Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology of PGEs
2.2. Thermal Stability Analysis
2.3. Viscoelastic Properties of GEs
2.4. EIS and CV Analysis for Gel Electrolytes
2.5. Galvanostatic Charge-Discharge Studies
3. Materials and Methods
3.1. Preparation of fCNT, fCNT/GO Composite
3.2. Synthesis of Polyacrylamide Gel Polymer Electrolytes
3.3. Electrode Preparation and Device Assembly
3.4. Characterization and Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S.H.; Yang, X.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 2019, 37, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. Gel Polymer Electrolytes for Electrochemical Energy Storage. Adv. Energy Mater. 2018, 8, 1702184. [Google Scholar] [CrossRef]
- Tong, X.; Tian, Z.; Sun, J.; Tung, V.; Kaner, R.B.; Shao, Y. Self-healing flexible/stretchable energy storage devices. Mater. Today Commun. 2021. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. Flexible Energy-Storage Devices: Design Consideration and Recent Progress. Adv. Mater. 2014, 26, 4763–4782. [Google Scholar] [CrossRef] [PubMed]
- Wadekar, P.H.; Khose, R.V.; Pethsangave, D.A.; Some, S. The Effect of Bio-inspired Co-electrolytes for Enhancement of Electrochemical Properties of Supercapacitors. Energy Environ. Mater. 2020, 3, 429–435. [Google Scholar] [CrossRef]
- Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M.; Wu, T.; Wang, J.; Wang, R.; Feng, J.; Chen, T.; et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 2020, 19, 552–558. [Google Scholar] [CrossRef]
- Yang, W.; Ni, M.; Ren, X.; Tian, Y.; Li, N.; Su, Y.; Zhang, X. Graphene in Supercapacitor Applications. Curr. Opin. Colloid Interface Sci. 2015, 20, 416–428. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renew. Sustain. Energy Rev. 2018, 81, 1868–1878. [Google Scholar] [CrossRef]
- Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Suriyakumar, S.; Bhardwaj, P.; Grace, A.N.; Stephan, A.M. Role of Polymers in Enhancing the Performance of Electrochemical Supercapacitors: A Review. Batter. Supercaps 2021. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, F.; Yang, J.; Fan, L.-Z. Flexible solid-state self-charging supercapacitor based on symmetric electrodes and piezo-electrolyte. Chem. Eng. J. 2021, 406, 126825. [Google Scholar] [CrossRef]
- Park, Y.; Choi, H.; Kim, M.-C.; Tran, N.A.T.; Cho, Y.; Sohn, J.I.; Hong, J.; Lee, Y.-W. Effect of ionic conductivity in polymer-gel electrolytes containing iodine-based redox mediators for efficient, flexible energy storage systems. J. Ind. Eng. Chem. 2021, 94, 384–389. [Google Scholar] [CrossRef]
- Miao, L.; Song, Z.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Recent advances in carbon-based supercapacitors. Mater. Adv. 2020, 1, 945–966. [Google Scholar] [CrossRef]
- Nam, H.-S.; Kwon, J.S.; Kim, K.M.; Ko, J.M.; Kim, J.-D. Supercapacitive properties of a nanowire-structured MnO2 electrode in the gel electrolyte containing silica. Electrochim. Acta 2010, 55, 7443–7446. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Wang, D.; Niu, J.; Du, P.; Liu, J.; Liu, P. Enhanced electrochemical performance of polyaniline-based electrode for supercapacitors in mixed aqueous electrolyte. Electrochim. Acta 2020, 349, 136348. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Zhang, G.; Rawach, D.; Fu, C.; Wang, C.; Liu, X.; Dubois, M.; Lai, C.; Sun, S. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater. 2021, 34, 320–355. [Google Scholar] [CrossRef]
- Seol, M.-L.; Nam, I.; Sadatian, E.; Dutta, N.; Han, J.-W.; Meyyappan, M. Printable Gel Polymer Electrolytes for Solid-State Printed Supercapacitors. Materials 2021, 14, 316. [Google Scholar] [CrossRef]
- Lu, N.; Na, R.; Li, L.; Zhang, C.; Chen, Z.; Zhang, S.; Luan, J.; Wang, G. Rational Design of Antifreezing Organohydrogel Electrolytes for Flexible Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 1944–1951. [Google Scholar] [CrossRef]
- Lu, X.; Jiménez-Riobóo, R.J.; Leech, D.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from −35 to +65 °C. ACS Appl. Mater. Interfaces 2020, 12, 29181–29193. [Google Scholar] [CrossRef] [PubMed]
