of South Spain. Env. Monit. Assess. 2013, 185, 6035–6047. [Google Scholar] [CrossRef]
- Popov, B.B.; Hristova, V.K.; Presilski, S.; Shariati, M.A.; Najman, S. Assessment of heavy metals in propolis and soil from the Pelagonia region, republic of Macedonia. Maced, J. Chem. Chem. Eng. 2017, 36, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Stocker, A.; Schramel, P.; Kettrup, A.; Bengsch, E. Trace and mineral elements in royal jelly and homeostatic effects. J. Trace Elem. Med. Biol 2005, 19, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee pollen: Chemical composition and therapeutic application. Evid. Based Complement. Altern. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef] [Green Version]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Tosic, S.; Stojanovic, G.; Mitic, S.; Pavlovic, A.; Alagic, S. Mineral composition of selected serbian propolis samples. J. Apic. Sci. 2017, 61, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Demigné, C.; Sabboh, H.; Rémésy, C.; Meneton, P. Protective Effects of High Dietary Potassium: Nutritional and Metabolic Aspects. J. Nutr. 2004, 134, 2903–2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, B.F.; Clegg, D.J. Achieving the Benefits of a High-Potassium, Paleolithic Diet, Without the Toxicity. Mayo. Clin. Proc. 2016, 91, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Guideline: Potassium Intake for Adults and Children; WHO Press: Geneva, Switzerland, 2012.
- Adrogué, H.J.; Madias, N.E. The Impact of Sodium and Potassium on Hypertension Risk. Semin. Nephrol. 2014, 34, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Kraft, M.D. Phosphorus and Calcium. Nutr Clin. Pr. 2015, 30, 21–33. [Google Scholar] [CrossRef]
- Loughrill, E.; Wray, D.; Christides, T.; Zand, N. Calcium to phosphorus ratio, essential elements and vitamin D content of infant foods in the UK: Possible implications for bone health. Matern. Child. Nutr. 2017, 13, 12368. [Google Scholar] [CrossRef] [Green Version]
- Bazydlo, L.A.L.; Needham, M.; Harris, N.S. Calcium, Magnesium, and Phosphate. Lab. Med. 2014, 45, 44–50. [Google Scholar] [CrossRef]
- Sun, M.; Wu, X.; Yu, Y.; Wang, L.; Xie, D.; Zhang, Z.; Chen, L.; Lu, A.; Zhang, G.; Li, F. Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Front. Cell. Dev. Biol. 2020, 8, 576110. [Google Scholar] [CrossRef]
- Gutiérrez, O.M. Sodium- and phosphorus-based food additives: Persistent but surmountable hurdles in the management of nutrition in chronic kidney disease. Adv. Chronic. Kidney Dis. 2013, 20, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, O.M.; Luzuriaga-McPherson, A.; Lin, Y.; Gilbert, L.C.; Ha, S.-W.; Beck, G.R., Jr. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism. J. Clin. Endocrinol Metab. 2015, 100, 4264–4271. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.S.; Uribarri, J. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am. J. Clin. Nutr. 2013, 98, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 2002, 7, 22–44. [Google Scholar]
- Hewlings, S.; Kalman, D. Sulfur and Human Health. Ec. Nutr. 2019, 14, 785–791. [Google Scholar]
- Białek, M.; Zyska, A. The Biomedical Role of Zinc in the Functioning of the Human Organism. Pol. J. Public Heal. 2014, 124, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Penny, M.E. Zinc Supplementation in Public Health. Ann. Nutr. Metab. 2013, 62, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Mamtani, M.; Dibley, M.J.; Badhoniya, N.; Kulkarni, H. Therapeutic Value of Zinc Supplementation in Acute and Persistent Diarrhea: A Systematic Review. PLoS ONE 2010, 5, 10386. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Moxey, A.; Nowak, G.; Vashum, K.; Bailey, K.; McEvoy, M. The efficacy of zinc supplementation in depression: Systematic review of randomized controlled trials. J. Affect. Disord. 2012, 136, 31–39. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Rink, L. The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Front. Immunol. 2020, 11, 1712. [Google Scholar] [CrossRef]
- Serra Bonvehí, J.; Escolà Jordà, R. Nutrient Composition and Microbiological Quality of Honeybee-Collected Pollen in Spain. J. Agric. Food Chem. 1997, 45, 725–732. [Google Scholar] [CrossRef]
