Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Silver Nanoparticles (AgNPs)
2.2. Gold Nanoparticles (AuNPs)
2.3. Characterization of TiO2-AgNPs and TiO2-AuNPs
2.4. TiO2-AgNPs and TiO2-AuNPs Photocatalytic Tests
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Ag Nanoparticles
3.3. Synthesis of Au Nanoparticles
3.4. Synthesis of the TiO2-AgNPs and TiO2-AuNPs Composites
3.5. Photocatalytic Activity Experiments
3.6. Materials Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Marcelino, L.V.; Pinto, A.L.; Marques, C.A. Scientific specialties in green chemistry. Iberoam. J. Sci. Meas. Commun. 2020, 1, 5. [Google Scholar] [CrossRef]
- Tarasova, N.P.; Ingel’, F.I.; Makarova, A.S. Green chemistry as a tool for reduction of environmental risks from exposure to chemically hazardous facilities. Russ. J. Phys. Chem. B 2015, 9, 406–411. [Google Scholar] [CrossRef]
- EPA. Green Chemistry. Available online: https://www.epa.gov/greenchemistry (accessed on 17 November 2021).
- EPA. Definition of Green Chemistry. Available online: https://www.epa.gov/greenchemistry/basics-green-chemistry#definition (accessed on 17 November 2021).
- Sakai, T.; Alexandridis, P. Size- and shape-controlled synthesis of colloidal gold through autoreduction of the auric cation by poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solutions at ambient conditions. Nanotechnology 2005, 16, S334. [Google Scholar] [CrossRef] [PubMed]
- Tepale, N.; Fernández-Escamilla, V.V.A.; Álvarez, C.; Flores-Aquino, E.; González-Coronel, V.J.; Cruz, D.; Sánchez-Cantú, M. Morphological and rheological characterization of gold nanoparticles synthesized using pluronic P103 as soft template. J. Nanomater. 2016, 2016, 45. [Google Scholar] [CrossRef] [Green Version]
- Tepale, N.; Fernández-Escamilla, V.V.A.; Flores-Aquino, E.; Sánchez-Cantú, M.; Luna-Flores, A.; González-Coronel, V.J. Use of pluronic P103 triblock copolymer as structural agent during synthesis of hybrid silver nanoparticles. J. Nanomater. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Ivanković, A. Review of 12 Principles of Green Chemistry in Practice. Int. J. Sustain. Green Energy 2017, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Rueda-Marquez, J.J.; Levchuk, I.; Fernández Ibañez, P.; Sillanpää, M. A Critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Perera, M.; Wijenayaka, L.A.; Siriwardana, K.; Dahanayake, D.; Nalin De Silva, K.M. Gold nanoparticle decorated titania for sustainable environmental remediation: Green synthesis, enhanced surface adsorption and synergistic photocatalysis. RSC Adv. 2020, 10, 29594–29602. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Sol. Energy Mater. Sol. Cells 2015, 141, 162–170. [Google Scholar] [CrossRef]
- Temerov, F.; Ankudze, B.; Saarinen, J.J. TiO2 inverse opal structures with facile decoration of precious metal nanoparticles for enhanced photocatalytic activity. Mater. Chem. Phys. 2020, 242, 122471. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026. [Google Scholar] [CrossRef]
- Atalay, S.; Ersöz, G. Review on catalysis in advanced oxidation processes. In Novel Catalysts in Advanced Oxidation of Organic Pollutants; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Mezni, A.; Ben Saber, N.; Ibrahim, M.M.; Hamdaoui, N.; Alrooqi, A.; Mlayah, A.; Altalhi, T. Photocatalytic activity of hybrid gold-titania nanocomposites. Mater. Chem. Phys. 2019, 221, 118–124. [Google Scholar] [CrossRef]
