A Lactic Acid Bacteria Consortium Impacted the Content of Casein-Derived Biopeptides in Dried Fresh Cheese
Abstract
:1. Introduction
2. Results
2.1. Techno-Functional Features of the LAB Consortium
2.2. Whole-Genome Sequencing and Analysis of Proteolytic System by LC-MALDI-TOF/TOF
2.3. The Capacity of the LAB Consortium for Transient Colonisation
2.4. Application of a Designed LAB Consortium in Cheese Fermentation
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. WGS of E. Faecium ZGZA7-10
4.3. Determination of Fermentation Parameters during LAB Growth in Skimmed Milk
4.4. Adhesion to Caco-2 Cells
4.5. Rat Study Design
4.5.1. Experimental Animals
4.5.2. Bacterial 16S rRNA Sequencing and Processing Using QIIME
4.6. Cheese Production
4.7. Analysis of Biopeptides and Proteolytic System
4.7.1. Inoculum for Peptide Determination
4.7.2. Analysis of Proteolytic Enzymes by One-Dimensional Electrophoresis Coupled to MALDI-TOF/TOF
4.7.3. Identification of Bioactive Peptides
4.7.4. Relative Quantification of Bioactive Peptides
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pessione, E.; Cirrincione, S. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines. Front. Microbiol. 2016, 9, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Fron. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef] [Green Version]
- Popović, N.; Brdarić, E.; Đokić, J.; Dinić, M.; Veljović, K.; Golić, N.; Terzić-Vidojević, A. Yogurt Produced by Novel Natural Starter Cultures Improves Gut Epithelial Barrier In Vitro. Microorganisms 2020, 8, 1586. [Google Scholar] [CrossRef] [PubMed]
- Biscola, V.; Tulini, F.L.; Choiset, Y.; Rabesona, H.; Ivanova, I.; Chobert, J.-M.; Todorov, S.D.; Haertlé, T.; Franco, B.D.G.M. Proteolytic activity of Enterococcus faecalis VB63F for reduction of allergenicity of bovine milk proteins. J. Dairy Sci. 2016, 99, 5144–5154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korhonen, H.J. Bioactive milk proteins and peptides: From science to functional applications. Aust. J. Dairy Technol. 2009, 64, 16–25. [Google Scholar]
- Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr. 2021, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnol. J. 2007, 2, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Toalá, J.E.; Santiago-López, L.; Peres, C.M.; Peres, C.; Garcia, H.S.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci. 2017, 100, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Uroić, K.; Novak, J.; Hynӧnen, U.; Pietilä, T.E.; Leboš Pavunc, A.; Kant, R.; Kos, B.; Palva, A.; Šušković, J. The role of S-layer in adhesive and immunomodulating properties of probiotic starter culture Lactobacillus brevis D6 isolated from artisanal smoked fresh cheese. LWT—Food Sci. Technol. 2016, 69, 625–632. [Google Scholar] [CrossRef]