- Milic, S.; Mikolasevic, I.; Orlic, L.; Devcic, E.; Starcevic-Cizmarevic, N.; Stimac, D.; Kapovic, M.; Ristic, S. The Role of Iron and Iron Overload in Chronic Liver Disease. Med. Sci. Monit. 2016, 22, 2144–2151. [Google Scholar] [CrossRef] [Green Version]
- Elstrott, B.; Khan, L.; Olson, S.; Raghunathan, V.; DeLoughery, T.; Shatzel, J.J. The role of iron repletion in adult iron deficiency anemia and other diseases. Eur. J. Haematol. 2020, 104, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Fretham, S.J.B.; Carlson, E.S.; Georgieff, M.K. The Role of Iron in Learning and Memory. Adv. Nutr. 2011, 2, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Attar, T. A mini-review on importance and role of trace elements in the human organism. Chem. Rev. Lett. 2020, 3, 117–130. [Google Scholar]
- Dutta, T.K.; Mukta, V. Trace elements. Med. Updat. 2012, 22, 353–357. [Google Scholar]
- Pohl, P.; Dzimitrowicz, A.; Lesniewicz, A.; Welna, M.; Szymczycha-Madeja, A.; Cyganowski, P.; Jamroz, P. Room temperature solvent extraction for simple and fast determination of total concentration of Ca, Cu, Fe, Mg, Mn, and Zn in bee pollen by FAAS along with assessment of the bioaccessible fraction of these elements using in vitro gastrointestinal digestion. J. Trace Elem. Med. Biol. 2020, 60, 126479. [Google Scholar] [CrossRef]
- Hladun, K.R.; Di, N.; Liu, T.X.; Trumble, J.T. Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.). Environ. Toxicol. Chem. 2016, 35, 322–329. [Google Scholar] [CrossRef]
- Paz, S. Aluminium Exposure through the Diet. Food Sci. Nutr. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Verstraeten, S.V.; Aimo, L.; Oteiza, P.I. Aluminium and lead: Molecular mechanisms of brain toxicity. Arch. Toxicol. 2008, 82, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Bondy, S.C. Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 2014, 315, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Malluche, H.H. Aluminium and bone disease in chronic renal failure. Nephrol. Dial. Transplant. 2002, 17, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, E. Sources of lead exposure in various countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef]
- Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci. 2017, 54, 506–528. [Google Scholar] [CrossRef]
- Bielicka, A.; Bojanowska, I.; Wiśniewski, A. Two Faces of Chromium - Pollutant and Bioelement. Polish. J. Environ. Stud. 2005, 14, 5–10. [Google Scholar]
- Pavesi, T.; Moreira, J.C. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol 2020, 40, 1183–1197. [Google Scholar] [CrossRef] [PubMed]
- Achmad, R.T.; Auerkari, E.I. Effects of chromium on human body. Annu. Res. Rev. Biol. 2017, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Ayuso, E.; Abad-Valle, P. Trace element levels in an area impacted by old mining operations and their relationship with beehive products. Sci Total Environ. 2017, 599–600, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Conti, M.E.; Marconi, E.; Massimi, L.; Canepari, S. Effectiveness of Different Sample Treatments for the Elemental Characterization of Bees and Beehive Products. Molecules 2020, 25, 4263. [Google Scholar] [CrossRef]
- AL-Alam, J.; Chbani, A.; Faljoun, Z.; Millet, M. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—a review. Environ. Sci. Pollut. Res. 2019, 26, 9391–9408. [Google Scholar] [CrossRef]
- Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; Larhantec, M.; Delbac, F.; Pouliquen, H. Bees, honey and pollen as sentinels for lead environmental contamination. Environ. Pollut. 2012, 170, 254–259. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Stahl, T.; Taschan, H.; Brunn, H. Aluminium content of selected foods and food products. Environ. Sci. Eur. 2011, 23, 37. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yang, L.; Xu, S.; Chen, Y.; Liu, B.; Li, Z.; Jiang, C. Efficient removal of hexavalent chromium from water by an adsorption-reduction mechanism with sandwiched nanocomposites. RSC. Adv. 2018, 8, 15087–15093. [Google Scholar] [CrossRef] [Green Version]
- Chauzat, M.-P.; Laurent, M.; Ribiere-Chabert, M.; Hendrikx, P. A Pan-European Epidemiological Study on Honeybee Colony Losses 2012–2014. 2016:44. Available online: https://ec.europa.eu/food/sites/food/files/animals/docs/la_bees_epilobee-report_2012-2014.pdf (accessed on 21 April 2021).
