Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of Iron Gall Inks
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Visible Absorption Spectra
2.2. Raman and IR Spectra
2.3. SERS Spectra
3. Materials and Methods
3.1. Materials
3.2. Spectroscopic Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartley, S.E. The chemical composition of plant galls: Are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 1998, 113, 492–501. [Google Scholar] [CrossRef]
- Taper, M.L.; Zimmerman, E.M.; Case, T.J. Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymenoptera: Cynipidae)): The importance of the Tannin/Fungus interaction. Oecologia 1986, 68, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Schultz, B.B. Insect herbivores as potential causes of mortality and adaptation in gallforming insects. Oecologia 1992, 90, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Daneshfar, A.; Hashemi, P.; Delfan, B.; Tavakkoli, M.; Rashno, P.M. The Efficient Extraction of Phenolic Compounds from Oak Gall Using a Miniaturized Matrix Solid-Phase Dispersion Method before their HPLC Determination. Herb. Med. J. Spring 2017, 2, 71–80. [Google Scholar] [CrossRef]
- Kaczmarek, B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef]
- Youness, R.A.; Kamel, R.; Elkasabgy, N.A.; Shao, P.; Farag, M.A. Recent Advances in Tannic Acid (Gallotannin) Anticancer Activities and Drug Delivery Systems for Efficacy Improvement; A Comprehensive Review. Molecules 2021, 26, 1486. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.G.; Dalvi, L.T.; Silva, J.M.C.; Lopes, G.K.B.; Alonso, A.; Hermes-Lima, M. The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Arch. Biochem. Biophys. 2005, 437, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Kumar, S.; Kumar, S. Applications of Tannins in Industry. In Tannins: Structural Properties, Biological Properties and Current Knowledge; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Khorsandi, K.; Kianmehr, Z.; Hosseinmardi, Z.; Hosseinzadeh, R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Huang, Q. Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia. J. Environ. Sci. 2013, 25, 776–784. [Google Scholar] [CrossRef]
- Hong, K.H. Preparation and properties of multi-functional cotton fabric treated by gallnut extract. Text. Res. J. 2014, 84, 1138–1146. [Google Scholar] [CrossRef]
- Gao, J.; Yang, X.; Yin, W.; Li, M. Gallnuts: A Potential Treasure in Anticancer Drug Discovery. Evid. Based. Complement. Alternat. Med. 2018, 2018, 4930371. [Google Scholar] [CrossRef]
- Reháková, M.; Čeppan, M.; Vizárová, K.; Peller, A.; Stojkovičová, D.; Hricková, M. Study of stability of brown-gray inks on paper support. Herit. Sci. 2015, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.S.; Mahon, P.J.; Creagh, D.C. Raman analysis of iron-gall inks on parchment. Vib. Spectrosc. 2006, 41, 170–175. [Google Scholar] [CrossRef]
- Kolar, J.; Štolfa, A.; Strlič, M.; Pompe, M.; Pihlar, B.; Budnar, M.; Simčič, J.; Reissland, B. Historical iron gall ink containing documents—Properties affecting their condition. Anal. Chim. Acta 2006, 555, 167–174. [Google Scholar] [CrossRef]
- Mert, E. A Comparative Study on Chemical Characterization of Different Ink Ingredients Used in Ancient Ornamented Manuscripts. Master’s Thesis, Middle East Technical University, Ankara, Turkey, September 2008. [Google Scholar]
- Gal, L.; Ciglanská, M.; Ceppan, M.; Havlinova, B.; Jancovicová, V.; Rehaková, M. Chemical Aspects of Degradation of Historical Documents with Iron Gall Inks. Chem. Listy 2014, 108, 191–197. [Google Scholar]
