Fertility and Iron Bioaccumulation in Drosophila melanogaster Fed with Magnetite Nanoparticles Using a Validated Method
Abstract
:1. Introduction
2. Results
2.1. Fe3O4NPs and Ch- Fe3O4NPs Synthesis and Characterization
2.2. Fe3O4NPs’ and Ch-Fe3O4NPs’ Effects on Drosophila melanogaster Fertility
2.3. Method Validation
2.4. Iron Bioaccumulation in Drosophila Flies
3. Discussion
3.1. Fe3O4NPs’ and Ch-Fe3O4NPs’ Effect on Drosophila melanogaster Fertility
3.2. Iron Determination and Bioaccumulation
4. Materials and Methods
4.1. Fe3O4NPs and Ch-Fe3O4NPs Synthesis and Characterization
4.2. Fe3O4NPs’ and Ch-Fe3O4NPs’ Effect on Drosophila melanogaster Fertility
4.3. Iron Determination and Method Validation
4.4. Iron Bioaccumulation in Drosophila Flies
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Siegel, R.W. Introduction and Overview. In Nanostructure Science and Technology. A Worldwide Study; Siegel, R.W., Hu, E., Roco, M.C., Eds.; WTEC, Loyola College in Maryland: Baltimore, MD, USA, 1999; pp. 1–15. [Google Scholar]
- Goya, G.F.; Berquó, T.S.; Fonseca, F.C.; Morales, M.P. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 2003, 94, 3520–3528. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Balmadrid, C.; Bono, M. Recognizing and Managing Iron Toxicity. Emerg. Med. 2009, 41, 36–41. [Google Scholar]
- Dear, J.W.; Bateman, D.N. Benzodiazepines. Medicine 2016, 44, 173–174. [Google Scholar]
- Albretsen, J. The toxicity of iron, an essential element. Vet. Med. Bonn. Springs Then Edwardsv. 2006, 101, 82–90. [Google Scholar]
- Arias, J.L.; López-Viota, M.; Ruiz, M.A. Partículas superparamagnéticas ultrapequeñas de óxido de hierro para aplicaciones biomédicas. Ars Pharm. 2008, 49, 101–111. [Google Scholar]
- Buschow, K.H.J. Handbook of Magnetic Materials; Elsevier, B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bououdina, M.; Davim, J.P. Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials; Bououdina, M., Davim, J.P., Eds.; Advances in Chemical and Materials Engineering; IGI Global: Hershey, PA, USA, 2014; ISBN 9781466658240. [Google Scholar]
- Odenbach, S. Ferrofluids and their applications. MRS Bull. 2013, 38, 921–924. [Google Scholar] [CrossRef]
- Fischer, B.; Mao, L.; Gungormus, M.; Tamerler-Behar, C.; Sarikaya, M.; Koser, H. Biomedical Engineered Ferrofluids. MRS Proc. 2007, 1032, 1007–1032. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, D.; Zhang, Y.; Deng, Z.; Ren, X.; Meng, X.; Tang, F.; Ren, J.; Zhang, L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 2007, 18, 40–51. [Google Scholar] [CrossRef]
- Sasaki, T.; Iwasaki, N.; Kohno, K.; Kishimoto, M.; Majima, T.; Nishimura, S.-I.; Minami, A. Magnetic nanoparticles for improving cell invasion in tissue engineering. J. Biomed. Mater. Res. Part A 2008, 86A, 969–978. [Google Scholar] [CrossRef]
- Rhee, I.; Hong, S.; Chang, Y. Chitosan-Coated Ferrite (Fe3O4) Nanoparticles as a T2 Contrast Agent for Magnetic Resonance Imaging. J. Korean Phys. Soc. 2010, 56, 868–873. [Google Scholar] [CrossRef]
- Xie, W.; Wang, J. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenergy 2012, 36, 373–380. [Google Scholar] [CrossRef]
- Zhou, Y.-T.; Nie, H.-L.; Branford-White, C.; He, Z.-Y.; Zhu, L.-M. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J. Colloid Interface Sci. 2009, 330, 29–37. [Google Scholar] [CrossRef]
