Binding Models of Copper(II) Thiosemicarbazone Complexes with Human Serum Albumin: A Speciation Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solution Speciation in the Binary Systems
2.2. Interaction of the Copper(II)-TSC Complexes with HSA, DAHK, and N-Methylimidazol
2.3. Redox Properties of the Copper(II)-TSC Complexes Affected by HSA and DAHK
3. Materials and Methods
3.1. Chemicals
3.2. pH-Potentiometry
3.3. UV–Vis Spectrophotometry
3.4. EPR Spectroscopy
3.5. Cyclic Voltammetry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals—An overview. Coord. Chem. Rev. 2009, 253, 977–1055. [Google Scholar] [CrossRef]
- Kalinowski, D.S.; Quach, P.; Richardson, D.R. Thiosemicarbazones: The new wave in cancer treatment. Future Med. Chem. 2009, 1, 1143–1151. [Google Scholar] [CrossRef]
- Heffeter, P.; Pape, V.F.S.; Enyedy, É.A.; Keppler, B.K.; Szakács, G.; Kowol, C.R. Anticancer thiosemicarbazones: Chemical properties, interaction with iron metabolism, and resistance development. Antioxid. Redox Signal. 2019, 30, 1062–1082. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/ct2/show/NCT02466971 (accessed on 5 April 2021).
- Salim, K.Y.; Vareki, S.M.; Danter, W.R.; Koropatnick, J. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget 2016, 7, 41363–41379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.-L.; Richardson, D.R.; Kalinowski, D.S.; Kovacevic, V.; Tan-Un, K.C.; Chan, G.C.-F. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol. 2016, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- West, D.X.; Liberta, A.E. Thiosemicarbazone complexes of copper(II): Structural and biological studies. Coord. Chem. Rev. 1993, 123, 49–71. [Google Scholar] [CrossRef]
- Shao, J.; Zhou, B.; Di Bilio, A.J.; Zhu, L.; Wang, T.; Shih, C.Q.J.; Yen, Y. A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol. Cancer Ther. 2006, 5, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Belicchi Ferrari, M.; Capacchi, S.; Pelosi, G.; Reffo, G.; Tarasconi, P.; Albertini, R.; Pinelli, S.; Lunghi, P. Synthesis, structural characterization and biological activity of helicin thiosemicarbazone monohydrate and a copper(II) complex of salicylaldehyde thiosemicarbazone. Inorg. Chim. Acta 1999, 286, 134–141. [Google Scholar] [CrossRef]
- Zhang, Z.; Gou, Y.; Wang, J.; Yang, K.; Qi, J.; Zhou, Z.; Liang, S.; Liang, H.; Yang, F. Four copper(II) compounds synthesized by anion regulation: Structure, anticancer function and anticancer mechanism. Eur. J. Med. Chem. 2016, 121, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Park, K.C.; Fouani, L.; Jansson, P.J.; Wooi, D.; Sahni, S.; Lane, D.J.R.; Palanimuthu, D.; Lok, H.C.; Kovačević, Z.; Huang, M.L.H.; et al. Copper and conquer: Copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 2016, 8, 874–886. [Google Scholar] [CrossRef]
- Gulea, A.; Poirier, D.; Roy, J.; Stavila, V.; Bulimestru, I.; Tapcov, V.; Birca, M.; Popovschi, L. In vitro antileukemia, antibacterial and antifungal activities of some 3d metal complexes: Chemical synthesis and structure—Activity relationships. J. Enzyme Inhib. Med. Chem. 2008, 23, 806–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milunovic, M.N.M.; Enyedy, E.A.; Nagy, N.V.; Kiss, T.; Trondl, R.; Jakupec, M.A.; Keppler, B.K.; Krachler, R.; Novitchi, G.; Arion, V.B. L- and D-Proline thiosemicarbazone conjugates: Coordination behavior in solution and the effect of copper(II) coordination on their antiproliferative activity. Inorg. Chem. 2012, 51, 9309–9321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, F.; Enyedy, E.A.; Nagy, N.V.; Rockenbauer, A.; Bognár, G.M.; Trondl, R.; Novak, M.S.; Klapproth, E.; Kiss, T.; Arion, V.B. Copper(II) complexes with highly water-soluble L- and D-Proline–thiosemicarbazone conjugates as potential inhibitors of topoisomerase IIα. Inorg. Chem. 2013, 52, 8895–8908. [Google Scholar] [CrossRef] [Green Version]