- Patanjali, P.; Singh, R.; Kumar, A.; Chaudhary, P. Nanotechnology for Water Treatment: A Green Approach; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Veziroglu, S.; Ghori, M.Z.; Obermann, A.L.; Röder, K.; Polonskyi, O.; Strunskus, T.; Faupel, F.; Aktas, O.C. Ag Nanoparticles decorated TiO2 thin films with enhanced photocatalytic activity. Phys. Status Solidi Appl. Mater. Sci. 2019, 216, 1800898. [Google Scholar] [CrossRef]
- Wassel, A.R.; El-Naggar, M.E.; Shoueir, K. Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review. J. Environ. Chem. Eng. 2020, 8, 104175. [Google Scholar] [CrossRef]
- Lee, T.; Chao, B.K.; Kuo, Y.L.; Hsueh, C.H. Improvement of photocatalytic activities of Ag/P25 hybrid systems by controlled morphology of Ag nanoprisms. Mater. Chem. Phys. 2017, 192, 78–85. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, W.; Liu, P. Enhanced photocatalytic efficiency of TiO2 membrane decorated with Ag and Au nanoparticles. Appl. Sci. 2018, 8, 945. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Medrano, M.G. Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J. Phys. Chem. C 2016, 120, 5143–5154. [Google Scholar] [CrossRef]
- Méndez-Medrano, M.G. Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. J. Phys. Chem. C 2016, 120, 25010–25022. [Google Scholar] [CrossRef]
- Varma, R.S.; Thorat, N.; Fernandes, R.; Kothari, D.C.; Patel, N.; Miotello, A. Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catal. Sci. Technol. 2016, 6, 8428–8440. [Google Scholar] [CrossRef]
- Singh, J.; Sahu, K.; Satpati, B.; Shah, J.; Kotnala, R.K.; Mohapatra, S. Facile Synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications. J. Phys. Chem. Solids 2019, 135, 109100. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Zhang, Y.; Hou, R.; Zhang, X.; Xue, C.; Wang, S.; Zhu, B.; Li, N.; Shao, G. Photogenerated electron transfer process in heterojunctions: In situ irradiation XPS. Small Methods 2020, 4, 2000214. [Google Scholar] [CrossRef]
- Gellé, A.; Moores, A. Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles. Pure Appl. Chem. 2017, 89, 1817–1827. [Google Scholar] [CrossRef]
- Narkbuakaew, T.; Sujaridworakun, P. Role of Ag (0) deposited on TiO2 nanoparticles for superior photocatalytic performance induced by calcination. Opt. Mater. 2019, 98, 109407. [Google Scholar] [CrossRef]
- Noah, N. Green Synthesis: Characterization and Application of Silver and Gold Nanoparticles; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Zhang, X.; Chen, Y.L.; Liu, R.S.; Tsai, D.P. Plasmonic photocatalysis. Reports Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef] [Green Version]
- Malassis, L.; Dreyfus, R.; Murphy, R.J.; Hough, L.A.; Donnio, B.; Murray, C.B. One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Adv. 2016, 6, 33092–33100. [Google Scholar] [CrossRef]
- Gołabiewska, A.; Malankowska, A.; Jarek, M.; Lisowski, W.; Nowaczyk, G.; Jurga, S.; Zaleska-Medynska, A. The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2. Appl. Catal. B Environ. 2016, 196, 27–40. [Google Scholar] [CrossRef]
- Khullar, P.; Singh, V.; Mahal, A.; Kumar, H.; Kaur, G.; Bakshi, M.S. Block copolymer micelles as nanoreactors for self-assembled morphologies of gold nanoparticles. J. Phys. Chem. B 2013, 117, 3028–3039. [Google Scholar] [CrossRef]
- Ismail, A.A.; Al-Sayari, S.A.; Bahnemann, D.W. Photodeposition of precious metals onto mesoporous TiO2 nanocrystals with enhanced their photocatalytic activity for methanol oxidation. Catal. Today 2013, 209, 2–7. [Google Scholar] [CrossRef]
