Djulis (Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway
Abstract
:1. Introduction
2. Results
2.1. Effect of WECF on PM-Induced Damage in A549 Cells
2.2. Effects of WECF on Antioxidant Indices
2.3. Effect of WECF on Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1) Protein Expression
2.4. WECF Regulation of Nrf2 and HO-1 via the Mitrogen-Activated Protein Kinase (MAPK) Signaling Pathway
2.5. Bioactive Compounds in WECF
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. WECF Preparation
4.3. PM Preparation
4.4. HPLC/ESI-MS-MS Analysis of WECF
4.5. Cell Culture and Cell Viability Assay
4.6. Determination of Cell Leakage Rate
4.7. Determination of Intracellular Reactive Oxygen Species
4.8. Determination of Intracellular Lipid Peroxidation
4.9. Determination of Intracellular Glutathioine (GSH)
4.10. Evaluation of Superoxide Dismutase (SOD)
4.11. Western Blot Analysis
4.12. MAPK Inhibitors Assay
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Air Pollution. 2021. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 1 June 2021).
- Liu, Z.; Gao, W.; Yu, Y.; Hu, B.; Xin, J.; Sun, Y.; Wang, L.; Wang, G.; Bi, X.; Zhang, G.; et al. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: Emerging results from the CARE-China network. Atmos. Chem. Phys. 2018, 18, 8849–8871. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhen, L.; Lu, P.; Jiang, R.; Song, W. Effects of ozone and fine particulate matter (PM2.5) on rat system inflammation and cardiac function. Wei Sheng Yan Jiu 2013, 42, 554–560. [Google Scholar] [CrossRef]
- Chuersuwan, N.; Nimrat, S.; Lekphet, S.; Kumrai, T. Levels and major sources of PM2.5 and PM10 in Bangkok metropolitan region. Environ. Int. 2008, 34, 671–677. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Health Effects of Particulate Matter. 2013. Available online: https://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 1 June 2021).
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanism. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Habre, R.; Moshier, E.; Castro, W.; Nath, A.; Grunin, A.; Rohr, A.; Godbold, J.; Schachter, N.; Kattan, M.; Coull, B.; et al. The effects of PM2.5 and its compounds from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children. J. Expo. Sci. Environ. Epid. 2014, 24, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zhang, M.; Feng, J.; Fan, A.; Zhou, Y.; Xu, Y. The influence of quercetin on maternal immunity, oxidative stress, and inflammation in mice with exposure of fine particulate matter during gestation. Int. J. Environ. Health Res. 2017, 14, 592. [Google Scholar] [CrossRef] [PubMed]
- Romieu, I.; Castro-Giner, F.; Kunzli, N.; Sunyer, J. Air pollution, oxidative stress and dietary supplementation: A review. Eur. Respir. J. 2008, 31, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.C.; Chen, S.Y.; Chyau, C.C.; Fu, Z.H.; Liu, C.C.; Duh, P.D. Protective effect of Djulis (Chenopodium formosanum) and its bioactive compounds protect against carbon tetrachloride-induced liver injury, in vivo. J. Funct. Foods 2016, 26, 585–597. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chu, C.C.; Lin, Y.C.; Duh, P.D. Djulis (Chenopodium formosanum) and its bioactive compounds for management of hyperlipidemia and hyperglycemia in high-fat diet-fed mice. J. Food Nutr. Res. 2019, 7, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Chyau, C.C.; Chu, C.C.; Chen, S.Y.; Duh, P.D. The inhibitory effects of djulis (Chenopodium formosanum) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes. Molecules 2018, 23, 1780. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Chu, C.C.; Chyau, C.C.; Yang, J.W.; Duh, P.D. Djulis (Chenopodium formosanum) and its bioactive compounds affect vasodilation, angiotensin converting enzyme activity, and hypertension. Food Biosci. 2019, 32, 100469. [Google Scholar] [CrossRef]
- Chu, C.C.; Chen, S.Y.; Chyau, C.C.; Wu, Y.C.; Chu, H.L.; Duh, P.D. Anticancer activity and mediation of apoptosis in hepatoma carcinoma cells induced by djulis and its bioactive compounds. J. Funct. Foods 2020, 75, 104225. [Google Scholar] [CrossRef]
