Biocomputational Screening of Natural Compounds against Acetylcholinesterase
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Compound Library Preparation
3.2. Preparation of Receptor
3.3. Structure-Based Virtual Screening
3.4. Drug-Likeness Study and ADMET Profiling
3.5. Docking Simulations
3.6. Molecular Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
AD | Alzheimer’s disease |
AChE | Acetylcholinesterase enzyme |
ChEI | Cholinesterase inhibitor |
MD | Molecular dynamics |
RMSD | Root mean square deviation |
RMSF | Root mean square fluctuation |
Rg | Radius of gyration |
BBB | Blood–brain barrier |
CNS | Central nervous system |
References
- Ahmad, S.S.; Khan, H.; Danish Rizvi, S.M.; Ansari, S.A.; Ullah, R.; Rastrelli, L.; Mahmood, H.M.; Siddiqui, M.H. Computational Study of Natural Compounds for the Clearance of Amyloid-Betaeta: A Potential Therapeutic Management Strategy for Alzheimer’s Disease. Molecules 2019, 24, 3233. [Google Scholar] [CrossRef] [Green Version]
- Kandimalla, R.; Reddy, P.H. Therapeutics of Neurotransmitters in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1049–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, A.T.; Azam, M.; Rahman, S.; Almigeiti, A.M.S.; Choi, D.H.; Lee, E.J.; Haq, Q.M.R.; Choi, I. Perspective Insights into Disease Progression, Diagnostics, and Therapeutic Approaches in Alzheimer’s Disease: A Judicious Update. Front Aging Neurosci. 2017, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R., Jr.; Albert, M.S.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carrillo, M.C.; Thies, B.; Phelps, C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Dunkin, J.J.; Anderson-Hanley, C. Dementia caregiver burden: A review of the literature and guidelines for assessment and intervention. Neurology 1998, 51, S53–S60. [Google Scholar] [CrossRef] [PubMed]
- Hurd, M.D.; Martorell, P.; Delavande, A.; Mullen, K.J.; Langa, K.M. Monetary costs of dementia in the United States. N Engl. J. Med. 2013, 368, 1326–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langa, K.M.; Chernew, M.E.; Kabeto, M.U.; Herzog, A.R.; Ofstedal, M.B.; Willis, R.J.; Wallace, R.B.; Mucha, L.M.; Straus, W.L.; Fendrick, A.M. National estimates of the quantity and cost of informal caregiving for the elderly with dementia. J. Gen. Intern. Med. 2001, 16, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 2013, 80, 1778–1783. [Google Scholar] [CrossRef] [Green Version]
- Association, A.s. 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2019, 15, 321–387. [Google Scholar] [CrossRef]
- Bales, K.R.; Tzavara, E.T.; Wu, S.; Wade, M.R.; Bymaster, F.P.; Paul, S.M.; Nomikos, G.G. Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A beta antibody. J. Clin. Investig. 2006, 116, 825–832. [Google Scholar] [CrossRef]
- Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: A neurotransmitter correlate of consciousness? Trends Neurosci. 1999, 22, 273–280. [Google Scholar] [CrossRef]
- Spitzer, N.C. Activity-dependent neurotransmitter respecification. Nat Rev Neurosci 2012, 13, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Han, J.Y.; Besser, L.M.; Xiong, C.; Kukull, W.A.; Morris, J.C. Cholinesterase Inhibitors May Not Benefit Mild Cognitive Impairment and Mild Alzheimer Disease Dementia. Alzheimer Dis. Assoc. Disord. 2019, 33, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Summers, W.K. Tacrine, and Alzheimer’s treatments. J. Alzheimers Dis. 2006, 9, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Horak, M.; Holubova, K.; Nepovimova, E.; Krusek, J.; Kaniakova, M.; Korabecny, J.; Vyklicky, L.; Kuca, K.; Stuchlik, A.; Ricny, J.; et al. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 75, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Korabecny, J.; Spilovska, K.; Benek, O.; Musilek, K.; Soukup, O.; Kuca, K. [Tacrine and its derivatives in the therapy of Alzheimers disease]. Ceska Slov. Farm. 2012, 61, 210–221. [Google Scholar] [PubMed]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [Green Version]