- Kant, R.; Uroic, K.; Hynönen, U.; Kos, B.; Suskovic, J.; Palva, A.M. Genome sequence of Lactobacillus brevis strain D6, isolated from smoked fresh cheese. Genome Announc. 2016, 4, e00264-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butorac, K.; Novak, J.; Bellich, B.; Terán, L.C.; Banić, M.; Pavunc, A.L.; Zjalić, S.; Cescutti, P.; Šušković, J.; Kos, B. Lyophilized alginate-based microspheres containing Lactobacillus fermentum D12, an exopolysaccharides producer, contribute to the strain’s functionality in vitro. Microb. Cell Factories 2021, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- Banić, M.; Uroić, K.; Leboš Pavunc, A.; Novak, J.; Zorić, K.; Durgo, K.; Petković, H.; Jamnik, P.; Kazazić, S.; Kazazić, S.; et al. Characterization of S-layer proteins of potential probiotic starter culture Lactobacillus brevis SF9B isolated from sauerkraut. LWT-Food Sci. Technol. 2018, 93, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Leboš Pavunc, A.; Beganović, J.; Kos, B.; Uroić, K.; Blažić, M.; Šušković, J. Characterization and application of autochthonous starter cultures for fresh cheese production. Food Technol. Biotechnol. 2012, 50, 141–151. [Google Scholar]
- Golić, N.; Čadež, N.; Terzić-Vidojević, A.; Šuranská, H.; Beganović, J.; Lozo, J.; Kos, B.; Šušković, J.; Raspor, P.; Topisirović, L. Evaluation of lactic acid bacteria and yeast diversity in traditional white-pickled and fresh soft cheeses from mountain regions in Serbia and low laying regions in Croatia. Int. J. Food Microbiol. 2013, 166, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.; Leboš Pavunc, A.; Butorac, K.; Banić, M.; Čuljak, N.; Rak, H.; Blažević, M.; Iveljić, A.-M.; Šušković, J.; Kos, B. Caseinolytic proteases of Lactobacillus and Lactococcus isolated from fermented dairy products. Mljekarstvo 2021, in press. [Google Scholar] [CrossRef]
- Hebert, E.M.; Raya, R.R.; De Giori, G.S. Nutritional requirements and nitrogen dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. Appl. Environ. Microbiol. 2001, 66, 5316–5321. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.; Winter, C.K. Diacetyl in Foods: A Review of Safety and Sensory Characteristics. Compr. Rev. Food Sci. Food Saf. 2015, 14, 635–643. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- Butorac, K.; Banić, M.; Novak, J.; Leboš Pavunc, A.; Uroić, K.; Durgo, K.; Oršolić, N.; Kukolj, M.; Radović, S.; Scalabrin, S.; et al. The functional capacity of plantaricin-producing Lactobacillus plantarum SF9C and S-layer-carrying Lactobacillus brevis SF9B to withstand gastrointestinal transit. Microb. Cell Factories 2020, 19, 106. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Venieraki, A.; Tsigkrimani, M.; Katinakis, P.; Skandamis, P.N. Whole-genome sequence data of the proteolytic and bacteriocin producing strain Enterococcus faecalis PK23 isolated from the traditional Halitzia cheese produced in Cyprus. Data Brief. 2021, 30, 107437. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Veljović, K.; Popović, N.; Tolinački, M.; Golić, N. Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. Foods 2021, 10, 2753. [Google Scholar] [CrossRef]
- Olvera-García, M.; Sanchez-Flores, A.; Quirasco Baruch, M. Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl. Microbiol. Biotechnol. 2018, 102, 2251–2267. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Tom, P.; Beresford, R.; Ross, P.; Fitzgerald, G.F.; Paul, D. Cotter The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, P.; Murphy, J.; Mahony, J.; Van Sinderen, D. Next-generation sequencing as an approach to dairy starter selection. Dairy Sci. Technol. 2015, 95, 545–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosnan, B.; Coffey, A.; Arendt, E.K.; Furey, A. A comprehensive investigation into sample extraction and method validation for the identification of antifungal compounds produced by lactic acid bacteria using HPLC-UV/DAD. Anal. Methods 2014, 14, 5331–5344. [Google Scholar] [CrossRef]
- Bowerman, K.L.; Knowles, S.C.L.; Bradley, J.E.; Baltrūnaitė, L.; Lynch, M.D.J.; Jones, K.M.; Hugenholtz, P. Effects of laboratory domestication on the rodent gut microbiome. ISME Commun. 2021, 1, 49. [Google Scholar] [CrossRef]
- Lv, L.; Mu, D.; Du, Y.; Yan, R.; Jiang, H. Mechanism of the Immunomodulatory Effect of the Combination of Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus on Immunocompromised Rats. Front. Immunol. 2021, 12, 694344. [Google Scholar] [CrossRef]
- Bekele, B.; Bech Hansen, E.; Eshetu Guya, M.; Ipsen, R.; Hailu, Y. Effect of starter cultures on properties of soft white cheese made from camel (Camelus dromedarius) milk. J. Dairy Sci. 2018, 102, 1108–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surber, G.; Spiegel, T.; Dang, B.P.; Pombo, A.W. Cream cheese made with exopolysaccharide-producing Lactococcus lactis: Impact of strain and curd homogenization pressure on texture and syneresis. J. Food Eng. 2021, 308, 110664. [Google Scholar] [CrossRef]
- Blaya, J.; Barzideh, Z.; LaPointe, G. Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the cheese environment. J. Dairy Sci. 2018, 101, 3611–3629. [Google Scholar] [CrossRef]
