Experimental and Theoretical Investigation on the Thermochemistry of 3-Methyl-2-benzoxazolinone and 6-Nitro-2-benzoxazolinone
Abstract
:1. Introduction
2. Results and Discussion
2.1. Massic Energies of Combustion
2.2. Enthalpies of Sublimation
2.3. Enthalpies of Formation in the Gaseous Phase
2.4. Thermodynamic Stability of Compounds in the Gaseous Phase
3. Materials and Methods
3.1. Materials
3.2. Combustion Calorimetry
3.3. High-Temperature Microcalorimetry
3.4. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morais, V.M.F.; Miranda, M.S.; Matos, M.A.R.; Liebman, J.F. Experimental and computational thermochemistry of three nitrogen-containing heterocycles: 2-benzimidazolinone, 2-benzoxazolinone and 3-indazolinone. Mol. Phys. 2006, 104, 325–334. [Google Scholar] [CrossRef]
- Verma, H.; Silakari, O. Benzoxazolinone: A Scaffold with Diverse Pharmacological Significance. In Key Heterocycle Cores for Designing Multitargetting Molecules; Silakari, O., Ed.; Elsevier: Oxford, UK, 2018; Chapter 10. [Google Scholar]
- Sicker, D.; Frey, M.; Schulz, M.; Gierl, A. Role of natural benzoxazinones in the survival strategy of plants. Int. Rev. Cytol. 2000, 198, 319–346. [Google Scholar]
- Silva, A.L.R.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C. Effects of the functional groups amino and nitro on the reactivity of benzoxazoles and comparison with homologous benzothiazoles. J. Phys. Org. Chem. 2020, 34, e4118. [Google Scholar] [CrossRef]
- Silva, A.L.R.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C. Thermodynamic properties of naphthoxazole and naphthothiazole derivatives: Experimental and computational studies. J. Chem. Thermodyn. 2018, 127, 45–55. [Google Scholar] [CrossRef]
- Silva, A.L.R.; Ribeiro da Silva, M.D.M.C. Energetic, structural and tautomeric analysis of 2-mercaptobenzimidazole: An experimental and computational approach. J. Therm. Anal. Calorim. 2017, 129, 1679–1688. [Google Scholar] [CrossRef]
- Silva, A.L.R.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C.; Simões, R.G.; Bernardes, C.E.S.; Piedade, M.F.M.; Minas da Piedade, M.E. Structural and energetic characterization of anhydrous and hemihydrated 2-mercaptoimidazole: Calorimetric, X-ray diffraction, and computational studies. J. Chem. Thermodyn. 2016, 95, 35–48. [Google Scholar] [CrossRef]
- Matos, M.A.R.; Miranda, M.S.; Morais, V.M.F.; Liebman, J.F. Are isatin and isatoic anhydride antiaromatic and aromatic respectively? A combined experimental and theoretical investigation. Org. Biomol. Chem. 2003, 1, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.S.; Matos, M.A.R.; Morais, V.M.F.; Liebman, J.F. Experimental and computational thermochemical study of oxindole. J. Chem. Thermodyn. 2010, 42, 1101–1106. [Google Scholar] [CrossRef]
- Miranda, M.S.; Matos, M.A.R.; Morais, V.M.F.; Liebman, J.F. Combined experimental and computational study on the energetics of 1, 2-benzisothiazol-3 (2H)-one and 1, 4-benzothiazin-3 (2H, 4H)-one. J. Chem. Thermodyn. 2011, 43, 635–644. [Google Scholar] [CrossRef]
- Rossini, F.D. (Ed.) Experimental Thermochemistry; Interscience: New York, NY, USA, 1956; Volume 1, Chapter 14. [Google Scholar]
- Olofson, G. Combustion Calorimetry; Sunner, S., Mansson, M., Eds.; Pergamon Press: Oxford, UK, 1979; Volume 1, Chapter 6. [Google Scholar]
- Cox, J.D.; Wagman, D.D.; Medvedev, V.A. CODATA Key Values for Thermodynamics; Hemisphere: New York, NY, USA, 1989. [Google Scholar]
- Irikura, K.K. National Institute of Standards and Technology; Thermo.pl: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Merrick, J.P.; Moran, D.; Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef]
- Silva, A.L.R.; Matos, M.A.R.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C. Thermochemical and conformational study of optical active phenylbenzazole derivatives. J. Chem. Thermodyn. 2018, 116, 7–20. [Google Scholar] [CrossRef]
- Pedley, J.P. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Research Centre: College Station, TX, USA, 1994. [Google Scholar]
- Yan, Y.M.; Pilcher, G. Enthalpies of combustion of succinic anhydride, glutaric anhydride, and glutarimide. J. Chem. Thermodyn. 1990, 22, 893–898. [Google Scholar]