- Dubey, T.; Chinnathambi, S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch. Biochem. Biophys. 2019, 676, 108153. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.S.; Sinha, M.; Ahmad, K.; Khalid, M.; Choi, I. Study of Caspase 8 Inhibition for the Management of Alzheimer’s Disease: A Molecular Docking and Dynamics Simulation. Molecules 2020, 25, 2071. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.S.; Khalid, M.; Kamal, M.A.; Younis, K. Study of Nutraceuticals and Phytochemicals for the Management of Alzheimer’s Disease: A Review. Curr. Neuropharmacol. 2021. [Google Scholar] [CrossRef]
- Lai, J.L.; Liu, Y.H.; Liu, C.; Qi, M.P.; Liu, R.N.; Zhu, X.F.; Zhou, Q.G.; Chen, Y.Y.; Guo, A.Z.; Hu, C.M. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways. Inflammation 2017, 40, 1–12. [Google Scholar] [CrossRef]
- Eisenbrand, G.; Hippe, F.; Jakobs, S.; Muehlbeyer, S. Molecular mechanisms of indirubin and its derivatives: Novel anticancer molecules with their origin in traditional Chinese phytomedicine. J. Cancer Res. Clin. Oncol. 2004, 130, 627–635. [Google Scholar] [CrossRef]
- Absalon, S.; Kochanek, D.M.; Raghavan, V.; Krichevsky, A.M. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J. Neurosci. 2013, 33, 14645–14659. [Google Scholar] [CrossRef]
- Wongsaroj, L.; Sallabhan, R.; Dubbs, J.M.; Mongkolsuk, S.; Loprasert, S. Cloning of Toluene 4-Monooxygenase Genes and Application of Two-Phase System to the Production of the Anticancer Agent, Indirubin. Mol. Biotechnol. 2015, 57, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Loh, S.H.; Tsai, Y.T.; Lee, C.Y.; Chang, C.Y.; Tsai, C.S.; Cheng, T.H.; Lin, C.I. Antiarrhythmic effects of dehydroevodiamine in isolated human myocardium and cardiomyocytes. J. Ethnopharmacol. 2014, 153, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Schramm, A.; Hamburger, M. Gram-scale purification of dehydroevodiamine from Evodia rutaecarpa fruits, and a procedure for selective removal of quaternary indoloquinazoline alkaloids from Evodia extracts. Fitoterapia 2014, 94, 127–133. [Google Scholar] [CrossRef]
- Hinsen, K. Analysis of domain motions by approximate normal mode calculations. Proteins 1998, 33, 417–429. [Google Scholar] [CrossRef]
- Tetko, I.V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.A.; Radchenko, E.V.; Zefirov, N.S.; Makarenko, A.S.; et al. Virtual computational chemistry laboratory—Design and description. J. Comput. Aided Mol. Des. 2005, 19, 453–463. [Google Scholar] [CrossRef]
- Schuster, D.; Laggner, C.; Langer, T. Why drugs fail—A study on side effects in new chemical entities. Curr. Pharm. Des. 2005, 11, 3545–3559. [Google Scholar] [CrossRef]
- Di, L.; Kerns, E.H. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Cacabelos, R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int. J. Mol. Sci. 2020, 21, 3059. [Google Scholar] [CrossRef]
- Fu, B.M. Transport Across the Blood-Brain Barrier. Adv. Exp. Med. Biol. 2018, 1097, 235–259. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silman, I.; Sussman, J.L. Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol. 2005, 5, 293–302. [Google Scholar] [CrossRef]
- Silman, I.; Sussman, J.L. Acetylcholinesterase: How is structure related to function? Chem. Biol. Interact. 2008, 175, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef]