- Jančovičová, V.; Čeppan, M.; Havlínová, B.; Reháková, M.; Jakubíková, Z. Interactions in iron gall inks. Chem. Pap. 2007, 61, 391–397. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Edwards, H.G.M.; Moens, L. A Decade of Raman Spectroscopy in Art and Archaeology. Chem. Rev. 2007, 107, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Bellot-Gurlet, L.; Pagès-Camagna, S.; Coupry, C. Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 2006, 37, 962–965. [Google Scholar] [CrossRef] [Green Version]
- Casadio, F.; Daher, C.; Bellot-Gurlet, L. Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing. Top. Curr. Chem. 2016, 374, 62. [Google Scholar] [CrossRef] [Green Version]
- Brosseau, C.L.; Gambardella, A.; Casadio, F.; Grzywacz, C.M.; Wouters, J.; Van Duyne, R.P. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: Thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal. Chem. 2009, 81, 3056–3062. [Google Scholar] [CrossRef]
- Brosseau, C.L.; Rayner, K.S.; Casadio, F.; Grzywacz, C.M.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy: A Direct Method to Identify Colorants in Various Artist Media. Anal. Chem. 2009, 81, 7443–7447. [Google Scholar] [CrossRef] [PubMed]
- Zaffino, C.; Ngo, H.T.; Register, J.; Bruni, S.; Vo-Dinh, T. “Dry-state” surface-enhanced Raman scattering (SERS): Toward non-destructive analysis of dyes on textile fibers. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1–9. [Google Scholar] [CrossRef]
- Leona, M.; Decuzzi, P.; Kubic, T.A.; Gates, G.; Lombardi, J.R. Nondestructive Identification of Natural and Synthetic Organic Colorants in Works of Art by Surface Enhanced Raman Scattering. Anal. Chem. 2011, 83, 3990–3993. [Google Scholar] [CrossRef] [PubMed]
- Jurasekova, Z.; Domingo, C.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. In situ detection of flavonoids in weld-dyed wool and silk textiles by surface-enhanced Raman scattering. J. Raman Spectrosc. 2008, 39, 1309–1312. [Google Scholar] [CrossRef]
- Jurasekova, Z.; del Puerto, E.; Bruno, G.; García-Ramos, J.V.; Sanchez-Cortes, S.; Domingo, C. Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J. Raman Spectrosc. 2010, 41, 1455–1461. [Google Scholar] [CrossRef]
- Wustholz, K.L.; Brosseau, C.L.; Casadio, F.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy of dyes: From single molecules to the artists’ canvas. Phys. Chem. Chem. Phys. 2009, 11, 7350–7359. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Sanchez-Cortes, S.; Lopez-Tobar, E.; Jurado, V.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. The nature of black stains in Lascaux Cave, France, as revealed by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 464–467. [Google Scholar] [CrossRef] [Green Version]
- Van Elslande, E.; Lecomte, S.; Le Hô, A.S. Micro-Raman spectroscopy (MRS) and surface-enhanced Raman scattering (SERS) on organic colourants in archaeological pigments. J. Raman Spectrosc. 2008, 39, 1001–1006. [Google Scholar] [CrossRef]
- Chen, K.; Leona, M.; Vo-Dinh, T. Surface-enhanced Raman scattering for identification of organic pigments and dyes in works of art and cultural heritage material. Sens. Rev. 2007, 27, 109–120. [Google Scholar] [CrossRef]
- El Bakkali, A.; Lamhasni, T.; Haddad, M.; Ait Lyazidi, S.; Sanchez-Cortes, S.; del Puerto Nevado, E. Non-invasive micro Raman, SERS and visible reflectance analyses of coloring materials in ancient Moroccan Islamic manuscripts. J. Raman Spectrosc. 2013, 44, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Nastova, I.; Grupče, O.; Minčeva-Šukarova, B.; Ozcatal, M.; Mojsoska, L. Spectroscopic analysis of pigments and inks in manuscripts: I. Byzantine and post-Byzantine manuscripts (10–18th century). Vib. Spectrosc. 2013, 68, 11–19. [Google Scholar] [CrossRef]