- vanEngelsdorp, D.; Evans, J.D.; Saegerman, C.; Mullin, C.; Haubruge, E.; Nguyen, B.K.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y. Colony Collapse Disorder: A Descriptive Study. PLoS ONE 2009, 4, 6481. [Google Scholar] [CrossRef]
- Stokstad, E. The Case of the Empty Hives. Science 2007, 316, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Roman, A. Levels of Copper, Selenium, Lead, and Cadmium in Forager Bees. Polish J. Environ. Stud. 2010, 19, 663–669. [Google Scholar]
- Zhelyazkova, I.; Atanasova, S.; Barakova, V.; Mihaylova, G. Content of heavy metals and metalloids in bees and bee products from areas with different degree of anthropogenic impact. Agric. Sci. Technol. 2010, 3, 136–142. [Google Scholar]
- Perugini, M.; Manera, M.; Grotta, L.; Abete, M.C.; Tarasco, R.; Amorena, M. Heavy Metal (Hg, Cr, Cd, and Pb) Contamination in Urban Areas and Wildlife Reserves: Honeybees as Bioindicators. Biol. Trace Elem. Res. 2011, 140, 170–176. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Molero, R.; Gaju, M.; van der Steen, J.; Porrini, C.; Ruiz, J.A. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee. Environ. Monit. Assess. 2015, 187, 651. [Google Scholar] [CrossRef]
- Gliga, O. The content of heavy metals in the bees body depending on location area of hives. Sci Pap. Anim. Sci. Ser. 2016, 65, 169–175. [Google Scholar]
- Gizaw, G.; Kim, Y.; Moon, K.; Choi, J.B.; Kim, Y.H.; Park, J.K. Effect of environmental heavy metals on the expression of detoxification-related genes in honey bee Apis. Mellifera Apidologie 2020, 51, 664–674. [Google Scholar] [CrossRef]
- Abdelhameed, K.M.A.; Khalifa, M.H.; Aly, G.F. Heavy metal accumulation and the possible correlation with acetylcholinesterase levels in honey bees from polluted areas of Alexandria, Egypt. African. Entomol. 2020, 28, 385–393. [Google Scholar]
- Burden, C.M.; Morgan, M.O.; Hladun, K.R.; Amdam, G.V.; Trumble, J.J.; Smith, B.H. Acute sublethal exposure to toxic heavy metals alters honey bee (Apis mellifera) feeding behavior. Sci. Rep. 2019, 9, 4253. [Google Scholar] [CrossRef]
- Di, N.; Hladun, K.R.; Zhang, K.; Liu, T.-X.; Trumble, J.T. Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers. Chemosphere 2016, 152, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkyilmaz, A.; Sevik, H.; Cetin, M.; Saleh, E.A.A. Changes in Heavy Metal Accumulation Depending on Traffic Density in Some Landscape Plants. Polish. J. Environ. Stud. 2018, 27, 2277–2284. [Google Scholar] [CrossRef]
- WIOŚ Kraków. Report on the State of the Environment in Lesser Poland in 2008. Kraków. 2009. Available online: https://www.euro.who.int/__data/assets/pdf_file/0005/95333/E92584.pdf (accessed on 21 April 2021).
