Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum
Abstract
:1. Introduction
2. Results
2.1. β-Glucosidase Activity of TsaBgl
2.2. Overall Structure of TsaBgl
2.3. Tris-Binding at the Active Site of TsBgl
2.4. Titration of Tris and Glucose on TsaBgl
3. Discussion
4. Materials and Methods
4.1. Protein Preparation
4.2. Biochemical Analysis of TsBgl
4.3. Crystallizations
4.4. X-ray Diffraction Data Collection
4.5. Structure Determination and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sims, R.E.; Mabee, W.; Saddler, J.N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Lynd, L.; Zyl, W.; McBride, J.; Laser, M. Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 2005, 16, 577–583. [Google Scholar] [CrossRef]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; et al. How biotech can transform biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar] [CrossRef]
- Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef] [Green Version]
- Jalak, J.; Kurašin, M.; Teugjas, H.; Väljamäe, P. Endo-exo synergism in cellulose hydrolysis revisited. J. Biol. Chem. 2012, 287, 28802–28815. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.J.; Jung, J.Y.; Lee, H.J.; Park, H.S.; Jung, Y.H.; Park, K.; Kim, K.H. Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess Biosyst. Eng. 2014, 38, 929–937. [Google Scholar] [CrossRef]
- Kim, I.J.; Lee, H.J.; Kim, K.H. Pure enzyme cocktails tailored for the saccharification of sugarcane bagasse pretreated by using different methods. Process Biochem. 2017, 57, 167–174. [Google Scholar] [CrossRef]
- Gilbert, H.; Stalbrand, H.; Brumer, H. How the walls come crumbling down: Recent structural biochemistry of plant polysaccharide degradation. Curr. Opin. Plant Biol. 2008, 11, 338–348. [Google Scholar] [CrossRef]
- Kern, M.; McGeehan, J.E.; Streeter, S.D.; Martin, R.N.A.; Besser, K.; Elias, L.; Eborall, W.; Malyon, G.P.; Payne, C.M.; Himmel, M.E.; et al. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc. Natl. Acad. Sci. USA 2013, 110, 10189–10194. [Google Scholar] [CrossRef] [Green Version]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [Green Version]
- Isorna, P.; Polaina, J.; Latorre-García, L.; Cañada, F.J.; González, B.; Sanz-Aparicio, J. Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. J. Mol. Biol. 2007, 371, 1204–1218. [Google Scholar] [CrossRef]
- Lopez-Camacho, C.; Salgado, J.; Lequerica, J.L.; Madarro, A.; Ballestar, E.; Franco, L.; Polaina, J. Amino acid substitutions enhancing thermostability of Bacillus polymyxa β-glucosidase A. Biochem. J. 1996, 314, 833–838. [Google Scholar] [CrossRef] [Green Version]
- González-Blasco, G.; Sanz-Aparicio, J.; González, B.; Hermoso, J.A.; Polaina, J. Directed evolution of β-glucosidase A from Paenibacillus polymyxa to thermal resistance. J. Biol. Chem. 2000, 275, 13708–13712. [Google Scholar] [CrossRef] [Green Version]
- Arrizubieta, M.a.J.; Polaina, J. Increased thermal resistance and modification of the catalytic properties of a β-glucosidase by random mutagenesis and in vitro recombination. J. Biol. Chem. 2000, 275, 28843–28848. [Google Scholar] [CrossRef] [Green Version]
- Zubillaga, R.; Garcia-Hernandez, E.; Camarillo-Cadena, M.; Leon, M.; Polaina, J. Effect of a new ionic pair on the unfolding activation barrier of α-glucosidase B. Protein Pept. Lett. 2006, 13, 113–118. [Google Scholar] [CrossRef]