- Shakil, S.; Khan, A. Interaction of 2009 CTX-M variants with drugs and inhibitors: A molecular modelling and docking study. J. Proteom. Bioinform. 2010, 3, 130–134. [Google Scholar] [CrossRef]
- Steiner, T.; Koellner, G. Hydrogen bonds with pi-acceptors in proteins: Frequencies and role in stabilizing local 3D structures. J. Mol. Biol. 2001, 305, 535–557. [Google Scholar] [CrossRef]
- Weiss, M.S.; Brandl, M.; Suhnel, J.; Pal, D.; Hilgenfeld, R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 2001, 26, 521–523. [Google Scholar] [CrossRef]
- Chen, Y.C. Beware of docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.C.; Lee, W.Y.; Chen, K.B.; Chan, Y.C.; Lee, C.C.; Chen, C.Y. In silico investigation of traditional Chinese medicine compounds to inhibit human histone deacetylase 2 for patients with Alzheimer’s disease. Biomed. Res. Int. 2014, 2014, 769867. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.C.; Chen, H.Y.; Chen, C.Y. Potential Protein Phosphatase 2A Agents from Traditional Chinese Medicine against Cancer. Evid Based Complement Alternat. Med. 2014, 2014, 436863. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.J.; Lee, C.C.; Chen, C.Y. Lead discovery for Alzheimer’s disease related target protein RbAp48 from traditional Chinese medicine. Biomed. Res. Int. 2014, 2014, 764946. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.H.; Ahmad, K.; Roy, S.; Ashraf, J.M.; Adil, M.; Siddiqui, M.H.; Khan, S.; Kamal, M.A.; Provaznik, I.; Choi, I. Computer Aided Drug Design: Success and Limitations. Curr. Pharm. Des. 2016, 22, 572–581. [Google Scholar] [CrossRef]
- Guruprasad, K.; Savitha, S.; Babu, A.V. Computational tools for the analysis of heteroatom groups and their neighbours in protein tertiary structure. Int. J. Biol. Macromol. 2005, 37, 35–41. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Akhtar, S.; Siddiqui, M.H.; Sayeed, U.; Ahmad, S.S.; Arif, J.M.; Khan, M.K. Identification of potential leads against 4-hydroxytetrahydrodipicolinate synthase from Mycobacterium tuberculosis. Bioinformation 2016, 12, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef] [Green Version]
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996, 261, 470–489. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Shaikh, S.; Ahmad, S.S.; Ansari, M.A.; Shakil, S.; Rizvi, S.M.; Shakil, S.; Imran, M.; Haneef, M.; Abuzenadah, A.M.; et al. Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: An enzoinformatics approach. CNS Neurol. Disord. Drug Targets 2014, 13, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit. 1996, 9, 1–5. [Google Scholar] [CrossRef]
- Abraham, M.; van der Spoel, D.; Lindahl, E.; Hess, B.; atGd, t. GROMACS User Manual Version 5.1.2; GROMACS Development Team: Uppsala, Sweden, 2016. [Google Scholar]
- Schuttelkopf, A.W.; van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Open Source Drug Discovery, C.; Lynn, A. g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
Compounds | ZINC ID | Molecular Weight | Lead-likeness Violations | Lipinski Violations | Binding Energy (kcal/mol) |
---|---|---|---|---|---|
Coronopilin | ZINC4026171 | 264.14 | 0 | 0 | −7.94 |
Rutaecarpine | ZINC898237 | 287.11 | 0 | 0 | −8.09 |
Chelerythrine | ZINC3872044 | 348.12 | 1 | 0 | −8.13 |
Chelidonine | ZINC30727894 | 353.13 | 1 | 0 | −8.08 |
Epiberberine | ZINC6017816 | 336.12 | 1 | 0 | −7.54 |
Indirubin | ZINC13597821 | 262.07 | 0 | 0 | −10.03 |
Dehydroevodiamine | ZINC13434330 | 301.12 | 0 | 0 | −9.00 |
Tacrine | ZINC19014866 | 198.12 | 1 | 0 | −5.90 |
Compound Properties | Indirubin | Dehydroevodiamine | |