- Liu, B.; Louis, M.; Jin, L.; Li, G.; He, J. Co-template directed synthesis of gold nanoparticles in mesoporous titanium dioxide. Chem. A Eur. J. 2018, 24, 9651–9657. [Google Scholar] [CrossRef]
- Angelescu, D.G.; Vasilescu, M.; Anastasescu, M.; Baratoiu, R.; Donescu, D.; Teodorescu, V.S. Synthesis and association of Ag(0) nanoparticles in aqueous pluronic F127 triblock copolymer solutions. Colloids Surf. A Physicochem. Eng. Asp. 2012, 394, 57–66. [Google Scholar] [CrossRef]
- Santos, D.C.; Goes, J.M.R.; de Souza, V.C.; Bispo, D.F.; Otubo, L.; Andrade, G.R.S.; Camargo, Z.T.; dos Santos, E.A. Green synthesis of silver nanostructures with amino acid-modified pluronic F127 for antibacterial applications. Appl. Surf. Sci. 2020, 505, 144449. [Google Scholar] [CrossRef]
- Sarina, S.; Waclawik, E.R.; Zhu, H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 2013, 15, 1814–1833. [Google Scholar] [CrossRef]
- Álvarez-Ramírez, J.G.; Fernández, V.V.A.; Macías, E.R.; Rharbi, Y.; Taboada, P.; Gámez-Corrales, R.; Puig, J.E.; Soltero, J.F.A. Phase behavior of the pluronic P103/water system in the dilute and semi-dilute regimes. J. Colloid Interface Sci. 2009, 333, 655–662. [Google Scholar] [CrossRef]
- Sokolsky-Papkov, M.; Kabanov, A. Synthesis of well-defined gold nanoparticles using pluronic: The role of radicals and surfactants in nanoparticles formation. Polymers 2019, 11, 1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngumbi, P.K.; Mugo, S.W.; Ngaruiya, J.M.; King’ondu, C.K. Multiple plasmon resonances in small-sized citrate reduced gold nanoparticles. Mater. Chem. Phys. 2019, 233, 263–266. [Google Scholar] [CrossRef]
- Sindram, J.; Volk, K.; Mulvaney, P.; Karg, M. Silver nanoparticle gradient arrays: Fluorescence enhancement of organic dyes. Langmuir 2019, 35, 8776–8783. [Google Scholar] [CrossRef]
- Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. Diffusion mediated growth of (111) oriented silver nanoparticles in polyvinyl alcohol film under electron irradiation. Appl. Phys. Lett. 2006, 88, 263105. [Google Scholar] [CrossRef]
- He, S.; Yao, J.; Jiang, P.; Shi, D.; Zhang, H.; Xie, S.; Pang, S.; Gao, H. Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir 2001, 17, 1571–1575. [Google Scholar] [CrossRef]
- Batista, C.C.S.; Albuquerque, L.J.C.; Ribeiro, C.A.S.; DeCastro, C.E.; Miranda, E.G.A.; Nantes, I.L.; Albuquerque, B.L.; Cardoso, M.B.; Giacomelli, F.C. Nano-sized silver colloids produced and stabilized by amino-functionalized polymers: Polymer structure-nanoparticle features and polymer structure-growth kinetics relationships. J. Braz. Chem. Soc. 2017, 28, 1608–1618. [Google Scholar] [CrossRef]
- Sokolski-Papkov, M.; Kabanov, A.V. Synthesis of well-defined gold nanoparticles using pluronic: The role of environmental parameters, reactants and reaction products (supporting material). Polymers 2019, 66, 1553. [Google Scholar] [CrossRef] [Green Version]
- Azzam, T.; Bronstein, L.; Eisenberg, A.; West, S.S.; Ha, Q. Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers. Langmuir 2008, 49, 6521–6529. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Hazra, S. PH-dependent size and structural transition in P123 micelle induced gold nanoparticles. RSC Adv. 2015, 5, 69765–69775. [Google Scholar] [CrossRef]
- Sakai, T.; Alexandridis, P. Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 2004, 20, 8426–8430. [Google Scholar] [CrossRef]
- Landazuri, G.; Fernandez, V.V.A.; Soltero, J.F.A.; Rharbi, Y. Kinetics of the sphere-to-rod like micelle transition in a pluronic triblock copolymer. J. Phys. Chem. B 2012, 116, 11720–11727. [Google Scholar] [CrossRef] [PubMed]