- Borges, D.G.; Baraldo Junior, A.; Farinas, C.S.; de Lima Camargo Giordano, R.; Tardioli, P.W. Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresour. Technol. 2014, 167, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Krogh, K.B.R.M.; Harris, P.V.; Olsen, C.L.; Johansen, K.S.; Hojer-Pedersen, J.; Borjesson, J.; Olsson, L. Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl. Microbiol. Biotechnol. 2009, 86, 143–154. [Google Scholar] [CrossRef]
- Santos, C.A.; Morais, M.A.B.; Terrett, O.M.; Lyczakowski, J.J.; Zanphorlin, L.M.; Ferreira-Filho, J.A.; Tonoli, C.C.C.; Murakami, M.T.; Dupree, P.; Souza, A.P. An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Sci. Rep. 2019, 9, 4903. [Google Scholar] [CrossRef]
- Chang, T.; Yao, S. Thermophilic, lignocellulolytic bacteria for ethanol production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2011, 92, 13–27. [Google Scholar] [CrossRef]
- Currie, D.H.; Raman, B.; Gowen, C.M.; Tschaplinski, T.J.; Land, M.L.; Brown, S.D.; Covalla, S.F.; Klingeman, D.M.; Yang, Z.K.; Engle, N.L.; et al. Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Syst. Biol. 2015, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.J.; Podkaminer, K.K.; Desai, S.G.; Bardsley, J.S.; Rogers, S.R.; Thorne, P.G.; Hogsett, D.A.; Lynd, L.R. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. USA 2008, 105, 13769–13774. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.E.; Jain, M.K.; Lee, C.; Zeikus, J.G. Taxonomic distinction of saccharolytic thermophilic anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; Reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., Respectively; and Transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 1993, 43, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Podkaminer, K.K.; Guss, A.M.; Trajano, H.L.; Hogsett, D.A.; Lynd, L.R. Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions. Appl. Environ. Microbiol. 2012, 78, 8441–8447. [Google Scholar] [CrossRef] [Green Version]
- Vocadlo, D.J.; Wicki, J.; Rupitz, K.; Withers, S.G. Mechanism of Thermoanaerobacterium saccharolyticum β-Xylosidase: Kinetic Studies. Biochemistry 2002, 41, 9727–9735. [Google Scholar] [CrossRef] [PubMed]
- Bronnenmeier, K.; Meissner, H.; Stocker, S.; Staudenbauer, W.L. α-d-Glucuronidases from the xylanolytic thermophiles Clostridium stercorarium and Thermoanaerobacterium saccharolyticum. Microbiology 1995, 141, 2033–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, M.V.; Podkovyrov, S.M.; Lowe, S.E.; Zeikus, J.G. Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli. Appl. Environ. Microbiol. 1994, 60, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, K.H.; Kim, S.J.; Kim, M.Y.; Kim, J.H.; Yeo, Y.S.; Lee, C.M.; Jun, H.K.; Hwang, K.Y. Crystal structure of engineered β-glucosidase from a soil metagenome. Proteins 2008, 73, 788–793. [Google Scholar] [CrossRef]
- Ketudat Cairns, J.R.; Esen, A. β-Glucosidases. Cell. Mol. Life Sci. 2010, 67, 3389–3405. [Google Scholar] [CrossRef] [PubMed]
- Jeng, W.-Y.; Wang, N.-C.; Lin, M.-H.; Lin, C.-T.; Liaw, Y.-C.; Chang, W.-J.; Liu, C.-I.; Liang, P.-H.; Wang, A.H.J. Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J. Struct. Biol. 2011, 173, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.-L.; Hou, Y.-J.; Fan, H.-X.; Qu, J.; Qi, C.; Liu, Y.; Li, D.-F.; Liu, Z.-P.; Schottel, J.L. Molecular structural basis for the cold adaptedness of the psychrophilic β-glucosidase BglU in Micrococcus antarcticus. Appl. Environ. Microbiol. 2016, 82, 2021–2030. [Google Scholar] [CrossRef] [Green Version]