- Haldorai, Y.; Kharismadewi, D.; Tuma, D.; Shim, J.-J. Properties of chitosan/magnetite nanoparticles composites for efficient dye adsorption and antibacterial agent. Korean J. Chem. Eng. 2015, 32, 1688–1693. [Google Scholar] [CrossRef]
- López, R.G.; Pineda, M.G.; Hurtado, G.; de León, R.D.; Fernández, S.; Saade, H.; Bueno, D. Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int. J. Mol. Sci. 2013, 14, 19636–19650. [Google Scholar] [CrossRef] [Green Version]
- Osuna, Y.; Gregorio-Jauregui, K.M.; Gaona-Lozano, J.G.; de la Garza-Rodríguez, I.M.; Ilyna, A.; Barriga-Castro, E.D.; Saade, H.; López, R.G. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step. J. Nanomater. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Jadaun, A.; Arora, V.; Sinha, R.K.; Biyani, N.; Jain, V.K. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol. Rep. 2015, 2, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi-Samani, S.; Miri, R.; Salmanpour, M.; Khalighian, N.; Sotoudeh, S.; Erfani, N. Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate. Res. Pharm. Sci. 2013, 8, 25–33. [Google Scholar]
- Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011, 63, 411–436. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.A.; Beckingham, K.M.; Armstrong, J.D. Functional dissection of the neural substrates for gravitaxic maze behavior inDrosophila melanogaster. J. Comp. Neurol. 2007, 501, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Everman, E.R.; Delzeit, J.L.; Hunter, F.K.; Gleason, J.M.; Morgan, T.J. Costs of cold acclimation on survival and reproductive behavior in Drosophila melanogaster. PLoS ONE 2018, 13, e0197822. [Google Scholar] [CrossRef] [PubMed]
- Parvathi, D.; Amritha, A.; Paul, S. Wonder animal model for genetics studies-Drosophila melanogaster-Its life cycle and breeding methods—A review. Sri Ramachandra J. Med. 2009, 2, 33–38. [Google Scholar]
- Chifiriuc, M.C.; Ratiu, A.C.; Popa, M.; Ecovoiu, A. Al Drosophotoxicology: An emerging research area for assessing nanoparticles interaction with living organisms. Int. J. Mol. Sci. 2016, 17, 36. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, B.; Feng, W.; Du, W.; Ouyang, H.; Chai, Z.; Bi, X. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology 2015, 9, 302–312. [Google Scholar] [CrossRef]
- Henderson, B.W.; Ajjuri, R.R.; Boyd, S.; Daigle, G.; Bao, Y.; O’Donnell, J.M. Low Doses of Iron-Oxide Nanoparticles Have a Detrimental Effect on Reproduction and Development. In Proceedings of the 54th Annual Drosophila Research, Washington, DC, USA, 3–7 April 2013; Wardman Park, M., Ed.; The Genetics Society of America: Washington, DC, USA, 2013. [Google Scholar]
- Asoufi, H.; Al Antary, T.; Awwad, A. Effect of Green Synthesized Magnetite (Fe3O4) Nanoparticles on the Green Peach Aphid Myzus persicae Sulzer (Homoptera: Aphididea) Longevity and Fecundity. Adv. Environ. Biol. 2018, 12. [Google Scholar] [CrossRef]
- Mehta, A.; Deshpande, A.; Bettedi, L.; Missirlis, F. Ferritin accumulation under iron scarcity in Drosophila iron cells. Biochimie 2009, 91, 1331–1334. [Google Scholar] [CrossRef]
- Vecchio, G.; Galeone, A.; Malvindi, M.A.; Cingolani, R.; Pompa, P.P. Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster. J. Nanoparticle Res. 2013, 15, 1936. [Google Scholar] [CrossRef]
- Tian, H.; Eom, H.-J.; Moon, S.; Lee, J.; Choi, J.; Chung, Y.D. Development of biomarker for detecting silver nanoparticles exposure using a GAL4 enhancer trap screening in Drosophila. Environ. Toxicol. Pharmacol. 2013, 36, 548–556. [Google Scholar] [CrossRef]