- Chyau, C.C.; Chu, C.C.; Chen, S.Y.; Duh, P.D. Djulis (Chenopodium formosanum) and its bioactive compounds protect against oxidative stress in human HepG2 cells. J. Funct. Foods 2015, 18, 159–170. [Google Scholar] [CrossRef]
- Hong, Y.H.; Huang, Y.L.; Liu, Y.C.; Tsai, P.J. Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models. BioMed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Colicino, E.; Lin, X.; Mehta, A.; Kloog, I.; Zanobetti, A.; Byun, H.M.; Bind, M.A.; Cantone, L.; Prada, D.; et al. Cardiac autonomic dysfunction: Particulate air pollution effects are modulated by epigenetic immunoregulation of toll-like receptor 2 and dietary flavonoid intake. J. Am. Heart Assoc. 2015, 4, e1423. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.Z.; Lin, H.C.; Chan, S.T.; Yeh, S.L. Effects of quercetin metabolites on the enhancing effect of β-carotene on DNA damage and cytochrome P1A1/2 expression in benzo[a]pyrene-exposed A549 cells. Food Chem. 2012, 133, 445–450. [Google Scholar] [CrossRef]
- O’Driscoll, C.A.; Owens, L.A.; Hoffmann, E.J.; Gallo, M.E.; Afrazi, A.; Han, M.; Fechner, J.H.; Schauer, J.J.; Bradfield, C.A.; Mezrich, J.D. Ambient urban dust particulate matter reduces pathologic T cells in the CNS and severity of EAE. Environ. Res. 2019, 168, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Z.; Wang, Z.J.; Bai, F.; Qin, X.J.; Cao, J.; Lv, J.Y.; Zhang, M.S. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules 2015, 20, 6626–6639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Zhang, F.; Rui, W.; Long, F.; Wang, L.; Feng, Z.; Chen, D.; Ding, W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. In Vitro 2013, 27, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
- Urban Dust; SRM 1649b; National Institute of Standard and Technology, U.S. Department of Commerce: Gaithersburg, MD, USA, 2016. Available online: https://www-s.nist.gov/srmors/certificates/1649b.pdf (accessed on 1 June 2021).
- Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of glutathione levels. Life Sci. 2006, 79, 2056–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly, C.; Benamar, A.; Corbineau, F.; Come, D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant. 1996, 97, 104–110. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, H.S.; Kim, E.J.; Won, N.H.; Chi, Y.M.; Kim, B.C.; Lee, K.W. Protective effect of aqueous extract of Perilla frutescens on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in rats. Food Chem. Toxicol. 2007, 45, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Bi, J.; Li, X.; Lyu, J.; Liu, X.; Wu, X.; Liu, J. Immunomodulation effects of polyphenols from thinned peach treated by different drying methods on RAW 264.7 cells through the NF-κB and Nrf2 pathways. Food Chem. 2021, 340, 127931. [Google Scholar] [CrossRef] [PubMed]
- Toydemir, G.; Loonen, L.M.P.; Venkatasubramanian, P.B.; Mes, J.J.; Wells, J.M.; Wit, N.D. Coffee induces AHR- and Nrf2-mediated transcription in intestinal epithelial cells. Food Chem. 2021, 341, 128261. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H.; Xu, F.; Zhang, Y.; Li, Z.; Ju, X.; Wang, L. Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signaling. Food Chem. 2020, 325, 126865. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Ham, Y.M.; Moon, J.Y.; Kim, M.J.; Jung, Y.H.; Jeon, Y.J.; Lee, N.H.; Kang, N.; Yang, H.M.; Kim, D.K.; et al. Acanthoic acid induces cell apoptosis through activation of the p38 MAPK pathway in HL-60 human promyelocytic leukaemia. Food Chem. 2012, 135, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Patil, B.S.; Jayaprakasha, G.K.; Murthy, K.N.C.; Vikram, A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef]
- Mostafavi-Pour, Z.; Ramezani, F.; Keshavarzi, F.; Samadi, N. The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells. Oncol. Lett. 2017, 1, 1965–1973. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Chu, C.C.; Chen, S.Y.; Chu, H.L.; Duh, P.D. The inhibitory effect of betanin on adipogenesis in 3T3-L1 adipocytes. J. Food Nutr. Res. 2019, 7, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, C.W.; Yen, F.L.; Wu, T.H.; Ko, H.H.; Lee, C.W.; Tzeng, W.S.; Lin, C.C. Enhancement of dissolution and antioxidant activity of kaempferol using a nanoparticle engineering process. J. Agric. Food Chem. 2011, 59, 5073–5080. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, P.; Ko, L.Y.; Kao, T.Y.; Liu, L.; Zhang, Y.; Yuan, J. High-yielding protocatechuic acid synthesis from L-tyrosine in Escherichia coli. ACS Sustain. Chem. Eng. 2020, 8, 14949–14954. [Google Scholar] [CrossRef]