- Pimpang, P.; Choopun, S. Monodispersity and stability of gold nanoparticles stabilized by using polyvinyl alcohol. Chiang Mai J. Sci. 2011, 38, 31–38. [Google Scholar]
- Antonisamy, J.D.; Swain, J.; Dash, S. Study on binding and fluorescence energy transfer efficiency of rhodamine B with pluronic F127-gold nanohybrid using optical spectroscopy methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 139–143. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Li, W.; Yang, Q.; Hou, Q.; Wei, L.; Liu, L.; Huang, F.; Ju, M. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation. Appl. Catal. B Environ. 2017, 210, 352–367. [Google Scholar] [CrossRef]
- Berahim, N.; Basirun, W.J.; Leo, B.F.; Johan, M.R. Synthesis of bimetallic gold-silver (Au-Ag) nanoparticles for the catalytic reduction of 4-nitrophenol to 4-aminophenol. Catalysts 2018, 8, 412. [Google Scholar] [CrossRef] [Green Version]
- Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S. A Novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain. Environ. Res. 2017, 27, 245–250. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, T.; Zheng, H.; Dissanayke, S.; Song, W.; Federico, A.; Suib, S.L.; He, J. Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks. Nanoscale 2017, 9, 6380–6390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chen, J.; Deng, P.; Wang, X.; Li, Y.; Wen, T.; Li, Y.; Xiang, Q.; Liao, Y. Hydrogen evolution promotion of Au-nanoparticles-decorated TiO2 nanotube arrays prepared by dip-loading approach. J. Am. Ceram. Soc. 2019, 102, 5873–5880. [Google Scholar] [CrossRef]
- Ullah, N.; Odda, A.H.; Li, D.; Wang, Q.; Wei, Q. One-pot green synthesis of gold nanoparticles and its supportive role in surface activation of non-woven fibers as heterogeneous catalyst. Colloids Surf. A Physicochem. Eng. Asp. 2019, 571, 101–109. [Google Scholar] [CrossRef]
- Wagner, C.D.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray, Photoelectron Spectroscopy; Perkin-Elmer: Waltham, MA, USA, 1979. [Google Scholar]
- Caudillo-Flores, U.; Kubacka, A.; Berestok, T.; Zhang, T.; Llorca, J.; Arbiol, J.; Cabot, A.; Fernández-García, M. Hydrogen photogeneration using ternary CuGaS-TiO2-Pt composites. Int. J. Hydrog. Energy 2020, 45, 1510–1520. [Google Scholar] [CrossRef]
- Khore, S.K.; Kadam, S.R.; Naik, S.D.; Kale, B.B.; Sonawane, R.S. Solar light active plasmonic Au@TiO2 nanocomposite with superior photocatalytic performance for H2 production and pollutant degradation. New J. Chem. 2018, 42, 10958–10968. [Google Scholar] [CrossRef]
- Olvera-Rodríguez, I.; Hernandez, R.; Medel, A.; Guzmán, C.; Escobar-Alarcón, L.; Brillas, E.; Sirés, I.; Escalante, K. TiO2/Au/TiO2 multilayer thin-film photoanodes synthesized by pulsed laser deposition for photoelectrochemical degradation of organic pollutants. Sep. Purif. Technol. 2019, 224, 189–198. [Google Scholar] [CrossRef]
- Roy, N.; Bhunia, K.; Terashima, C.; Fujishima, A.; Pradhan, D. Citrate-capped hybrid Au-TiO2 nanomaterial for facile and enhanced electrochemical hydrazine oxidation. ACS Omega 2017, 2, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, W.I.; Eid, M.M.; Hanafy, M.F.; Hussein, M.; Abd El-Moez, S.I.; El-Hallouty, S.M.; Mohamed, E. Verification of resistance to three mediated microbial strains and cancerous defense against MCF7 compared to HepG2 through microwave synthesized plant-mediated silver nanoparticle. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 035002. [Google Scholar] [CrossRef] [Green Version]