- Redda, H.G.; Nikodimos, Y.; Su, W.-N.; Chen, R.-S.; Jiang, S.-K.; Abrha, L.H.; Hagos, T.M.; Bezabh, H.K.; Weldeyohannes, H.H.; Hwang, B.J. Enhancing the electrochemical performance of a flexible solid-state supercapacitor using a gel polymer electrolyte. Mater. Today Commun. 2021, 26, 102102. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Dubal, D.P.; Lokhande, A.C.; Lokhande, C.D. Ionically conducting PVA–LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. J. Colloid Interface Sci. 2015, 460, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Sandhiya, M.; Vivekanand; Suresh Balaji, S.; Sathish, M. Na2MoO4-Incorporated Polymer Gel Electrolyte for High Energy Density Flexible Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 11368–11377. [Google Scholar] [CrossRef]
- Liu, J.; Khanam, Z.; Ahmed, S.; Wang, H.; Wang, T.; Song, S. A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J. Power Sources 2021, 488, 229461. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Sang, M.; Wang, X.; Zuo, D.; Xu, J.; Zhang, H. A supramolecular hydrogel electrolyte for high-performance supercapacitors. J. Energy Storage 2021, 33, 101931. [Google Scholar] [CrossRef]
- Zhu, W.-C.; He, P.-Q.; Tien, H.-C.; Liu, H.-L.; Chen, W.-C.; Lv, W.; Lee, W.-Y. Solvent-Enhanced Transparent Stretchable Polymer Nanocomposite Electrode for Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 2266–2274. [Google Scholar] [CrossRef]
- Ghasemi, M.; Fahimi, Z.; Moradlou, O.; Sovizi, M.R. Porous gel polymer electrolyte for the solid state metal oxide supercapacitor with a wide potential window. J. Taiwan Inst. Chem. Eng. 2021, 118, 223–231. [Google Scholar] [CrossRef]
- Wang, X.; Hao, X.; Xia, Y.; Liang, Y.; Xia, X.; Tu, J. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J. Membr. Sci. 2019, 582, 37–47. [Google Scholar] [CrossRef]
- Alipoori, S.; Mazinani, S.; Aboutalebi, S.H.; Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage 2020, 27, 101072. [Google Scholar] [CrossRef]
- Fu, X.; Li, T.; Qi, F.; Zhang, S.; Wen, J.; Shu, W.; Luo, P.; Zhang, R.; Hu, S.; Liu, Q. Designing high electrochemical surface area between polyaniline and hydrogel polymer electrolyte for flexible supercapacitors. Appl. Surf. Sci. 2020, 507, 145135. [Google Scholar] [CrossRef]
- Prasanth, R.; Shubha, N.; Hng, H.H.; Srinivasan, M. Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J. Power Sources 2014, 245, 283–291. [Google Scholar] [CrossRef]
- Hosseinioun, A.; Paillard, E. In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries. J. Membr. Sci. 2020, 594, 117456. [Google Scholar] [CrossRef]
- Al Saad, M.A.M.; Khider Salman, R.; Allah Ibrahim, N.M. Investigation of the useability of polyester protective cover for PVDF-based polymer gel electrolytes. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Quan, Y.; Chen, M.; Zhou, W.; Tian, Q.; Chen, J. High-Performance Anti-freezing Flexible Zn-MnO2 Battery Based on Polyacrylamide/Graphene Oxide/Ethylene Glycol Gel Electrolyte. Front. Chem. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Li, H.; Huang, Y.; Zhi, C. Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Mater. Sci. Eng. R Rep. 2020, 139, 100520. [Google Scholar] [CrossRef]
- Miao, H.; Chen, B.; Li, S.; Wu, X.; Wang, Q.; Zhang, C.; Sun, Z.; Li, H. All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. J. Power Sources 2020, 450, 227653. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Di Benedetto, G.; Zunino, J.L.; Mitra, S. Microwave synthesis of highly oxidized and defective carbon nanotubes for enhancing the performance of supercapacitors. Carbon 2015, 91, 103–113. [Google Scholar] [CrossRef]
- Karaman, E.S.; Wang, Z.; Chen, K.; Siddiqui, Z.; Cheng, Y.; Basuray, S.; Kumar, V.; Mitra, S. Functionalized carbon nanotube doped gel electrolytes with enhanced mechanical and electrical properties for battery applications. Mater. Chem. Phys. 2021, 264, 124448. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, F.; Zhang, L.; Zhang, T.; Huang, Y.; Chen, Y. A High-Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications. Adv. Funct. Mater. 2013, 23, 3353–3360. [Google Scholar] [CrossRef]
- Zhao, M.-Q.; Liu, X.-F.; Zhang, Q.; Tian, G.-L.; Huang, J.-Q.; Zhu, W.; Wei, F. Graphene/Single-Walled Carbon Nanotube Hybrids: One-Step Catalytic Growth and Applications for High-Rate Li-S Batteries. ACS Nano 2012, 6, 10759–10769. [Google Scholar] [CrossRef]