- Skorbiłowicz, E.; Skorbiłowicz, M.; Ciesluk, I. Bees as bioindicators of environmental pollution with metals in an urban area. J. Ecol. Eng. 2018, 19, 229–234. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinforma 2019, 68, 86. [Google Scholar] [CrossRef] [PubMed]
Element | 1 | 2 | 3 | Year 2018 | 4 | 5 | 6 | Year 2019 | Years 2018 and 2019 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[mg/kg] | Mean + SD | %RSD | [mg/kg] | Mean + SD | %RSD | Mean + SD | %RSD | |||||
Ag | 0.18 | 0.28 | 0.04 | 0.17 ± 0.12 | 72.33 | 0.05 | 0.09 | 0.05 | 0.06 ± 0.02 | 36.46 | 0.12 ± 0.10 | 83.54 |
Al | 53.00 | 25.00 | 11.00 | 29.67 ± 21.39 | 72.09 | 7.20 | 9.60 | 51.00 | 22.60 ± 24.62 | 108.96 | 26.13 ± 20.99 | 80.31 |
As | 0.03 | 0.03 | 0.01 | 0.02 ± 0.01 | 48.42 | 0.01 | 0.01 | 0.03 | 0.02 ± 0.01 | 79.52 | 0.03 ± 0.01 | 57.55 |
Ba | 0.84 | 0.57 | 0.51 | 0.64 ± 0.18 | 27.47 | 0.25 | 0.65 | 1.00 | 0.63 ± 0.38 | 59.25 | 0.64 ± 0.26 | 41.17 |
Ca | 1800.00 | 1500.00 | 450.00 | 1250.00 ± 708.87 | 56.71 | 1500.00 | 1500.00 | 680.00 | 1226.67 ± 473.47 | 38.59 | 1238.33 ± 539.27 | 43.55 |
Cd | 0.02 | 0.11 | 0.03 | 0.05 ± 0.05 | 91.14 | 0.02 | 0.04 | 0.12 | 0.06 ± 0.06 | 96.25 | 0.06 ± 0.05 | 84.12 |
Co | 0.03 | 0.05 | 0.02 | 0.03 ± 0.02 | 49.01 | 0.04 | 0.05 | 0.04 | 0.042 ± 0.003 | 7.16 | 0.038 ± 0.012 | 30.99 |
Cr | 0.12 | 0.08 | 0.04 | 0.08 ± 0.04 | 50.00 | 0.04 | 0.03 | 0.11 | 0.06 ± 0.04 | 76.82 | 0.07 ± 0.04 | 57.54 |
Cu | 5.30 | 5.30 | 2.40 | 4.33 ± 1.67 | 38.64 | 5.40 | 5.70 | 4.40 | 5.17 ± 0.68 | 13.17 | 4.75 ± 1.23 | 25.91 |
Fe | 75.00 | 57.00 | 22.00 | 51.33 ± 26.95 | 52.50 | 24.00 | 49.00 | 68.00 | 47.00 ± 22.07 | 46.95 | 49.17 ± 22.16 | 45.07 |
K | 4500.00 | 4100.00 | 4300.00 | 4300.00 ± 200.00 | 4.65 | 3500.00 | 4600.00 | 4400.00 | 4166.67 ± 585.95 | 14.06 | 4233.33 ± 398.33 | 9.41 |
Mg | 1100.00 | 720.00 | 620.00 | 813.33 ± 253.25 | 31.15 | 980.00 | 1000.00 | 520.00 | 833.33 ± 271.54 | 32.58 | 823.33 ± 235.09 | 28.55 |
Mn | 16.00 | 21.00 | 13.00 | 16.67 ± 4.04 | 24.25 | 22.00 | 62.00 | 16.00 | 33.33 ± 25.07 | 75.02 | 25.00 ± 18.44 | 73.76 |
Mo | 0.31 | 0.29 | 0.16 | 0.25 ± 0.08 | 32.15 | 0.18 | 0.30 | 0.16 | 0.21 ± 0.08 | 35.49 | 0.23 ± 0.07 | 31.57 |
Na | 25.00 | 32.00 | 14.00 | 23.67 ± 9.07 | 38.34 | 24.00 | 24.00 | 32.00 | 26.67 ± 4.62 | 17.32 | 25.17 ± 6.65 | 26.41 |