- Bachmann, H.; Kruijswijk, Z.; Molenaar, D.; Kleerebezem, M.; van Hylckama Vlieg, J.E.T. A high-throughput cheese manufacturing model for effective cheese starter culture screening. J. Dairy Sci. 2009, 92, 5868–5882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pihlanto, A.; Virtanen, T.; Korhonen, H. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. Int. Dairy J. 2010, 20, 3–10. [Google Scholar] [CrossRef]
- Stressler, T.; Eisele, T.; Ewert, J.; Kranz, B.; Fischer, L. Proving the synergistic effect of Alcalase, PepX and PepN during casein hydrolysis by complete degradation of the released opioid precursor peptide VYPFPGPIPN. Eur. Food Res. Technol. 2019, 245, 61–71. [Google Scholar] [CrossRef]
- Ong, L.; Henriksson, A.; Shah, N.P. Angiotensin converting enzyme-inhibitory activity in cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Le Lait 2007, 87, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.; Sawh, F.; Green-Johnson, J.M.; Jones Taggart, H.; Strap, J.L. Characterization of casein-derived peptide bioactivity: Differential effects on angiotensin-converting enzyme inhibition, cytokine, and nitric oxide production. J. Dairy Sci. 2020, 103, 5805–5815. [Google Scholar] [CrossRef]
- Uroić, K.; Nikolić, M.; Kos, B.; Leboš Pavunc, A.; Beganović, J.; Lukić, J.; Jovčić, B.; Filipović, B.; Miljković, M.; Golić, N.; et al. Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese. Mljekarstvo 2014, 52, 232–241. [Google Scholar]
- Beganović, J.; Kos, B.; Leboš Pavunc, A.; Uroić, K.; Džidara, P.; Šušković, J. Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Anaerobe 2013, 20, 58–64. [Google Scholar] [CrossRef]
- Leboš-Pavunc, A.; Penava, L.; Ranilović, J.; Novak, J.; Banić, M.; Butorac, K.; Butorac, K. Influence of dehydrated wheat/rice cereal matrices on probiotic activity of Bifidobacterium animalis ssp. lactis BB-12®. Food Technol. Biotechnol. 2019, 57, 147–158. [Google Scholar] [CrossRef]
- OJEU. Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes. Off. J. Eur. Union. 2010, 276, 33–79. [Google Scholar]
- Garcia-Mazcorro, J.F.; Noratto, G.; Remes-Troche, J.M. Effect of Gluten-Free Diet on Health and the Gut Microbiota Cannot Be Extrapolated from One Population to Others. Nutrients 2018, 10, 1421. [Google Scholar] [CrossRef] [Green Version]
- Cunniff, P. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Rockville, MD, USA, 1995. [Google Scholar]
- Gamero-Barraza, J.I.; Reyes-Jáquez, D.; Medrano-Roldán, H.; Morales-Castro, J. Effect of extrusion processing on cottonseed protein and corn flour interactions through molecular dynamics simulation. In Proceedings of the 8th Food Science, Biotechnology & Safety Congress 2018, Puerto Vallarta, Mexico, 14 November 2018. [Google Scholar]