- Azizighannad, S.; Mitra, S. Controlled synthesis of reduced graphene oxide-carbon nanotube hybrids and their aqueous behavior. J. Nanoparticle Res. 2020, 22, 130. [Google Scholar] [CrossRef]
- Azizighannad, S.; Intrchom, W.; Mitra, S. Raman imaging of membrane fouling. Sep. Purif. Technol. 2020, 242, 116763. [Google Scholar] [CrossRef]
- Lu, C.; Chen, X. All-Temperature Flexible Supercapacitors Enabled by Antifreezing and Thermally Stable Hydrogel Electrolyte. Nano Lett. 2020, 20, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Selvanathan, V.; Yahya, R.; Alharbi, H.F.; Alharthi, N.H.; Alharthi, Y.S.; Ruslan, M.H.; Amin, N.; Akhtaruzzaman, M. Organosoluble starch derivative as quasi-solid electrolytes in DSSC: Unravelling the synergy between electrolyte rheology and photovoltaic properties. Sol. Energy 2020, 197, 144–153. [Google Scholar] [CrossRef]
- Han, Y.K.; Cheon, J.Y.; Kim, T.; Lee, S.B.; Kim, Y.D.; Jung, B.M. A chemically bonded supercapacitor using a highly stretchable and adhesive gel polymer electrolyte based on an ionic liquid and epoxy-triblock diamine network. RSC Adv. 2020, 10, 18945–18952. [Google Scholar] [CrossRef]
- Zulkifli, A.M.; Said, N.I.; Bakr Aziz, S.; Dannoun, E.M.; Hisham, S.; Shah, S.; Abu Bakar, A.; Zainal, Z.H.; Tajuddin, H.A.; Mohammed Hadi, J.; et al. Characteristics of Dye-Sensitized Solar Cell Assembled from Modified Chitosan-Based Gel Polymer Electrolytes Incorporated with Potassium Iodide. Molecules 2020, 25, 4115. [Google Scholar] [CrossRef]
- Yilmaz Erdogan, P.; Zengin, H.; Yavuz, A. Growth and cycling of polyaniline electrode in a deep eutectic solvent: A new electrolyte for supercapacitor applications. Solid State Ion. 2020, 352, 115362. [Google Scholar] [CrossRef]
- Eftekhari, A. The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 2018, 6, 2866–2876. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Shuja, A.; Ali, M.; Murtaza, I.; Meng, H. Evaluation of defects and current kinetics for aging analysis of PEDOT:PSS based supercapacitors. J. Energy Storage 2020, 28, 101243. [Google Scholar] [CrossRef]
- Duan, J.; Tang, Q.; Li, R.; He, B.; Yu, L.; Yang, P. Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells. J. Power Sources 2015, 284, 369–376. [Google Scholar] [CrossRef]
- Chen, Y.; Mitra, S. Fast Microwave-Assisted Purification, Functionalization and Dispersion of Multi-Walled Carbon Nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 5770–5775. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Z.; Yu, F.; Thakkar, M.; Mitra, S. Variation in chemical, colloidal and electrochemical properties of carbon nanotubes with the degree of carboxylation. J. Nanopart. Res. 2017, 19, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gel Electrolytes | Elastic Modulus (kPa) | |||
---|---|---|---|---|
PGE | 93.7 | 177.44 | 2.3 | 0.06 |
fCNT-PGE | 118.5 | 169.44 | 1.5 | 0.05 |
GO-PGE | 121.2 | 138.38 | 4.9 | 0.40 |
fCNT/GO-PGE | 130.8 | 91.39 | 4.3 | 0.43 |
Gel Electrolytes | Bulk Resistance Rb (Ω) | Ionic Conductivity σ (mS cm−1) | Phase (°) | Average Electrons LifeTime τ (mS) | Specific Capacitance (F·g−1) |
---|---|---|---|---|---|
PGE | 16 | 41 | −45 | 0.016 | 39.5 |
fCNT-PGE | 11 | 59 | −56 | 0.005 | 65.5 |
GO-PGE | 10 | 64 | −70 | 0.004 | 77.6 |
fCNT/GO-PGE | 5 | 132 | −83 | 0.001 | 83.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azizighannad, S.; Wang, Z.; Siddiqui, Z.; Kumar, V.; Mitra, S. Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors. Molecules 2021, 26, 2631. https://doi.org/10.3390/molecules26092631
Azizighannad S, Wang Z, Siddiqui Z, Kumar V, Mitra S. Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors. Molecules. 2021; 26(9):2631. https://doi.org/10.3390/molecules26092631
Chicago/Turabian StyleAzizighannad, Samar, Zhiqian Wang, Zain Siddiqui, Vivek Kumar, and Somenath Mitra. 2021. "Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors" Molecules 26, no. 9: 2631. https://doi.org/10.3390/molecules26092631
APA StyleAzizighannad, S., Wang, Z., Siddiqui, Z., Kumar, V., & Mitra, S. (2021). Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors. Molecules, 26(9), 2631. https://doi.org/10.3390/molecules26092631