Ni | 0.63 | 0.83 | 0.37 | 0.61 ± 0.23 | 37.81 | 0.66 | 0.74 | 0.67 | 0.69 ± 0.04 | 6.32 | 0.65 ± 0.15 | 23.81 |
P | 4600.00 | 4100.00 | 3200.00 | 3966.67 ± 709.46 | 17.89 | 4300.00 | 4600.00 | 3500.00 | 4133.33 ± 568.62 | 13.76 | 4050.00 ± 582.24 | 14.38 |
Pb | 0.17 | 0.19 | 0.12 | 0.16 ± 0.04 | 22.53 | 0.14 | 0.09 | 0.22 | 0.15 ± 0.07 | 45.35 | 0.15 ± 0.05 | 31.59 |
S | 2700.00 | 2600.00 | 1,800.00 | 2366.67 ± 493.29 | 20.84 | 2600.00 | 2700.00 | 1900.00 | 2400.00 ± 435.89 | 18.16 | 2383.33 ± 416.73 | 17.49 |
Sb | 0.007 | 0.013 | 0.005 | 0.008 ± 0.004 | 49.033 | 0.004 | 0.008 | 0.016 | 0.009 ± 0.006 | 64.58 | 0.009 ± 0.005 | 52.45 |
Se | 0.04 | 0.06 | 0.04 | 0.05±0.01 | 32.46 | 0.02 | 0.03 | 0.09 | 0.05 ± 0.04 | 82.58 | 0.05 ± 0.03 | 56.12 |
Si | 75.00 | 45.00 | 20.00 | 46.67 ± 27.54 | 59.01 | 8.50 | 22.00 | 71.00 | 33.83 ± 32.89 | 97.20 | 40.25 ± 28.02 | 69.63 |
V | 0.11 | 0.05 | 0.03 | 0.06 ± 0.045 | 70.84 | 0.05 | 0.02 | 0.11 | 0.06 ± 0.05 | 76.48 | 0.06 ± 0.04 | 65.88 |
Zn | 27.00 | 28.00 | 35.00 | 30.00 ± 4.36 | 14.53 | 26.00 | 31.00 | 41.00 | 32.67 ± 7.64 | 23.38 | 31.33 ± 5.75 | 18.35 |
Element | 1 | 2 | 3 | Year 2018 | 4 | 5 | 6 | Year 2019 | Years 2018 and 2019 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[mg/kg] | Mean + SD | %RSD | [mg/kg] | Mean + SD | %RSD | Mean + SD | %RSD | |||||
Ag | <QL | 0.01 | <QL | 0.003 ± 0.006 | 173.21 | <QL | 0.07 | <QL | 0.009 ± 0.016 | 173.21 | 0.009 ± 0.016 | 177.76 |
Al | 140.00 | 120.00 | 120.00 | 126.67 ± 11.55 | 9.12 | 93.00 | 97.00 | 69.00 | 86.33 ± 15.14 | 17.54 | 86.33 ± 15.14 | 23.63 |
As | 0.11 | 0.06 | 0.08 | 0.09 ± 0.03 | 26.98 | 0.06 | 0.06 | 0.05 | 0.056 ± 0.009 | 16.20 | 0.056 ± 0.01 | 32.40 |
Ba | 3.90 | 2.60 | 2.90 | 3.13 ± 0.68 | 21.72 | 1.50 | 1.80 | 1.70 | 1.67 ± 0.15 | 9.17 | 1.67 ± 0.15 | 38.19 |
Ca | 500.00 | 560.00 | 300.00 | 453.33 ± 136.14 | 30.03 | 300.00 | 220.00 | 360.00 | 293.33 ± 70.24 | 23.94 | 293.33 ± 70.24 | 34.99 |
Cd | 0.05 | 0.04 | 0.03 | 0.043 ± 0.01 | 23.26 | 0.03 | 0.08 | 0.03 | 0.032 ± 0.006 | 19.52 | 0.032 ± 0.0184 | 25.56 |
Co | 0.13 | 0.10 | 0.20 | 0.14 ± 0.05 | 35.80 | 0.10 | 0.10 | 0.08 | 0.09 ± 0.01 | 13.45 | 0.09 ± 0.01 | 36.95 |
Cr | 0.69 | 0.72 | 0.54 | 0.65 ± 0.10 | 14.84 | 0.28 | 0.41 | 0.25 | 0.31 ± 0.09 | 27.14 | 0.31 ± 0.09 | 41.84 |