- Roux, M.V.; Jimenez, P.; Martin-Luengo, M.A.; Davalos, J.Z.; Sun, Z.; Hosmane, R.S.; Liebman, J.F. The elusive antiaromaticity of maleimides and maleic anhydride: Enthalpies of formation of N-methylmaleimide, N-methylsuccinimide, N-methylphthalimide, and N-benzoyl-N-methylbenzamide. J. Org. Chem. 1997, 62, 2732–2737. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro da Silva, M.D.M.C.; Freitas, V.L.S.; Vieira, M.A.A.; Sottomayor, M.J.; Acree, W.E., Jr. Energetic and structural properties of 4-nitro-2,1,3-benzothiadiazole. J. Chem. Thermodyn. 2012, 49, 146–153. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST_JANAF Themochemical Tables, 4th Edition. J. Phys. Chem. Ref. Data 1998, 9, 1. [Google Scholar]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 265–291. [Google Scholar] [CrossRef]
- Ribeiro da Silva, M.A.V.; Ribeiro da Silva, M.D.M.C.; Pilcher, G. The construction, calibration and use of a new high-precision static-bomb calorimeter. Rev. Port. Quím. 1984, 26, 163–172. [Google Scholar]
- Ribeiro da Silva, M.A.V.; Ribeiro da Silva, M.D.M.C.; Pilcher, G. Enthalpies of combustion of 1,2-dihydroxybenzene and of six alkylsubstituted 1,2-dihydroxybenzenes. J. Chem. Thermodyn. 1984, 16, 1149–1155. [Google Scholar] [CrossRef]
- Hubbard, W.N.; Scott, D.W.; Waddington, G. Experimental Thermochemistry; Rossini, F.D., Ed.; Interscience: New York, NY, USA, 1956; Volume 1, Chapter 5. [Google Scholar]
- Adedeji, F.A.; Brown, D.L.S.; Connor, J.A.; Leung, W.L.; Paz-Andrade, I.M.; Skinner, H.A. Thermochemistry of Arene Chromium Tricarbonyls and the Strenghts of Arene-Chromium Bonds. J. Organomet. Chem. 1975, 97, 221−228. [Google Scholar] [CrossRef]
- Santos, L.M.N.B.F.; Schröder, B.; Fernandes, O.O.P.; Ribeiro da Silva, M.A.V. Measurement of Enthalpies of Sublimation by Drop Method in a Calvet Type Calorimeter: Design and Test of a New System. Thermochim. Acta 2004, 415, 15–20. [Google Scholar] [CrossRef]
- Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 1999, 110, 7650–7657. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Compound | ||||
---|---|---|---|---|
3MBOA | −25,637.5 ± 6.9 | −3823.7 ± 2.2 | −3824.4 ± 2.2 | −324.1 ± 2.5 |
6NBOA | −16,484.0 ± 3.4 | −2969.1 ± 1.5 | −2964.1 ± 1.5 | −362.1 ± 1.7 |
Compound | Texp1/K | |||
---|---|---|---|---|
3MBOA | 360.51 ± 0.03 | 99.77 ± 0.28 | 10.38 ± 0.01 | 89.4 ± 2.1 |
6NBOA | 482.92 ± 0.05 | 170.25 ± 0.63 | 38.01 ± 0.01 | 132.2 ± 3.3 |
Compound | |||
---|---|---|---|
3MBOA | −324.1 ± 2.5 | 89.4 ± 2.1 | −239.7 ± 3.2 |
6NBOA | −362.1 ± 1.7 | 132.2 ± 3.3 | −229.9 ± 3.7 |
Compound | Experimental | G3MP2B3 1 |
---|---|---|
BOA | −219.0 ± 2.8 2 | −221.4 ± 3.4 |
3MBOA | −239.7 ± 3.2 | −235.6 ± 1.0 |
6NBOA | −229.9 ± 3.7 | −232.3 ± 4.7 |
Compound | ||||
---|---|---|---|---|
BOA | 346.84 | −320.99 | −219.0 ± 2.8 2 | −123.3 ± 2.8 |
3MBOA | 379.52 | −424.73 | −239.7 ± 3.2 | −113.1 ± 3.2 |
6NBOA | 404.67 | −498.77 | −229.9 ± 3.7 | −81.2 ± 3.7 |
Compound | Molar Mass (g·mol−1) | CAS No. | Supplier | Purification Method | Final Mass Fraction Purity |
---|---|---|---|---|---|
3MBOA (C8H7NO2) | 149.1463 | 21892-80-8 | Sigma Aldrich, 98% | Sublimation 1 | 0.9999 2 |
6NBOA (C7H4N2O4) | 180.1174 | 4694-91-1 | Alfa Aesar, 98% | Sublimation 1 | 0.9995 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.L.R.; Costa, V.M.S.; Ribeiro da Silva, M.D.M.C. Experimental and Theoretical Investigation on the Thermochemistry of 3-Methyl-2-benzoxazolinone and 6-Nitro-2-benzoxazolinone. Molecules 2022, 27, 24. https://doi.org/10.3390/molecules27010024
Silva ALR, Costa VMS, Ribeiro da Silva MDMC. Experimental and Theoretical Investigation on the Thermochemistry of 3-Methyl-2-benzoxazolinone and 6-Nitro-2-benzoxazolinone. Molecules. 2022; 27(1):24. https://doi.org/10.3390/molecules27010024
Chicago/Turabian StyleSilva, Ana L. R., Vânia M. S. Costa, and Maria D. M. C. Ribeiro da Silva. 2022. "Experimental and Theoretical Investigation on the Thermochemistry of 3-Methyl-2-benzoxazolinone and 6-Nitro-2-benzoxazolinone" Molecules 27, no. 1: 24. https://doi.org/10.3390/molecules27010024
APA StyleSilva, A. L. R., Costa, V. M. S., & Ribeiro da Silva, M. D. M. C. (2022). Experimental and Theoretical Investigation on the Thermochemistry of 3-Methyl-2-benzoxazolinone and 6-Nitro-2-benzoxazolinone. Molecules, 27(1), 24. https://doi.org/10.3390/molecules27010024