---|---|---|---|
Lipophilicity | Log Po/w (iLOGP) | 2.13 | 2.88 |
Log Po/w (XLOGP3) | 2.73 | 2.11 | |
Log Po/w (WLOGP) | 2.81 | 0.24 | |
Log Po/w (MLOGP) | 1.70 | 2.78 | |
Log Po/w (SILICOS-IT) | 4.10 | 3.45 | |
Consensus Log Po/w | 2.69 | 2.29 | |
Water Solubility | Log S (ESOL) | −3.67 (Soluble) | −3.55 (Soluble) |
Log S (Ali) | −3.76 (Soluble) | −2.57 (Soluble) | |
Log S (SILICOS-IT) | −5.70 (Moderately soluble) | −5.60 (Moderately soluble) | |
Pharmacokinetics | Gastrointestinal absorption | High | High |
Blood–brain barrier permeant | Yes | No | |
P-gp substrate | No | No | |
CYP1A2 inhibitor | Yes | Yes | |
CYP2C19 inhibitor | No | No | |
CYP2C9 inhibitor | No | No | |
CYP2D6 inhibitor | Yes | No | |
CYP3A4 inhibitor | Yes | Yes | |
Log Kp (skin permeation) | −5.96 cm/s | −6.64 cm/s | |
Druglikeness | Lipinski | Yes; 0 violation | Yes; 0 violation |
Ghose | Yes | Yes | |
Veber | Yes | Yes | |
Egan | Yes | Yes | |
Muegge | Yes | Yes | |
Bioavailability Score | 0.55 | 0.55 | |
Medicinal Chemistry | PAINS | 0 alert | 0 alert |
Brenk | 0 alert | 0 alert | |
Lead-likeness | Yes | Yes | |
Synthetic accessibility | 2.84 | 3.83 |
Compounds | Hydrogen Bond | Hydrogen Bond Distance | Interacting Amino Acid Residues |
---|---|---|---|
Indirubin | Tyr133:OH-UNK1:C3 Tyr337:OH-UNK1:N12 His447:CD2-UNK1:O10 Tyr124:OH-UNK1 UNK1:H25-Trp86 UNK1:H26-Tyr337 | 3.279086 2.756860 3.239033 3.208647 4.083150 3.943169 | Trp86, Tyr124, Tyr133, Glu202, Tyr337, Phe338, Tyr341, and His447 |
Dehydroevodiamine | Tyr133:OH-UNK1:O6 UNK1:O10-His447:NE2 Tyr124:OH-UNK1 | 3.093207 3.296732 3.212351 | Gln71, Tyr72, Asp74, Trp86, Asn87, Gly120, Gly121, Tyr124, Ser125, Gly126, Tyr133, Glu202, Ser203, Phe297, Tyr337, Phe338, Tyr341, His447, Gly448, and Ile451 |
Tacrine | UNK1:H29-Glu202:OE1 | 2.30175 | Trp86, Gly120, Gly121, Gly122, Ser125, Gly126, Leu130, Tyr133, Glu202, Ser203, and Phe338 |
Compounds | Binding Energy (kcal/mol) | Inhibition Constant (μM) | Intermolecular Energy | Van der Waals’, ‘Hydrogen Bond’ and ‘Desolvation Energy’ | Electrostatic Energy |
---|---|---|---|---|---|
Indirubin | −10.03 | 4.36 | −7.31 | −7.33 | −0.02 |
Dehydroevodiamine | −9.00 | 4.25 | −7.50 | −7.46 | −0.05 |
Tacrine | −5.90 | 47.32 | −6.17 | −6.11 | −0.06 |
S.No. | Energy (kJ/mol) | ‘Indirubin–AChE’ Complex | ‘Dehydroevodiamine–AChE’ Complex |
---|---|---|---|
1. | Binding energy | −146.0+/−9.5 | −126.7+/−10.9 |
2. | Van der Waal energy | −177.0+/−8.4 | −159.4+/−9.1 |
3. | Electrostatic energy | −55.4+/−8.4 | −2.4+/−3.3 |
4. | Polar solvation energy | 101.8+/−10.1 | 50.4+/−7.6 |
5. | SASA energy | −15.4+/−0.71 | −15.3+/−0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.S.; Khan, M.B.; Ahmad, K.; Lim, J.-H.; Shaikh, S.; Lee, E.-J.; Choi, I. Biocomputational Screening of Natural Compounds against Acetylcholinesterase. Molecules 2021, 26, 2641. https://doi.org/10.3390/molecules26092641
Ahmad SS, Khan MB, Ahmad K, Lim J-H, Shaikh S, Lee E-J, Choi I. Biocomputational Screening of Natural Compounds against Acetylcholinesterase. Molecules. 2021; 26(9):2641. https://doi.org/10.3390/molecules26092641
Chicago/Turabian StyleAhmad, Syed Sayeed, Mohd Babu Khan, Khurshid Ahmad, Jeong-Ho Lim, Sibhghatulla Shaikh, Eun-Ju Lee, and Inho Choi. 2021. "Biocomputational Screening of Natural Compounds against Acetylcholinesterase" Molecules 26, no. 9: 2641. https://doi.org/10.3390/molecules26092641
APA StyleAhmad, S. S., Khan, M. B., Ahmad, K., Lim, J. -H., Shaikh, S., Lee, E. -J., & Choi, I. (2021). Biocomputational Screening of Natural Compounds against Acetylcholinesterase. Molecules, 26(9), 2641. https://doi.org/10.3390/molecules26092641