Cu | 2.00 | 1.40 | 1.40 | 1.6 ± 0.35 | 21.65 | 3.00 | 1.10 | 0.98 | 1.69 ± 1.13 | 66.92 | 1.69 ± 1.13 | 45.62 |
Fe | 150.00 | 160.00 | 120.00 | 143.33 ± 20.81 | 14.52 | 97.00 | 84.00 | 76.00 | 85.67 ± 10.60 | 12.37 | 85.67 ± 10.60 | 30.45 |
K | 730.00 | 1100.00 | 470.00 | 766.67 ± 316.60 | 41.30 | 610.00 | 600.00 | 730.00 | 646.67 ± 72.34 | 11.19 | 646.67 ± 72.34 | 30.52 |
Mg | 110.00 | 140.00 | 76.00 | 108.67 ± 32.02 | 29.47 | 100.00 | 64.00 | 110.00 | 91.33 ± 24.19 | 26.49 | 91.33 ± 24.19 | 27.10 |
Mn | 7.90 | 8.30 | 6.40 | 7.533 ± 1.002 | 13.30 | 5.00 | 9.70 | 5.90 | 6.87 ± 2.49 | 36.33 | 6.87 ± 2.49 | 24.15 |
Mo | 0.07 | 0.13 | 0.04 | 0.08 ± 0.05 | 58.10 | 0.04 | 0.05 | 0.06 | 0.05 ± 0.01 | 26.01 | 0.05 ± 0.01 | 51.43 |
Na | 30.00 | 20.00 | 29.00 | 26.33 ± 5.51 | 20.91 | 23.00 | 20.00 | 14.00 | 19.00 ± 4.58 | 24.12 | 19.00 ± 4.58 | 26.71 |
Ni | 0.53 | 0.86 | 0.47 | 0.62 ± 0.21 | 33.87 | 0.25 | 0.40 | 0.36 | 0.34 ± 0.08 | 23.07 | 0.37 ± 0.08 | 43.92 |
P | 230.00 | 160.00 | 110.00 | 166.67 ± 60.28 | 36.17 | 300.00 | 190.00 | 210.00 | 233.33 ± 58.59 | 25.11 | 233.33 ± 58.59 | 32.25 |
Pb | 1.00 | 0.68 | 0.74 | 0.817 ± 0.17 | 21.09 | 0.50 | 0.60 | 0.44 | 0.51 ± 0.08 | 15.75 | 0.51 ± 0.08 | 30.30 |
S | 270.00 | 320.00 | 160.00 | 250 ± 81.86 | 32.74 | 180.00 | 200.00 | 220.00 | 200.00 ± 20.00 | 10.00 | 200.00 ± 20.00 | 26.63 |
Sb | 0.04 | 0.04 | 0.05 | 0.042 ± 0.002 | 5.46 | 0.04 | 0.03 | 0.08 | 0.031 ± 0.005 | 17.07 | 0.031 ± 0.005 | 19.64 |
Se | 0.08 | 0.05 | 0.04 | 0.057 ± 0.0 | 37.96 | 0.03 | 0.05 | 0.04 | 0.034 ± 0.008 | 19.87 | 0.038 ± 0.008 | 37.12 |
Si | 170.00 | 160.00 | 140.00 | 156.677 ± 15.28 | 9.75 | 97.00 | 110.00 | 96.00 | 101.00 ± 7.81 | 7.73 | 101 ± 7.815 | 25.12 |
V | 0.39 | 0.27 | 0.26 | 0.317 ± 0.07 | 23.59 | 0.20 | 0.22 | 0.15 | 0.19 ± 0.04 | 18.98 | 0.19 ± 0.04 | 32.95 |
Zn | 19.00 | 12.00 | 11.00 | 14 ± 4.36 | 31.13 | 15.00 | 13.00 | 12.00 | 13.33 ± 1.53 | 11.46 | 13.33 ± 1.53 | 21.54 |
Element | Pollen 2018 vs. 2019 | Propolis 2018 vs. 2019 | Pollen vs. Propolis |
---|---|---|---|
p Value | |||
Ag | 0.21856 | NA * | 0.00508 |
Al | 0.72650 | 0.02142 | 0.00015 |
As | 0.65361 | 0.10144 | 0.00169 |
Ba | 0.97911 | 0.02194 | 0.00430 |
C | 0.96446 | 0.14470 | 0.01307 |
Cd | 0.93551 | 0.18140 | 0.81018 |
Co | 0.34784 | 0.16963 | 0.00537 |
Cr | 0.56601 | 0.01054 | 0.00508 |
Cu | 0.46925 | 0.89808 | 0.00824 |