- De Giuseppe, P.O.; Souza Tde, A.; Souza, F.H.; Zanphorlin, L.M.; Machado, C.B.; Ward, R.J.; Jorge, J.A.; Furriel Rdos, P.; Murakami, M.T. Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Tankrathok, A.; Iglesias-Fernández, J.; Williams, R.J.; Pengthaisong, S.; Baiya, S.; Hakki, Z.; Robinson, R.C.; Hrmova, M.; Rovira, C.; Williams, S.J.; et al. A single glycosidase harnesses different pyranoside ring transition state conformations for hydrolysis of mannosides and glucosides. ACS Catalysis 2015, 5, 6041–6051. [Google Scholar] [CrossRef]
- Permyakov, E.A.; Tamaki, F.K.; Souza, D.P.; Souza, V.P.; Ikegami, C.M.; Farah, C.S.; Marana, S.R. Using the amino acid network to modulate the hydrolytic activity of β-glycosidases. PLoS ONE 2016, 11, e0167978. [Google Scholar] [CrossRef]
- Liu, X.; Cao, L.; Zeng, J.; Liu, Y.; Xie, W. Improving the cellobiose-hydrolysis activity and glucose-tolerance of a thermostable β-glucosidase through rational design. Int. J. Biol. Macromol. 2019, 136, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Salgado, J.C.S.; Meleiro, L.P.; Carli, S.; Ward, R.J. Glucose tolerant and glucose stimulated β-glucosidases—A review. Bioresour. Technol. 2018, 267, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Pang, Q.; Zhao, L.; Fan, S.; Shi, H. Thermoanaerobacterium thermosaccharolyticum β-glucosidase: A glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol. Biofuels 2012, 5, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespim, E.; Zanphorlin, L.M.; de Souza, F.H.M.; Diogo, J.A.; Gazolla, A.C.; Machado, C.B.; Figueiredo, F.; Sousa, A.S.; Nóbrega, F.; Pellizari, V.H.; et al. A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7. Int. J. Biol. Macromol. 2016, 82, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Xue, M.; Xie, F.; Zhang, M.; Zhao, H.; Zhou, T. Engineering Thermotoga maritima β-glucosidase for improved alkyl glycosides synthesis by site-directed mutagenesis. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab031. [Google Scholar] [CrossRef] [PubMed]
- Czjzek, M.; Cicek, M.; Zamboni, V.; Bevan, D.R.; Henrissat, B.; Esen, A. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. USA 2000, 97, 13555–13560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ait, N.; Creuzet, N.; Cattaneo, J. Properties of β-glucosidase purified from Clostridium thermocellum. Microbiology 1982, 128, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.; Terra, W.R. Physical and kinetic properties of a plasma-membrane-bound β-d-glucosidase (cellobiase) from midgut cells of an insect (Rhynchosciara americana larva). Biochem. J. 1983, 213, 43–51. [Google Scholar] [CrossRef]
- Park, S.-Y.; Bae, E.-A.; Sung, J.H.; Lee, S.-K.; Kim, D.-H. Purification and characterization of ginsenoside Rb1-metabolizing β-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci. Biotechnol. Biochem. 2014, 65, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.-C.; Wang, Z.-J.; Ren, G.-H.; Kong, W.; Li, L.; Xie, W.; Liu, Y.-H. Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol. Biofuels 2015, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.L.; Chang, C.K.; Jeng, W.Y.; Wang, A.H.J.; Liang, P.H. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng. Des. Sel. 2012, 25, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Fang, Z.; Fang, W.; Peng, H.; Xiao, Y. The 184th residue of β-glucosidase Bgl1B plays an important role in glucose tolerance. J. Biosci. Bioeng. 2011, 112, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.K.; Prakash Reddy, K.; Datta, S. Understanding the glucose tolerance of an archaeon β-glucosidase from Thermococcus sp. Carbohyd. Res. 2019, 486, 107835. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Ha, S.C.; Kim, Y.G. The protein crystallography beamlines at the Pohang Light Source II. Biodesign 2017, 5, 30–34. [Google Scholar]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [PubMed]