- Enyedy, É.A.; Nagy, N.V.; Zsigó, É.; Kowol, C.R.; Arion, V.B.; Roller, A.; Keppler, B.K.; Kiss, T. Comparative solution equilibrium study of the interactions of copper(II), iron(II) and zinc(II) with Triapine (3-aminopyridine-2-carbaldehyde thiosemicarbazone) and related ligands. Eur. J. Inorg. Chem. 2010, 2010, 1717–1728. [Google Scholar] [CrossRef]
- Enyedy, É.A.; Zsigó, É.; Nagy, N.V.; Kowol, C.R.; Roller, A.; Keppler, B.K.; Kiss, T. Complex-formation ability of salicylaldehyde thiosemicarbazone towards ZnII, CuII, FeII, FeIII and GaIII Ions. Eur. J. Inorg. Chem. 2012, 2012, 4036–4047. [Google Scholar] [CrossRef] [Green Version]
- Petrasheuskaya, T.V.; Kiss, M.A.; Dömötör, O.; Holczbauer, T.; May, N.V.; Spengler, G.; Kincses, A.; Čipak Gašparović, A.; Frank, É.; Enyedy, É.A. Salicylaldehyde thiosemicarbazone copper complexes: Impact of hybridization with estrone on cytotoxicity, solution stability and redox activity. New J. Chem. 2020, 44, 12154–12168. [Google Scholar] [CrossRef]
- Kowol, C.R.; Heffeter, P.; Miklos, W.; Gille, L.; Trondl, R.; Cappellacci, L.; Berger, W.; Keppler, B.K. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds. J. Biol. Inorg. Chem. 2012, 17, 409–423. [Google Scholar] [CrossRef] [Green Version]
- Carcellia, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur. J. Med. Chem. 2020, 194, 112266. [Google Scholar] [CrossRef]
- Fanali, G.; Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Aspects Med. 2012, 33, 209–290. [Google Scholar] [CrossRef]
- Elsadek, B.; Kratz, F. Impact of albumin on drug delivery--new applications on the horizon. J. Control Release 2012, 157, 4–28. [Google Scholar] [CrossRef]
- Gou, Y.; Yang, F.; Liang, H. Designing prodrugs based on special residues of human serum albumin. Curr. Top. Med. Chem. 2015, 16, 996–1008. [Google Scholar] [CrossRef]
- Peters, T. All About Albumin: Biochemistry, Genetics and Medical Applications; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Zsila, F. Subdomain IB Is the third major drug binding region of human serum albumin: Toward the three-sites model. Mol. Pharm. 2013, 10, 1668–1682. [Google Scholar] [CrossRef]
- Bal, W.; Sokolowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta 2013, 1830, 5444–5455. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, Y.; Gou, Y.; Zhang, Z.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H. Developing an anticancer copper(II) pro-drug based on the His242 residue of the human serum albumin carrier IIA subdomain. Mol. Pharm. 2016, 13, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gou, Y.; Zhang, Z.; Yu, P.; Qi, J.; Qin, Q.; Sun, H.; Wu, X.; Liang, H.; Yang, F. Developing an anticancer copper(II) multitarget pro-drug based on the His146 residue in the IB subdomain of modified human serum albumin. Mol. Pharm. 2018, 15, 2180–2193. [Google Scholar] [CrossRef]
- Rózga, M.; Sokołowska, M.; Protas, A.M.; Bal, W. Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity. Biol. Inorg. Chem. 2007, 12, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Hager, S.; Pape, V.F.S.; Pósa, V.; Montsch, B.; Uhlik, L.; Szakács, G.; Tóth, S.; Jabronka, N.; Keppler, B.K.; Kowol, C.R.; et al. High copper complex stability and slow reduction kinetics as key parameters for improved activity, paraptosis induction, and impact on drug-resistant cells of anticancer thiosemicarbazones. Antioxid. Redox Signal. 2020, 33, 395–414. [Google Scholar] [CrossRef]
- Kallus, S.; Uhlik, L.; van Schoonhoven, S.; Pelivan, K.; Berger, W.; Enyedy, E.A.; Hofmann, T.; Heffeter, P.; Kowol, C.R.; Keppler, B.K. Synthesis and Biological Evaluation of Biotin-Conjugated Anticancer Thiosemicarbazones and Their Iron(III) and Copper(II) Complexes. J. Inorg. Biochem. 2019, 190, 85–97. [Google Scholar] [CrossRef]