Fe | 0.83994 | 0.01289 | 0.00423 |
K | 0.72807 | 0.55699 | 0.00508 |
Mg | 0.93016 | 0.49600 | 0.00508 |
Mn | 0.31806 | 0.68966 | 0.00508 |
Mo | 0.56704 | 0.38378 | 0.00144 |
Na | 0.63668 | 0.15094 | 0.51126 |
Ni | 0.58672 | 0.09351 | 0.13817 |
P | 0.76675 | 0.24152 | 0.00508 |
Pb | 0.81004 | 0.05422 | 0.00123 |
S | 0.93433 | 0.36214 | 0.00508 |
Sb | 0.82629 | 0.02728 | 0.00003 |
Se | 1.00000 | 0.23406 | 0.92881 |
Si | 0.63166 | 0.00493 | 0.00052 |
V | 0.95890 | 0.06677 | 0.00133 |
Zn | 0.62719 | 0.81490 | 0.00021 |
Chemical Element | Bee Pollen | Propolis | Royal Jelly | |||
---|---|---|---|---|---|---|
Ag | 0.12 | 0.01 | 0.09 | Legend: | ||
Al | 26.13 | 106.50 | 1.00 | |||
As | 0.02 | 0.07 | 0.01 | the highest | ||
Ba | 0.64 | 2.40 | 0.12 | medium | ||
Ca | 1238.33 | 373.33 | 35.00 | the lowest | ||
Cd | 0.06 | 0.04 | 0.002 | |||
Co | 0.04 | 0.12 | 0.003 | |||
Cr | 0.07 | 0.48 | 0.02 | |||
Cu | 4.75 | 1.65 | 4.20 | |||
Fe | 49.17 | 114.50 | 3.90 | |||
K | 4233.33 | 706.67 | 970.00 | |||
Mg | 823.33 | 100.00 | 120.00 | |||
Mn | 25.00 | 7.20 | 0.73 | |||
Mo | 0.23 | 0.07 | 0.05 | |||
Na | 25.17 | 22.67 | 41.00 | |||
Ni | 0.65 | 0.48 | 0.25 | |||
P | 4050.00 | 200.00 | 1700.00 | |||
Pb | 0.15 | 0.66 | 0.07 | |||
S | 2383.33 | 225.00 | 1200.00 | |||
Sb | 0.01 | 0.04 | 0.003 | |||
Se | 0.05 | 0.05 | 0.02 | |||
Si | 40.25 | 128.83 | 0.88 | |||
V | 0.06 | 0.25 | 0.001 | |||
Zn | 31.33 | 13.67 | 21.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuszewska, E.; Klupczynska, A.; Maciołek, K.; Kokot, Z.J.; Matysiak, J. Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland. Molecules 2021, 26, 2415. https://doi.org/10.3390/molecules26092415
Matuszewska E, Klupczynska A, Maciołek K, Kokot ZJ, Matysiak J. Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland. Molecules. 2021; 26(9):2415. https://doi.org/10.3390/molecules26092415
Chicago/Turabian StyleMatuszewska, Eliza, Agnieszka Klupczynska, Krzysztof Maciołek, Zenon J. Kokot, and Jan Matysiak. 2021. "Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland" Molecules 26, no. 9: 2415. https://doi.org/10.3390/molecules26092415
APA StyleMatuszewska, E., Klupczynska, A., Maciołek, K., Kokot, Z. J., & Matysiak, J. (2021). Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland. Molecules, 26(9), 2415. https://doi.org/10.3390/molecules26092415