A Label-Free Fluorometric Glutathione Assay Based on a Conformational Switch of G-quadruplex
Abstract
:1. Introduction
2. Results
2.1. Strategy of GSH Assay
2.2. Feasibility Validation of the Proposed Method
2.3. Optimization of the Experimental Conditions
2.4. Quantification of GSH
2.5. Selectivity Study
2.6. GSH Assays in Biological Samples
3. Materials and Methods
3.1. Reagents and Apparatus
3.2. Preparation of Solutions
3.3. Investigation of Feasibility
3.4. Optimization of Analysis Conditions
3.5. Fluorescence Detection of GSH
3.6. Selectivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lv, Y.; Yang, L.; Mao, X.; Lu, M.; Zhao, J.; Yin, Y. Electrochemical detection of glutathione based on Hg2+-mediated strand displacement reaction strategy. Biosens. Bioelectron. 2016, 85, 664–668. [Google Scholar] [CrossRef]
- Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta 2003, 333, 19–39. [Google Scholar] [CrossRef]
- Lee, S.; Li, J.; Zhou, X.; Yin, J.; Yoon, J. Recent progress on the development of glutathione (GSH) selective fluorescent and col-orimetric probes. Coordin. Chem. Rev. 2018, 366, 29–68. [Google Scholar] [CrossRef]
- Wu, R.; Ge, H.; Liu, C.; Zhang, S.; Hao, L.; Zhang, Q.; Song, J.; Tian, G.; Lv, J. A novel thermometer-type hydrogel senor for glutathione detection. Talanta 2019, 196, 191–196. [Google Scholar] [CrossRef]
- Murphy, M.P. Mitochondrial Thiols in Antioxidant Protection and Redox Signaling: Distinct Roles for Glutathionylation and Other Thiol Modifications. Antioxid. Redox Signal. 2012, 16, 476–495. [Google Scholar] [CrossRef] [PubMed]
- Perricone, C.; De Carolis, C.; Perricone, R. Glutathione: A key player in autoimmunity. Autoimmun. Rev. 2009, 8, 697–701. [Google Scholar] [CrossRef]
- Cao, X.-N.; Li, J.-H.; Xu, H.-H.; Lin, L.; Xian, Y.-Z.; Yamamoto, K.; Jin, L.-T. Platinum particles-modified electrode for HPLC with pulsed amperometric detection of thiols in rat striatum. Biomed. Chromatogr. 2004, 18, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Liu, Z.; Qi, L.; Lai, J.; Kitte, S.A.; Xu, G. Ultrasensitive Glutathione Detection Based on Lucigenin Cathodic Electro-chemiluminescence in the Presence of MnO2 Nanosheets. Anal. Chem. 2016, 88, 7654–7659. [Google Scholar] [CrossRef]
- Gu, J.J.; Hu, D.H.; Wang, W.N.; Zhang, Q.H.; Meng, Z.; Jia, X.D.; Xi, K. Carbon dot cluster as an efficient “off-on” fluorescent probe to detect Au(III) and glutathione. Biosens. Bioelectron. 2015, 638, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-F.; Chang, H.-T. Nile Red-Adsorbed Gold Nanoparticle Matrixes for Determining Aminothiols through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 1485–1493. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Xu, H.; Zhang, H.; Zhong, X. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Analyst 2010, 136, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, M.; Ma, C. Fluorescent Method for the Detection of Biothiols Using an Ag+-Mediated Conformational Switch. Sensors 2019, 19, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, L.-L.; Li, L.; Chen, Z.; Wang, Q.; Tang, B. Stable label-free fluorescent sensing of biothiols based on ThT direct inducing conformation-specific G-quadruplex. Biosens. Bioelectron. 2013, 49, 420–425. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, T.; Li, P.; Liu, M.; Huang, S.; Li, H.; Zhang, Y.; Yao, S. A dual (colorimetric and fluorometric) detection scheme for glutathione and silver (I) based on the oxidase mimicking activity of MnO2 nanosheets. Microchim. Acta 2019, 186, 498. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Z.M.; Meng, H.M.; Zhang, L.; Ji, D.Y.; Liu, J.Z.; Yu, F.; Qu, L.B.; Li, Z.H. A facile fluorescence lateral flow bio-sensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sens. Actuators B Chemical. 2018, 260, 770–777. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Cai, Q.-Y.; Ding, D.-C.; Ge, J.; Hu, Y.-L.; Yang, J.; Zhang, L.; Li, Z.-H. A facile label-free colorimetric method for highly sensitive glutathione detection by using manganese dioxide nanosheets. Sens. Actuators B Chemical. 2017, 242, 355–361. [Google Scholar] [CrossRef]
- Liu, J.Z.; Ji, D.Y.; Meng, H.M.; Zhang, L.; Wang, J.Y.; Huang, Z.M.; Chen, J.; Li, J.J.; Li, Z.H. A Portable Fluorescence Bio-sensor for Rapid and Sensitive Glutathione Detection by using Quantum Dots-based Lateral Flow Test Strip. Sens. Actuators B Chemical. 2018, 262, 486–492. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, L.Y.; Chen, Y.Z.; Yang, Q.Z. A self-assembled fluorescent nanoprobe for detection of GSH and dual-channel im-aging. J. Photoch. Photobio. A. 2018, 355, 311–317. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, Y.; He, H.; Ma, C.; Tang, Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Anal. Chem. 2021, 139, 116257. [Google Scholar] [CrossRef]
- Khusbu, F.Y.; Zhou, X.; Chen, H.; Ma, C.; Wang, K. Thioflavin T as a fluorescence probe for biosensing applications. TrAC Trends Anal. Chem. 2018, 109, 1–18. [Google Scholar] [CrossRef]
- Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P.I.; Bhasikuttan, A.C. Thioflavin T as an Efficient Inducer and Selective Fluorescent Sensor for the Human Telomeric G-Quadruplex DNA. J. Am. Chem. Soc. 2013, 135, 367–376. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Ma, C. Sensitive Fluorescence Assay for the Detection of Alkaline Phosphatase Based on a Cu2+-Thiamine System. Sensors 2021, 21, 674. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, G.F.; Li, Z.W.; Rong, W.; Yu, J.P.; Zhou, Y.; Liu, K.L.; Zheng, Z.B.; He, J.L. Studies on the Effect of Thy-mine-Mercury-Thymine Stem as a Structural or Functional Motif in Dnazymes. Nucleos. Nucleot. Nucl. 2014, 33, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.M.; Amrane, S.; Rosu, F.; Gabelica, V.; Mergny, J.L. Mercury-thymine interaction with a chair type G-quadruplex ar-chitecture. Chem. Commun. 2012, 48, 11464–11466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ge, L.; Ge, S.; Yan, M.; Yu, J.; Huang, J.; Liu, S. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens. Bioelectron. 2013, 41, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, C.; Zhang, L.; Jiang, J.; Shen, G.; Yu, R. A Hg2+-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine. Analyst 2013, 138, 1713–1718. [Google Scholar] [CrossRef]
- Xu, H.; Geng, F.; Jiang, X.; Shao, C.; Wang, Y.; Wang, K.; Qu, P.; Xu, M.; Ye, B.-C. Design of metal-ion-triggered assembly of label-free split G-quadruplex/duplex DNA for turn-on detection of Hg2+ in fetal calf serum. Sensors Actuators B: Chem. 2018, 255, 1024–1030. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, F.; Cheng, Q.; Xu, H.; Xu, M. Oligonucleotide-based label-free Hg2+ assay with a monomer–excimer fluorescence switch. Anal. 2011, 136, 4284–4288. [Google Scholar] [CrossRef]