- Kirin, S. Bjelovarski autohtoni «sušeni sir». Mljekarstvo 2006, 56, 343–356. [Google Scholar]
- Božanić, R.; Jeličić, I.; Bilušić, T. Analiza Mlijeka i Mliječnih Proizvoda; Plejada: Zagreb, Croatia, 2010. [Google Scholar]
- Shevchenko, A.; Tomas, H.; Havli, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef] [PubMed]
- Søren Drud, N.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekić Rozman, S.; Butorac, A.; Bertoša, R.; Hrenović, J.; Markeš, M. Loss of thermotolerance in antibiotic-resistant Acinetobacter baumannii. Int. J. Environ. Health Res. 2021, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
(a) | |||||||||||
LAB Strain | Proteolytic Activity (U/mL) | Acetate (mg/mL) | Lactate (mg/mL) | Diacetyl (mg/mL) | Lactose (mg/mL) | ||||||
L. plantarum D13 | 1.03 ± 0.32 b | 2.795 ± 0.025 a | 4.9 ± 0 c | n.d. * | 51 ± 0 a | ||||||
L. brevis D6 | 1.22 ± 0.18 b | 2.09 ± 0.16 c | 3.7 ± 0 d | n.d. | 51.0 ± 1.0 a | ||||||
L. fermentum D12 | 0.79 ± 0.36 b | 2.310 ± 0.010 b | 5.850 ± 0.050 b | n.d. | 47.50 ± 0.50 b | ||||||
E. faecium ZGZA7-10 ** | 3.52 ± 0.20 a | 1.420 ± 0.040 d | 7.150 ± 0.050 a | n.d. | 46.50 ± 0.50 b | ||||||
(b) | |||||||||||
Incubation Time | pH | Lactic Acid (g/L) | Δlog CFU/mL | ||||||||
0 h | 6 h | 24 h | 48 h | 0 h | 6 h | 24 h | 48 h | 6 h | 24 h | 48 h | |
L. plantarum D13 | |||||||||||
Skimmed milk | 6.58 ± 0.17 | 6.43 ± 0.20 | 5.43 ± 0.43 | 4.60 ± 0.67 | n.d. | 1.20 ± 1.04 | 3.30 ± 1.37 | 6.3 ± 3.1 | 0.04 ± 0.02 | 0.39 ± 0.35 | 0.080 ± 0.300 |
2% NaCl | 6.37 ± 0.16 | 6.25 ± 0.22 | 6.01 ± 0.31 | 5.11 ± 0.68 | n.d. | 1.20 ± 0.26 | 1.80 ± 0.90 | 4.2 ± 2.1 | 0.20 ± 0.06 | 0.28 ± 0.16 | −0.13 ± 0.24 |
4% NaCl | 6.36 ± 0.25 | 6.21 ± 0.24 | 6.01 ± 0.21 | 5.12 ± 0.48 | n.d. | 1.20 ± 0.26 | 1.65 ± 0.69 | 4.2 ± 2.1 | 0.31 ± 0.04 | 0.330 ± 0.090 | −0.10 ± 0.25 |
6% NaCl | 6.31 ± 0.28 | 6.15 ± 0.21 | 6.010 ± 0.070 | 5.61 ± 0.22 | n.d. | 1.05 ± 0.26 | 1.35 ± 0.45 | 3.0 ± 1.8 | 0.12 ± 0.12 | −0.86 ± 0.23 | −0.940 ± 0.040 |
L. brevis D6 | |||||||||||
Skimmed milk | 6.57 ± 0.12 | 6.35 ± 0.21 | 5.87 ± 0.57 | 4.48 ± 0.30 | n.d. | 1.2 ± 1.0 | 3.0 ± 2.8 | 5.7 ± 3.4 | 0.100 ± 0.070 | 0.14 ± 0.22 | 0.610 ± 0.050 |
2% NaCl | 6.42 ± 0.20 | 6.28 ± 0.25 | 5.99 ± 0.34 | 5.2 ± 1.1 | n.d. | 1.2 ± 1.0 | 1.6 ± 1.4 | 4.2 ± 2.9 | 0.020 ± 0.090 | −0.100 ± 0.020 | −0.610 ± 0.060 |
4% NaCl | 6.38 ± 0.24 | 6.27 ± 0.29 | 6.08 ± 0.27 | 5.38 ± 0.90 | n.d. | 1.05 ± 0.94 | 1.4 ± 1.2 | 3.9 ± 2.6 | 0.020 ± 0.030 | −0.37 ± 0.15 | −0.75 ± 0.24 |
6% NaCl | 6.31 ± 0.24 | 6.22 ± 0.29 | 6.04 ± 0.20 | 5.60 ± 0.55 | n.d. | 1.05 ± 0.94 | 1.4 ± 1.2 | 3.3 ± 2.1 | −0.09 ± 0.10 | −0.13 ± 0.06 | −0.81 ± 0.18 |
L. fermentum D12 | |||||||||||