- Nurhadi, B.; Tensiska, S.; Saputra, R.A.; Sukri, N. The role of encapsulant materials on the stability of bioactive compounds of red ginger (Zingiber officinale Roscoe. var. Rubrum) extract powder during storage. Food Chem. 2020, 333, 127490. [Google Scholar] [CrossRef] [PubMed]
- Michalkiewicz, A.; Biesaga, M.; Pyrzynska, K. Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J. Chromatogr. A 2008, 1187, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Dirsch, V.M.; Kiemer, A.K.; Wagner, H.; Vollmar, A.M. Effect of allicin and ajoene, two compounds of garlic, on inducible nitric oxide synthase. Etherosclerosis 1998, 139, 333–339. [Google Scholar] [CrossRef]
- Alia, M.; Mateos, R.; Ramos, S.; Lecumberri, E.; Bravo, L.; Goya, L. Influence of quercetin and rutin on growth and the antioxidant defense system of a human hepatoma cell line (HepG2). Eur. J. Nutr. 2006, 45, 19–28. [Google Scholar] [CrossRef]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- Chirico, S.; Smith, C.; Marchant, C.; Mitchinson, M.J.; Halliwell, B. Lipid peroxidation in hyperlipidaemic patients. A study of plasma using an HPLC-based thiobarbituric acid test. Free Radic. Res. Commun. 1993, 19, 51–57. [Google Scholar] [CrossRef]
- Wu, M.J.; Huang, C.J.; Lian, T.W.; Kou, M.C.; Wang, L.S. Antioxidant activity of Glossogyne tenuifolia. J. Agric. Food Chem. 2005, 53, 6305–6312. [Google Scholar] [CrossRef]
Peak No. | RT (min) | Compound Name | λmax (nm) | [M+H]+/ [M−H]−, m/z | MS/MS c m/z | Content (µg/g) |
---|---|---|---|---|---|---|
1 | 1.51 | Unknown | 266 | 136 b/134 | - | 778.8 ± 83.9 |
2 | 4.43 | Phenylacetic acid derivative * | 234, 262 | 285/283 | 151 | 1961.1 ± 126.6 |
3 | 5.73 | Amaranthin | 268, 536 | 727/ | 389 | 189.9 ± 82.9 |
4 | 6.42 | Isoamaranthin | 264, 530 | 727/ | 389 | 411.1 ± 61.8 |
5 | 6.70 | Betanin a | 260, 290sh, 538 | 551/ | 389 | 589.4 ± 76.9 |
6 | 6.99 | Isodopaxanthin | 260, 472 | 391/389 | 255, 150, 345, 347 | 178.6 ± 48.9 |
7 | 7.34 | Isobetanin | 268, 290sh, 532 | 551/ | 389 | 417.0 ± 38.8 |
8 | 10.82 | Quercetin derivative * | 256, 352 | 889/887 | 741, 446, 300 | 305.6 ± 49.4 |
9 | 11.54 | Quercetin-3-O-rutinoside-7-O- rhamnoside | 254, 352 | 757/755 | 609, 447, 301 | 473.2 ± 53.6 |
10 | 11.94 | Quercetin-3-O-trisaccharide | 228, 254, 322 | 743/741 | 303 | 1260.0 ± 133.8 |
11 | 12.53 | Quercetin 3-O-(2, 6-di-O-rhamnosyl- glucoside) | 256, 352 | 757/755 | 300, 301, 151 | 609.4 ± 170.5 |
12 | 12.77 | Rutin a | 254, 352 | 611/609 | 301 | 2219.7 ± 342.4 |
13 | 13.15 | 20-Hydroxyecdysone | 246, 316, 422 | 481 | 165, 371, 301, 173 | 839.7 ± 96.8 |
14 | 13.75 | Kaempferol 3-O-β-rutinoside | 228, 266, 316 | 595/593 | 287 | 212.5 ± 22.9 |
15 | 20.49 | Internal standard a | 220, 272, 312 | 255/ | 151, 131, 103, 209 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, C.-C.; Chen, S.-Y.; Chyau, C.-C.; Wang, S.-C.; Chu, H.-L.; Duh, P.-D. Djulis (Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway. Molecules 2022, 27, 253. https://doi.org/10.3390/molecules27010253
Chu C-C, Chen S-Y, Chyau C-C, Wang S-C, Chu H-L, Duh P-D. Djulis (Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway. Molecules. 2022; 27(1):253. https://doi.org/10.3390/molecules27010253
Chicago/Turabian StyleChu, Chin-Chen, Shih-Ying Chen, Charng-Cherng Chyau, Shu-Chen Wang, Heuy-Ling Chu, and Pin-Der Duh. 2022. "Djulis (Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway" Molecules 27, no. 1: 253. https://doi.org/10.3390/molecules27010253
APA StyleChu, C. -C., Chen, S. -Y., Chyau, C. -C., Wang, S. -C., Chu, H. -L., & Duh, P. -D. (2022). Djulis (Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway. Molecules, 27(1), 253. https://doi.org/10.3390/molecules27010253