- Abdel Messih, M.F.; Ahmed, M.A.; Soltan, A.; Anis, S.S. Facile Approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes. J. Photochem. Photobiol. A Chem. 2017, 335, 40–51. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Wang, Y.; Wei, J.; Zhou, M.; Zhang, Z.; Chen, Q. One-step electrospinning method to prepare gold decorated on TiO2 nanofibers with enhanced photocatalytic activity. J. Nanosci. Nanotechnol. 2017, 18, 3176–3184. [Google Scholar] [CrossRef]
- Ismail, A.A. Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties. Microporous Mesoporous Mater. 2012, 149, 69–75. [Google Scholar] [CrossRef]
- Wang, Y.S.; Thomas, P.J.; O’Brien, P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe Ions. J. Phys. Chem. B 2006, 110, 21412–21415. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Medrano, M.G.; Kowalska, E.; Ohtani, B.; Bahena Uribe, D.; Colbeau-Justin, C.; Rau, S.; Rodríguez-López, J.L.; Remita, H. Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production. J. Chem. Phys. 2020, 153, 034705. [Google Scholar] [CrossRef] [PubMed]
- Matsunami, D.; Yamanaka, K.; Mizoguchi, T.; Kojima, K. Comparison of photodegradation of methylene blue using various TiO2 films and WO3 powders under ultraviolet and visible-light irradiation. J. Photochem. Photobiol. A Chem. 2019, 369, 106–114. [Google Scholar] [CrossRef]
- Garg, N.; Bera, S.; Rastogi, L.; Ballal, A.; Balaramakrishna, M.V. Synthesis and characterization of L-asparagine stabilised gold nanoparticles: Catalyst for degradation of organic dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 232, 118126. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.C.; Juang, R.S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [Green Version]
- Shirley, D.A. High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
Composites | SBET a (m²/g) | Pore Size (nm) | Band Gap b | Band Gap c (eV) | Adsorption (%) | Degradation (%) | Total Removal (%) |
---|---|---|---|---|---|---|---|
TAg0.1 | 9.0 | 1.29 | 3.14 | 3.21 | 20 | 76 | 96 |
TAg1 | 13.2 | 1.30 | 3.14 | 3.20 | 35 | 61 | 96 |
TAu1 | 8.3 | 1.08 | 3.14 | 3.21 | 21 | 73 | 94 |
TAu10 | 9.4 | 1.13 | 3.16 | 3.19 | 17 | 80 | 97 |
TiO2 | 9.1 | 1.33 | 3.18 | 3.22 | 27 | 50 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas-Moreno, F.K.; Luna-Flores, A.; Cruz-González, D.; González-Coronel, V.J.; Sánchez-Cantú, M.; Rodríguez-López, J.L.; Caudillo-Flores, U.; Tepale, N. Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis. Molecules 2022, 27, 127. https://doi.org/10.3390/molecules27010127
Rivas-Moreno FK, Luna-Flores A, Cruz-González D, González-Coronel VJ, Sánchez-Cantú M, Rodríguez-López JL, Caudillo-Flores U, Tepale N. Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis. Molecules. 2022; 27(1):127. https://doi.org/10.3390/molecules27010127
Chicago/Turabian StyleRivas-Moreno, Frida Karem, Adan Luna-Flores, Daniel Cruz-González, Valeria Jordana González-Coronel, Manuel Sánchez-Cantú, José Luis Rodríguez-López, Uriel Caudillo-Flores, and Nancy Tepale. 2022. "Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis" Molecules 27, no. 1: 127. https://doi.org/10.3390/molecules27010127
APA StyleRivas-Moreno, F. K., Luna-Flores, A., Cruz-González, D., González-Coronel, V. J., Sánchez-Cantú, M., Rodríguez-López, J. L., Caudillo-Flores, U., & Tepale, N. (2022). Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis. Molecules, 27(1), 127. https://doi.org/10.3390/molecules27010127