- Roy, N.; Gaur, A.; Jain, A.; Bhattacharya, S.; Rani, V. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 807–812. [Google Scholar] [CrossRef]
- Gorth, D.J.; Rand, D.M.; Webster, T.J. Silver nanoparticle toxicity in Drosophila: Size does matter. Int. J. Nanomed. 2011, 6, 343. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Smita, K.; Cumbal, L.; Debut, A.; Camacho, J.; Hernández-Gallegos, E.; Chávez-López, M.D.G.; Gri-jalva, M.; Angulo, Y.; Rosero, G. Pomosynthesis and biological activity of silver nanoparticles using Passiflora tripartita fruit extracts. Adv. Mater. Lett. 2015, 6, 127–132. [Google Scholar] [CrossRef]
- Demir, E.; Turna, F.; Vales, G.; Kaya, B.; Creus, A.; Marcos, R. In vivo genotoxicity assessment of titanium, zirconium and aluminium nanoparticles, and their microparticulated forms, in Drosophila. Chemosphere 2013, 93, 2304–2310. [Google Scholar] [CrossRef]
- Goodman, C.M.; McCusker, C.D.; Yilmaz, T.; Rotello, V.M. Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains. Bioconjug. Chem. 2004, 15, 897–900. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Debut, A.; Cumbal, L. Utilization of Persea americana (Avocado) oil for the synthesis of gold nanoparticles in sunlight and evaluation of antioxidant and photocatalytic activities. Environ. Nanotechnol. Monit. Manag. 2018, 10, 231–237. [Google Scholar] [CrossRef]
- Lu, X.; Chen, C.; Wen, X.; Han, P.; Jiang, W.; Liang, G. Highly charged, magnetically sensitive magnet-ite/polystyrene colloids: Synthesis and tunable optical properties. J. Mater. Sci. 2019, 54, 7628–7636. [Google Scholar] [CrossRef]
- Anilkumar, T.S.; Lu, Y.J.; Chen, J.P. Optimization of the preparation of magnetic liposomes for the combined use of magnetic hyperthermia and photothermia in dual magneto-photothermal cancer therapy. Int. J. Mol. Sci. 2020, 21, 5187. [Google Scholar] [CrossRef]
- Petersen, E.J.; Mortimer, M.; Burgess, R.M.; Handy, R.; Hanna, S.; Ho, K.T.; Johnson, M.; Loureiro, S.; Selck, H.; Scott-Fordsmand, J.J.; et al. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. Environ. Sci. Nano 2019, 6, 1619–1656. [Google Scholar] [CrossRef]
- Vega-Alvarez, S.; Herrera, A.; Rinaldi, C.; Carrero-Martínez, F.A. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment. Int. J. Nanomed. 2014, 9, 2031–2041. [Google Scholar] [CrossRef]
- Affleck, J.G.; Walker, V.K. Drosophila as a Model for Developmental Toxicology: Using and Extending the Drosophotoxicology Model. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 1965, pp. 139–153. [Google Scholar]
- Tejaswi, J.; Anirudh, K.V.S.; Majeti, L.R.; Kotagiri, D.; Shaik, K.B.; Chaitanya, K.V. Investigation of Biological Activity of Nanoparticles Using Cell Lines. In Model Organisms to Study Biological Activities and Toxicity of Nanoparticles; Springer: Singapore, 2020; pp. 117–138. [Google Scholar]
- Wu, V.M.; Uskoković, V. Population Effects of Calcium Phosphate Nanoparticles in Drosophila melanogaster: The Effects of Phase Composition, Crystallinity, and the Pathway of Formation. ACS Biomater. Sci. Eng. 2017, 3, 2348–2357. [Google Scholar] [CrossRef]