Skimmed milk | 6.62 ± 0.12 | 6.450 ± 0.080 | 5.23 ± 0.67 | 4.32 ± 0.31 | n.d. | 0.75 ± 0.69 | 2.70 ± 0.90 | 5.0 ± 3.0 | 0.01 ± 0.12 | 0.200 ± 0.090 | 0.57 ± 0.19 |
2% NaCl | 6.44 ± 0.20 | 6.33 ± 0.19 | 5.65 ± 0.43 | 4.24 ± 0.39 | n.d. | 1.20 ± 0.26 | 2.25 ± 0.45 | 4.5 ± 1.6 | −0.13 ± 0.18 | 0.40 ± 0.30 | 0.43 ± 0.25 |
4% NaCl | 6.39 ± 0.21 | 6.29 ± 0.20 | 5.78 ± 0.28 | 4.77 ± 0.35 | n.d. | 0.75 ± 0.69 | 1.50 ± 0.52 | 4.2 ± 2.1 | −0.03 ± 0.19 | 0.26 ± 0.33 | 0.36 ± 0.19 |
6% NaCl | 6.31 ± 0.20 | 6.23 ± 0.20 | 6.020 ± 0.080 | 5.31 ± 0.12 | n.d. | 1.35 ± 0.45 | 1.65 ± 0.69 | 2.70 ± 0.90 | 0.01 ± 0.14 | −0.44 ± 0.32 | −0.44 ± 0.18 |
E. faecium ZGZA7-10 | |||||||||||
Skimmed milk | 6.67 ± 0.08 | 6.21 ± 0.23 | 5.13 ± 0.34 | 4.63 ± 0.15 | n.d. | 1.50 ± 0.52 | 3.2 ± 1.2 | 5.1 ± 2.1 | 0.27 ± 0.20 | 0.520 ± 0.050 | 0.72 ± 0.31 |
2% NaCl | 6.45 ± 0.13 | 6.14 ± 0.24 | 5.15 ± 0.30 | 4.730 ± 0.080 | n.d. | 1.65 ± 0.26 | 3.3 ± 1.4 | 5.1 ± 2.3 | 0.29 ± 0.24 | 0.37 ± 0.27 | 0.41 ± 0.36 |
4% NaCl | 6.44 ± 0.22 | 6.21 ± 0.19 | 5.43 ± 0.36 | 5.03 ± 0.14 | n.d. | 1.05 ± 0.94 | 3.0 ± 1.4 | 4.5 ± 1.6 | 0.20 ± 0.30 | 0.28 ± 0.30 | 0.47 ± 0.18 |
6% NaCl | 6.40 ± 0.22 | 6.22 ± 0.17 | 5.61 ± 0.22 | 5.40 ± 0.12 | n.d. | 1.2 ± 1.0 | 2.4 ± 1.4 | 3.0 ± 1.4 | −0.24 ± 0.15 | 0.16 ± 0.26 | −0.15 ± 0.34 |
Parameter | Cheese Fermented by LAB Consortium | Control Cheese |
---|---|---|
pH * | 4.180 ± 0.040 a | 4.440 ± 0.050 a |
Dry matter (%, w/w) | 60.2 ± 2.4 b | 70.4 ± 1.5 a |
Fat (%, w/w) | 19.06 ± 0.16 b | 26.57 ± 0.24 a |
Lactose (%, w/w) | 4.24 ± 0.21 b | 5.82 ± 0.25 a |
Cheese yield (g) | 12.5 ± 1.3 a | 11.98 ± 0.72 a |
Syneresis (L) | 1.20 ± 0.15 a | 1.13 ± 0.24 a |
Listeria or Salmonella (CFU/mL) | n.d. ** | n.d. |
Sample | Starter Culture | Appearance | Odour | Consistency | Cross Section | Color | Precipitate | Taste |
---|---|---|---|---|---|---|---|---|
Dried fresh cheese | LAB consortium | 3.60 ± 0.55 a | 5.00 ± 0.00 a | 3.80 ± 0.45 a | 4.20 ± 0.45 a | n.d. | n.d. | 5.00 ± 0.00 a |
Control | 3.20 ± 0.45 a | 3.40 ± 0.55 b | 3.20 ± 0.45 a | 4.00 ± 0.71 a | n.d. | n.d. | 3.20 ± 0.84 b | |
Whey | LAB consortium | 4.40 ± 0.89 a | 4.80 ± 0.45 a | n.d. | n.d. | 4.80 ± 0.45 a | 4.60 ± 0.89 a | 4.80 ± 0.45 a |
Control | 3.80 ± 0.84 a | 4.00 ± 0.71 a | n.d. | n.d. | 4.00 ± 0.71 a | 3.00 ± 0.71 b | 3.40 ± 0.89 b |
(a) | ||||||||
Peptide Sequence/Protein Source | L. plantarum | L. brevis | L. fermentum | E. faecium | ||||
D13 (24 h) | D13 (48 h) | D6 (24 h) | D6 (48 h) | D12 (24 h) | D12 (48 h) | ZGZA7-10 (24 h) | ZGZA7-10 (48 h) | |
---|---|---|---|---|---|---|---|---|
WMHQPHQPLPPT/ Beta-casein | 248.75± 114.43 | 131.14 ± 102.02 | 239.13 ± 98.18 | 168.66 ± 99.33 | 138.90 ± 26.54 | 195.07 ± 55.73 | 3.09 ± 2.37 | n.d. |