- Nastova, I.; Grupče, O.; Minčeva-Šukarova, B.; Turan, S.; Yaygingol, M.; Ozcatal, M.; Martinovska, V.; Jakovlevska-Spirovska, Z. Micro-Raman spectroscopic analysis of inks and pigments in illuminated medieval old-Slavonic manuscripts. J. Raman Spectrosc. 2012, 43, 1729–1736. [Google Scholar] [CrossRef]
- Lee, A.S.; Otieno-Alego, V.; Creagh, D.C. Identification of iron-gall inks with near-infrared Raman microspectroscopy. J. Raman Spectrosc. 2008, 39, 1079–1084. [Google Scholar] [CrossRef]
- Pompeu, D.R.; Larondelle, Y.; Rogez, H.; Abbas, O.; Pierna, J.A.F.; Baeten, V. Characterization and discrimination of phenolic compounds using Fourier transform Raman spectroscopy and chemometric tools. Biotechnol. Agron. Société Environ. 2018, 22, 13–28. [Google Scholar] [CrossRef]
- Cai, Q.; Xue, J.; Wang, Q.; Du, Y. Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 201, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Doménech-Carbó, M.T. Novel analytical methods for characterising binding media and protective coatings in artworks. Anal. Chim. Acta 2008, 621, 109–139. [Google Scholar] [CrossRef]
- Bicchieri, M.; Monti, M.; Piantanida, G.; Sodo, A. All that is iron-ink is not always iron-gall! J. Raman Spectrosc. 2008, 39, 1074–1078. [Google Scholar] [CrossRef]
- Martelo-Vidal, M.J.; Vázquez, M. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools. Food Chem. 2014, 158, 28–34. [Google Scholar] [CrossRef]
- Bulska, E.; Wagner, B.; Sawicki, M.G. Investigation of Complexation and Solid–liquid Extraction of Ironfrom Paper by UV/VIS and Atomic Absorption Spectrometry. Microchim. Acta 2001, 136, 61–66. [Google Scholar] [CrossRef]
- Antosiewicz, J.M.; Shugar, D. UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: Basic principles and properties of tyrosine chromophore. Biophys. Rev. 2016, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Dearden, J.C.; Forbes, W.F. Light absorption studies: Part XIV. The ultraviolet absorption spectra of phenols. Can. J. Chem. 1959, 37, 1294. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, S.; Rajkumar, P.; Thirunavukkarasu, K.; Gunasekaran, S.; Kumaresan, S. Vibrational (FT-IR and FT-Raman), electronic (UV–vis) and quantum chemical investigations on pyrogallol: A study on benzenetriol dimers. Vib. Spectrosc. 2018, 95, 16–22. [Google Scholar] [CrossRef]
- Falcão, L.; Araújo, M.E.M. Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV-Vis and chemical tests. J. Cult. Herit. 2013, 14, 499–508. [Google Scholar] [CrossRef]
- Andjelković, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31. [Google Scholar] [CrossRef]
- Huguenin, J.; Hamady, S.O.S.; Bourson, P. Monitoring deprotonation of gallic acid by Raman spectroscopy. J. Raman Spectrosc. 2015, 46, 1062–1066. [Google Scholar] [CrossRef]
- Alvarez-Ros, M.C.; Sánchez-Cortés, S.; Francioso, O.; García-Ramos, J.V. Catalytic modification of gallic acid on a silver surface studied by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2001, 32, 143–145. [Google Scholar] [CrossRef]
- Nam, S.; Easson, M.W.; Condon, B.D.; Hillyer, M.B.; Sun, L.; Xia, Z.; Nagarajan, R. A reinforced thermal barrier coat of a Na–tannic acid complex from the view of thermal kinetics. RSC Adv. 2019, 9, 10914–10926. [Google Scholar] [CrossRef]
- Henrik-Klemens, Å.; Bengtsson, F.; Björdal, C.G. Raman Spectroscopic Investigation of Iron-Tannin Precipitates in Waterlogged Archaeological Oak. Stud. Conserv. 2021, 1–11. [Google Scholar] [CrossRef]
- Mohammed-Ziegler, I.; Billes, F. Vibrational spectroscopic calculations on pyrogallol and gallic acid. J. Mol. Struct. THEOCHEM 2002, 3, 259–265. [Google Scholar] [CrossRef]
- Clavijo, R.E.; Ross, D.J.; Aroca, R.F. Surface enhanced Raman scattering of trans-p-coumaric and syringic acids. J. Raman Spectrosc. 2009, 40, 1984–1988. [Google Scholar] [CrossRef]