- Lankveld, D.P.K.; Oomen, A.G.; Krystek, P.; Neigh, A.; Troost-de Jong, A.; Noorlander, C.W.; Van Eijkeren, J.C.H.; Geertsma, R.E.; De Jong, W.H. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31, 8350–8361. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, Y.; Huang, J.; Chen, K.; Huang, J.; Xiao, K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018, 8, 2082. [Google Scholar] [CrossRef]
- Jiang, S.; Teng, C.P.; Puah, W.C.; Wasser, M.; Win, K.Y.; Han, M.Y. Oral Administration and Selective Uptake of Polymeric Nanoparticles in Drosophila Larvae as an in Vivo Model. ACS Biomater. Sci. Eng. 2015, 1, 1077–1084. [Google Scholar] [CrossRef]
- Vela, D.; Rondal, J.; Cárdenas, S.; Gutiérrez-Coronado, J.; Jara, E.; Debut, A.; Pilaquinga, F. Assessment of the Toxic Effects of Chitosan-Coated Magnetite Nanoparticles on Drosophila melanogaster. Am. J. Appl. Sci. 2020, 17, 204–213. [Google Scholar] [CrossRef]
- Rafael, V.; Arcos, L. Ecología y Distribución del género Drosophila en Guayllabamba y el Quinche, provincia de Pichincha-Ecuador. Rev. Pontif. Univ. Católica Ecuad. 2000, 65, 130–155. [Google Scholar]
- Augustyniak, M.; Babczyńska, A.; Migula, P.; Wilczek, G.; Łaszczyca, P.; Kafel, A.; Augustyniak, M. Joint effects of dimethoate and heavy metals on metabolic responses in a grasshopper (Chorthippus brunneus) from a heavy metals pollution gradient. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 141, 412–419. [Google Scholar] [CrossRef]
Low Range | High Range | ||
---|---|---|---|
1 | −0.007 | −0.062 | |
2 | −0.021 | −0.034 | |
3 | −0.023 | −0.065 | |
4 | −0.028 | −0.091 | |
5 | −0.032 | −0.085 | |
6 | −0.015 | −0.098 | |
LOD | mg L−1 | 0.027 | 0.071 |
mg kg−1 | 1.93 | 5.07 | |
LOQ | mg L−1 | 0.090 | 0.237 |
mg kg−1 | 6.44 | 16.9 |
[Fe]added (mg kg−1) | [Fe]read (mg kg−1) | Recovery (%) | %RSD | |
---|---|---|---|---|
20 | 32.9 | 164.7 | 161.18 | 3.14 |
31.5 | 157.6 | |||
45 | 40.4 | 89.8 | 92.75 | 4.50 |
43.1 | 95.7 | |||
60 | 57.7 | 96.2 | 95.20 | 1.56 |
56.5 | 94.1 |
NPs (mg L−1) in Medium | [Fe in Flies] (mg kg −1) | |
---|---|---|
Exposure to Fe3O4NPs | Exposure to Ch-Fe3O4NPs | |
100 | 6.6 ± 3.0 | 11.5 ± 3.9 |
250 | 21.4 ± 1.0 | 10.1 ± 1.7 |
500 | <Limit of quantification | 8.70 ± 1.7 |
1000 | 39.5 ± 2.7 | 21.9 ± 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilaquinga, F.; Cárdenas, S.; Vela, D.; Jara, E.; Morey, J.; Gutiérrez-Coronado, J.L.; Debut, A.; Piña, M.d.l.N. Fertility and Iron Bioaccumulation in Drosophila melanogaster Fed with Magnetite Nanoparticles Using a Validated Method. Molecules 2021, 26, 2808. https://doi.org/10.3390/molecules26092808
Pilaquinga F, Cárdenas S, Vela D, Jara E, Morey J, Gutiérrez-Coronado JL, Debut A, Piña MdlN. Fertility and Iron Bioaccumulation in Drosophila melanogaster Fed with Magnetite Nanoparticles Using a Validated Method. Molecules. 2021; 26(9):2808. https://doi.org/10.3390/molecules26092808
Chicago/Turabian StylePilaquinga, Fernanda, Sofía Cárdenas, Doris Vela, Eliza Jara, Jeroni Morey, José Luis Gutiérrez-Coronado, Alexis Debut, and María de las Nieves Piña. 2021. "Fertility and Iron Bioaccumulation in Drosophila melanogaster Fed with Magnetite Nanoparticles Using a Validated Method" Molecules 26, no. 9: 2808. https://doi.org/10.3390/molecules26092808
APA StylePilaquinga, F., Cárdenas, S., Vela, D., Jara, E., Morey, J., Gutiérrez-Coronado, J. L., Debut, A., & Piña, M. d. l. N. (2021). Fertility and Iron Bioaccumulation in Drosophila melanogaster Fed with Magnetite Nanoparticles Using a Validated Method. Molecules, 26(9), 2808. https://doi.org/10.3390/molecules26092808