SWMHQPHQPLPPT/ Beta-casein | 45.83 ± 17.58 | 23.53 ± 23.18 | 24.64 ± 8.35 | 16.50± 11.51 | 8.36 ± 3.29 | 55.74 ± 19.51 | n.d. | n.d. |
SQSKVLPVPQKAVPYPQ/ Beta-casein | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
YQEPVLGPVR/ Beta-casein | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RDMPIQAF/ Beta-casein | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
HQPHQPLPPTVMFPPQ/ Beta-casein | n.d. | n.d. | n.d. | n.d. | n.d. | 7.53 ± 3.01 | n.d. | n.d. |
TKVIPYVRYL/ Alpha-S2-casein | 4.19 ± 1.48 | 1.17 ± 0.86 | 2.39 ± 2.23 | 2.67 ± 0.62 | n.d. | n.d. | 6.40 ± 1.62 | 4.01 ± 3.38 |
VLGPVRGPFP/ Beta-casein | 36.96 ± 21.31 | 89.09 ± 123.62 | 39.27 ± 14.51 | 26.89 ± 17.50 | 89.95 ± 32.41 | 396.76 ± 109.19 | 1.08 ± 0.77 | n.d. |
WIQPKTKVIPYVRYL/Alpha-S2-casein | 8.36 ± 2.16 | 5.92 ± 3.46 | 10.13 ± 3.77 | 6.95 ± 4.49 | n.d. | n.d. | n.d. | n.d. |
APSFSDIPNPIGSENSE/ Alpha-S1-casein | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
LVYPFPGPIHNSLPQN/ Beta-casein | 15.02 ± 3.00 | 15.60 ± 3.33 | 14.13 ± 2.43 | 8.28 ± 8.27 | 10.14 ± 2.74 | 11.17 ± 0.85 | n.d. | n.d. |
LVYPFPGPIHNSLPQ/ Beta-casein | 3.59 ± 2.24 | 2.59 ± 2.02 | 3.32 ± 3.76 | 3.54 ± 0.30 | 6.38 ± 7.09 | 10.58 ± 3.18 | n.d. | n.d. |
VYPFPGPIPN/ Beta-casein | n.d. | n.d. | 1.27 ± 0.81 | n.d. | n.d. | n.d. | n.d. | n.d. |
QEPVLGPVRGPFPIIV/ Beta-casein | 9.70 ± 1.41 | 4.61 ± 3.60 | 5.65 ± 2.93 | 3.32 ± 2.15 | 2.11 ± 1.94 | 5.62 ± 0.54 | 2.64 ± 0.67 | 1.65 ± 1.39 |
YQEPVLGPVRGPFPIIV/ Beta-casein | 95.53 ± 17.96 | 74.71 ± 32.21 | 49.54 ± 14.87 | 26.41 ± 20.03 | 52.71 ± 31.15 | 65.61 ± 8.68 | 28.48 ± 7.49 | 17.98 ± 14.83 |
FVAPFPEVFG/ Alpha-S1-casein | n.d. | 1.03 ± 0.61 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
LYQEPVLGPVRGPFPIIV/ Beta-casein | 27.31 ± 13.59 | 7.24 ± 4.11 | 20.43 ± 17.83 | 12.88 ± 10.89 | 11.61 ± 9.29 | 12.41 ± 2.45 | 3.62 ± 3.06 | 3.34 ± 0.40 |
LLYQEPVLGPVRGPFPIIV/ Beta-casein | 3.22 ± 1.82 | n.d. | 3.20 ± 4.15 | n.d. | 1.05 ± 0.73 | 1.07 ± 0.13 | 1.13 ± 1.59 | n.d. |
(b) | ||||||||
Peptide Sequence/ Protein Source | RT | Control Cheese | Control Whey | Cheese with LAB Consortium | Whey of LAB Consortium | Control | ||
WMHQPHQPLPPT/ Beta-casein | 8.953 | 1.67 ± 0.72 | n.d. | 13.08 ± 0.89 | 1.14 ± 0.11 | n.d. | ||
SWMHQPHQPLPPT/ Beta-casein | 9.446 | 20.41 ± 2.79 | 46.92 ± 3.82 | 132.39 ± 18.65 | 22.10 ± 8.07 | n.d. | ||
SQSKVLPVPQKAVPYPQ/ Beta-casein | 10.069 | 56.48 ± 28.21 | 46.01 ± 7.46 | 90.90 ± 3.32 | 35.34 ± 7.67 | n.d. | ||
YQEPVLGPVR/ Beta-casein | 10.210 | 2.84 ± 0.95 | n.d. | 7.69 ± 0.29 | n.d. | n.d. | ||
RDMPIQAF/ Beta-casein | 11.373 | 51.08 ± 12.79 | 25.32 ± 0.31 | 108.89 ± 5.37 | 7.70 ± 0.21 | n.d. | ||