- Ramasamy, R. Vibrational Assignments of FT-IR and FT-Raman Spectra of Pyrogallol. Int. J. Eng. Res. Appl. 2016, 6, 64–68. [Google Scholar]
- Garrido, C.; Diaz-Fleming, G.; Campos-Vallette, M.M. SERS spectrum of gallic acid obtained from a modified silver colloid. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016, 163, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Clavijo, E.; Menéndez, J.R.; Aroca, R. Vibrational and surface-enhanced Raman spectra of vanillic acid. J. Raman Spectrosc. 2008, 39, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Cortés, S.; García-Ramos, J.V. Adsorption and Chemical Modification of Phenols on a Silver Surface. J. Colloid Interface Sci. 2000, 231, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Öhrström, L.; Michaud-Soret, I. Fe−Catecholate and Fe−Oxalate Vibrations and Isotopic Substitution Shifts from DFT Quantum Chemistry. J. Phys. Chem. A 1999, 103, 256–264. [Google Scholar] [CrossRef]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Kilmartin, P.A.; Versari, A. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 2015, 50, 407–442. [Google Scholar] [CrossRef]
- Billes, F.; Mohammed-Ziegler, I.; Bombicz, P. Vibrational spectroscopic study on the quantum chemical model and the X-ray structure of gallic acid, solvent effect on the structure and spectra. Vib. Spectrosc. 2007, 1, 193–202. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Xia, Z.; Singh, A.; Kiratitanavit, W.; Mosurkal, R.; Kumar, J.; Nagarajan, R. Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochim. Acta 2015, 605, 77–85. [Google Scholar] [CrossRef]
- Sánchéz-Cortés, S.; García-Ramos, J.V. FT Surface-Enhanced Raman Evidence of the Oxidative Condensation Reactions of Caffeic Acid in Solution and on Silver Surface. Appl. Spectrosc. 2000, 54, 230–238. [Google Scholar] [CrossRef]
- Francioso, O.; López-Tobar, E.; Torreggiani, A.; Iriarte, M.; Sanchez-Cortes, S. Stimulated Adsorption of Humic Substances on Capped Plasmonic Ag Nanoparticles Investigated by Surface-Enhanced Optical Spectroscopy. Langmuir 2019, 35, 4518–4526. [Google Scholar] [CrossRef]
- Jurasekova, Z.; Domingo, C.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Adsorption and catalysis of flavonoid quercetin on different plasmonic metal nanoparticles monitored by SERS. J. Raman Spectrosc. 2012, 43, 1913–1919. [Google Scholar] [CrossRef] [Green Version]
- Varsányi, G. Vibrational Spectra of Benzene Derivatives; Academic Press: New York, NY, USA, 1969; ISBN 9780323150668. [Google Scholar]
- Salama, S.; Stong, J.D.; Spiro, T.G.; Neilands, J.B. Electronic and Resonance Raman Spectra of Iron(III) Complexes of Enterobactin, Catechol, and N-Methyl-2,3-dihydroxybenzamide. Biochemistry 1978, 17, 3781–3785. [Google Scholar] [CrossRef]
- Wrzalik, R.; Merkel, K.; Kocot, A. Ab initio study of phenyl benzoate: Structure, conformational analysis, dipole moment, IR and Raman vibrational spectra. J. Mol. Model. 2003, 9, 248–258. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Miolo, G.; Innocenti, G.; Caffieri, S. The Photodegradation of Quercetin: Relation to Oxidation. Molecules 2012, 17, 8898–8907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 2002, 86, 3391–3395. [Google Scholar] [CrossRef]
- Cañamares, M.V.; Garcia-Ramos, J.V.; Gómez-Varga, D.; Domingo, C.; Sanchez-Cortes, S. Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir 2005, 21, 8546–8553. [Google Scholar] [CrossRef]
FTIR a/cm−1 | FT-Raman a/cm−1 | Vibrational Assignment b,c | ||||||
---|---|---|---|---|---|---|---|---|
PY | GA | TA | SA | PY | GA | TA | SA | |
157 w | 142 w | 149 w-m, sh | δ(CCC) | |||||
184 vw | 178 w-m | |||||||