- Vagin, A.; Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H.; Sung, M.W.; Hwang, K.Y. Structural insights into the substrate recognition properties of β-glucosidase. Biochem. Biophys. Res. Commun. 2010, 391, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [Green Version]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 355–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Soding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Gouet, P.; Courcelle, E.; Stuart, D.I.; Metoz, F. ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics 1999, 15, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Holm, L.; Rosenstrom, P. Dali server: Conservation mapping in 3D. Nucleic Acids Res. 2010, 38, W545–W549. [Google Scholar] [CrossRef] [PubMed]
Metal | Relative Activity (%) |
---|---|
None a | 100.00 ± 3.05 |
Li+ | 98.66 ± 2.93 |
Mg2+ | 97.26 ± 4.83 |
Ca2+ | 90.80 ± 2.37 |
Mn2+ | 97.64 ± 5.38 |
Fe2+ | 69.46 ± 2.43 |
Fe3+ | 91.02 ± 0.57 |
Co2+ | 92.23 ± 5.69 |
Ni2+ | 85.07 ± 3.23 |
Cu2+ | 8.47 ± 0.50 |
Zn2+ | 24.63 ± 0.98 |
Cd2+ | 66.53 ± 4.07 |
Ce2+ | 96.03 ± 3.89 |
Data Collection | TsaBgl |
---|---|
Space group | P212121 |
Cell dimensions a, b, c (Å) | 65.139, 71.293, 99.240 |
Resolution (Å) | 50.0–1.70 (1.73–1.70) |
Completeness | 98.4 (97.1) |
Redundancy | 5.7 (4.1) |
I/σ(I) | 16.50 (2.38) |
Rmerge a | 0.135 (0.423) |
CC1/2 | 0.979 (0.663) |
CC* | 0.995 (0.893) |
Refinement statistics | |
Resolution (Å) | 49.67–1.70 |
Rwork (%) b | 14.10 |
Rfree (%) c | 18.23 |
B-factor (Averaged) | |
Protein | 17.37 |
Tris | 29.07 |
Solvent | 33.10 |
R.m.s deviations | |
Bond lengths (Å) | 0.013 |
Bond angles (°) | 1.635 |
Ramachandran plot (%) | |
favored | 97.06 |
allowed | 2.94 |
Enzyme | Km (mM) | kcat (s−1) | kcat/Km (mM−1 s−1) | Optimal Conditions | Reference |
---|---|---|---|---|---|
TsaBgl | 0.36 ± 0.02 | 18.62 ± 0.32 | 50.99 ± 2.28 | pH 6, 55 °C | This study |
TthBgl | 0.63 | ND b | ND b | pH 6.4, 70 °C | [36] |
EanBglA | 1.07 | 32.98 | 30.8 | pH 7, 30 °C | [37] |
CceBglA | 0.15 ± 0.01 | 50.67 ± 1.00 | 340 ± 27 | pH 6, 45 °C | [29] |
TreBgl2 | 0.86 ± 0.07 | 6.91 ± 0.16 | 8.1 ± 0.8 | pH 6, 40 °C | [29] |
NkoBgl | 0.29 ± 0.02 | 1.39 ± 0.03 | 4.8 ± 0.4 | pH 5.5, 45 °C | [29] |
TmaBglA | 0.38 ± 0.02 | 452.27 ± 8.25 | 1210 ± 140 | pH 6.2, 90 °C | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.J.; Bornscheuer, U.T.; Nam, K.H. Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum. Molecules 2022, 27, 290. https://doi.org/10.3390/molecules27010290
Kim IJ, Bornscheuer UT, Nam KH. Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum. Molecules. 2022; 27(1):290. https://doi.org/10.3390/molecules27010290
Chicago/Turabian StyleKim, In Jung, Uwe T. Bornscheuer, and Ki Hyun Nam. 2022. "Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum" Molecules 27, no. 1: 290. https://doi.org/10.3390/molecules27010290
APA StyleKim, I. J., Bornscheuer, U. T., & Nam, K. H. (2022). Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum. Molecules, 27(1), 290. https://doi.org/10.3390/molecules27010290