HQPHQPLPPTVMFPPQ/ Beta-casein | 11.582 | n.d. | n.d. | 9.55 ± 1.80 | 4.25 ± 0.75 | n.d. | ||
TKVIPYVRYL/ Alpha-S2-casein | 11.723 | 49.02 ± 12.40 | 69.00 ± 11.30 | 35.52 ± 6.36 | 12.59 ± 5.62 | 40.70 ± 6.50 | ||
VLGPVRGPFP/ Beta-casein | 12.083 | n.d. | n.d. | n.d. | n.d. | n.d. | ||
WIQPKTKVIPYVRYL/ Alpha-S2-casein | 12.172 | n.d. | n.d. | n.d. | n.d. | n.d. | ||
APSFSDIPNPIGSENSE/ Alpha-S1-casein | 12.506 | 6.54 ± 0.40 | n.d. | 20.89 ± 0.21 | n.d. | n.d. | ||
LVYPFPGPIHNSLPQN/ Beta-casein | 12.917 | n.d. | n.d. | 1.74 ± 2.42 | n.d. | n.d. | ||
LVYPFPGPIHNSLPQ/ Beta-casein | 13.279 | 2.77 ± 0.38 | 5.94 ± 0.78 | 1.49 ± 2.08 | 1.24 ± 0.36 | n.d. | ||
VYPFPGPIPN/ Beta-casein | 13.373 | 1.69 ± 0.67 | 1.85 ± 0.53 | 7.66 ± 0.33 | n.d | n.d. | ||
QEPVLGPVRGPFPIIV/ Beta-casein | 15.696 | 19.27 ± 1.83 | 125.57 ± 19.77 | 25.93 ± 2.05 | 77.66 ± 24.10 | n.d. | ||
YQEPVLGPVRGPFPIIV/ Beta-casein | 15.949 | 1432.50 ± 228.82 | 361.51 ± 33.00 | 682.92 ± 57.39 | 97.39 ± 30.35 | 11.25 ± 6.08 | ||
FVAPFPEVFG/ Alpha-S1-casein | 16.093 | 37.60 ± 3.70 | n.d. | 35.79 ± 0.70 | n.d. | n.d. | ||
LYQEPVLGPVRGPFPIIV/ Beta-casein | 16.250 | 47.63 ± 10.13 | 6.54 ± 1.20 | 20.24 ± 0.44 | 2.64 ± 0.32 | 5.82 ± 2.54 | ||
LLYQEPVLGPVRGPFPIIV/Beta-casein | 16.743 | 9.05 ± 3.15 | 8.37 ± 1.31 | n.d. | n.d. | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, J.; Butorac, K.; Leboš Pavunc, A.; Banić, M.; Butorac, A.; Lepur, A.; Oršolić, N.; Tonković, K.; Bendelja, K.; Čuljak, N.; et al. A Lactic Acid Bacteria Consortium Impacted the Content of Casein-Derived Biopeptides in Dried Fresh Cheese. Molecules 2022, 27, 160. https://doi.org/10.3390/molecules27010160
Novak J, Butorac K, Leboš Pavunc A, Banić M, Butorac A, Lepur A, Oršolić N, Tonković K, Bendelja K, Čuljak N, et al. A Lactic Acid Bacteria Consortium Impacted the Content of Casein-Derived Biopeptides in Dried Fresh Cheese. Molecules. 2022; 27(1):160. https://doi.org/10.3390/molecules27010160
Chicago/Turabian StyleNovak, Jasna, Katarina Butorac, Andreja Leboš Pavunc, Martina Banić, Ana Butorac, Adriana Lepur, Nada Oršolić, Katarina Tonković, Krešo Bendelja, Nina Čuljak, and et al. 2022. "A Lactic Acid Bacteria Consortium Impacted the Content of Casein-Derived Biopeptides in Dried Fresh Cheese" Molecules 27, no. 1: 160. https://doi.org/10.3390/molecules27010160
APA StyleNovak, J., Butorac, K., Leboš Pavunc, A., Banić, M., Butorac, A., Lepur, A., Oršolić, N., Tonković, K., Bendelja, K., Čuljak, N., Lovrić, M., Šušković, J., & Kos, B. (2022). A Lactic Acid Bacteria Consortium Impacted the Content of Casein-Derived Biopeptides in Dried Fresh Cheese. Molecules, 27(1), 160. https://doi.org/10.3390/molecules27010160