- Sokolowska, M.; Krezel, A.; Dyba, M.; Szewczuk, Z.; Bal, W. Short peptides are not reliable models of thermodynamic and kinetic properties of the N-terminal metal binding site in serum albumin. Eur. J. Biochem. 2002, 269, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Trapaidze, A.; Hureau, C.; Bal, W.; Winterhalter, M.; Faller, P. Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. J. Biol. Inorg. Chem. 2012, 17, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Eilbeck, W.J.; West, M.S. Thermochemical studies of vitamin B12. Part II. Thermodynamic data for the interaction of imidazole and methylimidazoles with aquocobalamin (vitamin B12a). J. Chem. Soc. Dalton Trans. 1976, 274–278. [Google Scholar] [CrossRef]
- Enyedy, E.A.; May, N.V.; Pape, V.F.S.; Heffeter, P.; Szakács, G.; Keppler, B.K.; Kowol, C.R. Complex formation and cytotoxicity of Triapine derivatives: A comparative solution study on the effect of the chalcogen atom and NH-methylation. Dalton Trans. 2020, 49, 16887. [Google Scholar] [CrossRef] [PubMed]
- Irving, H.M.; Miles, M.G.; Pettit, L.D. A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal. Chim. Acta 1967, 38, 475–488. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Zékány, L.; Nagypál, I. PSEQUAD. In Computational Methods for the Determination of Stability Constants; Leggett, L., Ed.; Plenum Press: New York, NY, USA, 1985; p. 291. [Google Scholar]
- Rockenbauer, A.; Korecz, L. Automatic computer simulations of ESR spectra. Appl. Magn. Reson. 1996, 10, 29–43. [Google Scholar] [CrossRef]
DAHK | Cu(II)‒DAHK | mim | Cu(II)‒mim | ||||
---|---|---|---|---|---|---|---|
pK1 | 2.82(5) | Logβ [CuH3L]3+ | 27.15(14) | pK1 | 6.62(1) | logβ [CuL]2+ | 4.76(4) |
pK2 | 3.59(4) | logβ [CuH2L]2+ | 23.39(9) | logβ [CuL2]2+ | 7.84(9) | ||
pK3 | 6.40(3) | logβ [CuHL]+ | 19.73(3) | logβ [CuL3]2+ | 11.45(5) | ||
pK4 | 7.69(2) | logβ [CuH−1L]− | 10.30(3) | logβ [CuH−1L3]+ | 3.68(7) | ||
pK5 | 10.44(2) | logβ [CuH−2L]2− | 0.24(5) | ||||
logβ [CuHL2]− | 31.47(5) | ||||||
logβ [CuL2]2− | 23.76(7) | ||||||
pCu = 11.12 | pCu(II) = 4.44 |
Cu(II) Complexes | Triapine [CuA]+ | Triapine-DAHK [CuAL]− | STSC [CuA] | STSC-DAHK [CuAL]2− | STSC-HSA [CuA(HSA)] | DAHK [CuH−1L]− |
---|---|---|---|---|---|---|
gx | 2.0278 | 2.0259 | 2.0408 | 2.0361 | 2.0225 | 2.0276 |
gy | 2.0579 | 2.0547 | 2.0503 | 2.0472 | 2.0444 | 2.0545 |
gz | 2.1843 | 2.1798 | 2.2069 | 2.1853 | 2.1709 | 2.1801 |
g0,calcb | 2.0900 c | 2.0868 | 2.0993 d | 2.0895 | 2.0793 | 2.0874 |
Ax (G) | 30.6 | 31.6 | 22.7 | 36.6 | 31.1 | 8.6 |
Ay (G) | 34.5 | 38.2 | 18.2 | 34.5 | 41.5 | 32.3 |
Az (G) | 173.4 | 185.5 | 180.7 | 190.0 | 198.9 | 200.2 |
ax (G) | 12.6/15.5 | 9.1/14.2 | 20.0 | 12.3/16.3 | 5.5/18.0 | 13.2/19.2 |
ax (G) | 16.6/10.0 | 14.7/12.7 | 15.7 | 19.3/18.8 | 20.5/9.5 | 15.5/9.9 |
ax (G) | 8.0/8.1 | 8.0/10.8 | 12.0 | 8.0/13.0 | 14.5/12.6 | 16.1/10.0 |
Triapine | STSC | ||||||
---|---|---|---|---|---|---|---|
ligand L | band | constant(s) | ligand L | band | constant(s) | ||
DAHK | CT | logK’ | 4.40(5) | DAHK | CT | logK’ | 3.17(6) |
DAHK | d-d | logK’ | 4.41(9) | DAHK | d-d | logK’ | 2.94(6) |
mim | CT | logK1’ logK2’ | 4.89(8) 3.38(6) | mim | CT | logK1’ logK2’ | 4.74(4) 3.28(4) |
mim | d-d | logK1’ logK2’ | 4.72(6) 3.33(6) | HSA | CT | logK’ | 4.04(7) |
HSA | CT | logK’ | 2.91(11) | d-d | logK’ | 4.08(3) | |
HSA | d-d | logK’ | 2.88(5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
May, N.V.; Jancsó, A.; Enyedy, É.A. Binding Models of Copper(II) Thiosemicarbazone Complexes with Human Serum Albumin: A Speciation Study. Molecules 2021, 26, 2711. https://doi.org/10.3390/molecules26092711
May NV, Jancsó A, Enyedy ÉA. Binding Models of Copper(II) Thiosemicarbazone Complexes with Human Serum Albumin: A Speciation Study. Molecules. 2021; 26(9):2711. https://doi.org/10.3390/molecules26092711
Chicago/Turabian StyleMay, Nóra V., Attila Jancsó, and Éva A. Enyedy. 2021. "Binding Models of Copper(II) Thiosemicarbazone Complexes with Human Serum Albumin: A Speciation Study" Molecules 26, no. 9: 2711. https://doi.org/10.3390/molecules26092711
APA StyleMay, N. V., Jancsó, A., & Enyedy, É. A. (2021). Binding Models of Copper(II) Thiosemicarbazone Complexes with Human Serum Albumin: A Speciation Study. Molecules, 26(9), 2711. https://doi.org/10.3390/molecules26092711