198 vw | 207 w | |||||||
219 vw | 221 vw, sh | |||||||
242 vw | ||||||||
271 w-m | 269 w | |||||||
296 w | ||||||||
321 w | 317 vw | γ(CO), γ(ring) | ||||||
337 w | 331 vw, sh | |||||||
360 w-m | 360 w | 362 w-m, sh | δ(CO) | |||||
389 w-m | 385 m | |||||||
437 w | γ(OH), γ(ring) | |||||||
454 w, sh | ||||||||
485 w | ||||||||
504 w, sh | γ(ring) | |||||||
522 w | 514 w | |||||||
540 w | 532 w-m | 545 vw, sh | 547 w-m, sh | 545 w | ||||
555 s | 554 w-m | 551 w | ||||||
582 m | 586 vw, br | 577 m-s | 583 vw | 572 w, sh | 587 w | γ(CO), γ(ring), 16a | ||
597 vw | γ(CO), ν(ring) | |||||||
635 m | ||||||||
648 w-m, sh | 650 w, br | 653 vw | ||||||
669 m, sh | 669 m | 669 w | 669 m-s | 672 vw, sh | γ(OH) | |||
700 vs | 692 m, br | 687 m-s | 695 vw, sh | 693 vw | 689 w-m | |||
715 m | 714 s | 724 w | ν(ring breathing) | |||||
764 s | 731 s-vs | 737 m, sh | 737 w | 740 vw, sh | 753 w-m | 738 vw | γ(CH) + γ(OH) | |
766 m | 754 m-s | 768 m-s | 774 w | 786 w-m | ||||
791 w | 781 w, sh | γ(CH) | ||||||
800 w | 802 w | 803 w | 803 m | |||||
827 m | 831 w, sh | 841 vw | 830 w | 830 w | 844 vw | |||
860 vw | 864 s | 864 w-m | 857 vw | 850 vw | ||||
872 w | 870 m | 877 vw | 878 vw | 867 vw | ||||
899 m, br | 908 w-m | 909 w | ||||||
959 w | 957 m, sh, br | 937 w | 944 vw | 963 w-m | 959 w | 938 w | ν(C–COOH) | |
999 vs | 1014 s-vs | 1008 vw | 1019 vw | δ(CH), ν(ring), 18a | ||||
1022 vs | 1040 m | 1037 vw | 1033 w-m | |||||
1065 m | 1065 m | δ(CH) | ||||||
1097 w | 1082 m-s | 1091 w, sh | 1091 w, sh | 1091 w | δ(CH), 9b | |||
1101 vs | 1102 w | 1102 w-m | δ(CH), ν(CO) | |||||
1116 w, sh | ||||||||
1157 s | 1156 m | 1154 w | ||||||
1178 s-vs | 1178 vs, br | 1175 s | 1174 vw | 1179 s, sh | δ(CH), δ(OH) | |||
1190 vs | 1202 s-vs | 1194 s | 1202 w | 1200 m | 1199 s | |||
1217 s-vs | 1220 w | δ(CH), ν(ring), ν(CO) | ||||||
1242 s | 1243 m | 1244 w-m | 1241 vw | 1239 w | ||||
1283 s | 1261 s-vs | 1265 w | 1276 w | 1266 m-s | 1260 w-m, sh | 1266 w-m | ||
1293 vw, sh | ||||||||
1317 s | 1309 s | 1308 s-vs | 1317 m | 1324 m-s | 1322 m | 1322 m | δ(CH), δ(OH), δ(C–OH),ν(ring) | |
1329 s, sh | 1343 w-m | 1334 m-s, sh | ||||||
1350 s, sh | 1367 m-s | 1368 m | 1370 m | 1370 m | ||||
1385 s, sh | 1383 w | 1383 m, sh | 1384 w | 1386 w, sh | ||||
1398 s, br | ||||||||
1418 m | 1424 w | ν(ring), δ(OH) | ||||||
1444 m | 1443 w | 1447 w | 1445 w | |||||
1456 m | 1466 vw, sh | 1469 w | ν(ring), δ(OH), 19a | |||||
1481 s | 1490 w | 1484 vw | ||||||
1518 s | 1533 m, br | 1520 m | 1528 w | 1530 w-m | 1536 vw | 1521 vw | ν(ring), δ(C–OH),δ(CH), 19b | |
1541 m | ||||||||
1595 m, sh | 1598 vs | 1594 vs | ν(ring), δ(OH), δ(CH), 8a | |||||
1618 s | 1608 s | 1606 s | 1616 m | 1627 m | 1615 vs | 1615 vs | ||
1658 vw | ||||||||
1672 m, br | 1699 s, br | 1693 m-s | 1692 w-m | 1698 vs | ν(C=O) in acid | |||
1711 s | ν(C=O) in ester |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espina, A.; Sanchez-Cortes, S.; Jurašeková, Z. Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of Iron Gall Inks. Molecules 2022, 27, 279. https://doi.org/10.3390/molecules27010279
Espina A, Sanchez-Cortes S, Jurašeková Z. Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of Iron Gall Inks. Molecules. 2022; 27(1):279. https://doi.org/10.3390/molecules27010279
Chicago/Turabian StyleEspina, Alba, Santiago Sanchez-Cortes, and Zuzana Jurašeková. 2022. "Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of Iron Gall Inks" Molecules 27, no. 1: 279. https://doi.org/10.3390/molecules27010279
APA StyleEspina, A., Sanchez-Cortes, S., & Jurašeková, Z. (2022). Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of Iron Gall Inks. Molecules, 27(1), 279. https://doi.org/10.3390/molecules27010279