- Zhang, R.; Zhong, X.; Chen, A.Y.; Liu, J.L.; Li, S.K.; Chai, Y.Q.; Zhuo, Y.; Yuan, R. Novel Ru(bpy)(2)(cpaphen)(2+)/TPrA/TiO2 Ternary ECL System: An Efficient Platform for the Detection of Glutathione with Mn2+ as Substitute Target. Anal. Chem. 2019, 91, 3681–3686. [Google Scholar] [CrossRef]
- Peng, H.P.; Jian, M.L.; Huang, Z.N.; Wang, W.J.; Deng, H.H.; Wu, W.H.; Liu, A.L.; Xia, X.H.; Chen, W. Facile electrochemilumi-nescence sensing platform based on high-quantum-yield gold nanocluster probe for ultrasensitive glutathione detection. Biosens. Bioelectron. 2018, 105, 71–76. [Google Scholar] [CrossRef]
- Han, L.; Liu, S.G.; Liang, J.Y.; Li, N.B.; Luo, H.Q. Free-label dual-signal responsive optical sensor by combining resonance Ray-leigh scattering and colorimetry for sensitive detection of glutathione based on ultrathin MnO2 nanoflakes. Sens. Actuat. B Chem. 2019, 288, 195–201. [Google Scholar] [CrossRef]
- Thomas, A.; Sivasankaran, U.; Kumar, K.G. Biothiols induced colour change of silver nanoparticles: A colorimetric sensing strategy. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2018, 188, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Xing, H.; Fan, X.; Xue, Y.; Li, J.; Wang, E. Glutathione Regulated Inner Filter Effect of MnO2 Nanosheets on Boron Nitride Quantum Dots for Sensitive Assay. Anal. Chem. 2019, 91, 5762–5767. [Google Scholar] [CrossRef] [PubMed]
Method | Probe | Linear Range | LOD | Reference |
---|---|---|---|---|
ECL | Ru(bpy)2(cpaphen)2+/TPrA/TiO2 | 5–215 μM | 0.33 μM | [29] |
ECL | Au-nanocluster | 1–10,000 nM; 0.01–100 mM | 0.32 nM | [30] |
Colorimetry | Ultrathin MnO2 nanoflakes | 2–200 μM | 0.67 μM | [31] |
Colorimetry | Silver nanoparticles | 0.5–10 μM | 0.368 μM | [32] |
Fluorescence | ThT/G-quadruplex | 30–2000 nM | 13.9 nM | [13] |
Fluorescence | MnO2 NS on BNQDs | 0.5–250 μM | 160 nM | [33] |
Fluorescence | ThT/G-quadruplex | 30–5000 nM | 9.8 nM | This work |
Sample Number | Added (nM) | Detected (nM) | Recovery (%) | R.S.D(%) |
---|---|---|---|---|
1 | 0 | 54.50 ± 4.08 | - | 6.66 |
2 | 50 | 102.77 ± 3.93 | 96.54 | 3.38 |
3 | 100 | 149.55 ± 6.43 | 95.05 | 3.89 |
4 | 200 | 262.62 ± 4.40 | 104.06 | 1.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhang, D.; Yan, Y.; He, H.; Zhou, Y.; Ma, C. A Label-Free Fluorometric Glutathione Assay Based on a Conformational Switch of G-quadruplex. Molecules 2021, 26, 2743. https://doi.org/10.3390/molecules26092743
Zhou X, Zhang D, Yan Y, He H, Zhou Y, Ma C. A Label-Free Fluorometric Glutathione Assay Based on a Conformational Switch of G-quadruplex. Molecules. 2021; 26(9):2743. https://doi.org/10.3390/molecules26092743
Chicago/Turabian StyleZhou, Xi, Doudou Zhang, Ying Yan, Hailun He, Yukui Zhou, and Changbei Ma. 2021. "A Label-Free Fluorometric Glutathione Assay Based on a Conformational Switch of G-quadruplex" Molecules 26, no. 9: 2743. https://doi.org/10.3390/molecules26092743
APA StyleZhou, X., Zhang, D., Yan, Y., He, H., Zhou, Y., & Ma, C. (2021). A Label-Free Fluorometric Glutathione Assay Based on a Conformational Switch of G-quadruplex. Molecules, 26(9), 2743. https://doi.org/10.3390/molecules26092743