De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator
Abstract
:1. Introduction
2. Results
2.1. Illumina Transcriptome Sequencing, De Novo Assembly, and Annotation
2.2. Gene Ontology (GO) Functional Annotation
2.3. Toxinome of Latrodectus geometricus
2.3.1. Agatoxin Family
2.3.2. ANK Superfamily
2.3.3. Centipede Toxin like Family
2.3.4. Ctenitoxin Family
2.3.5. Lycotoxin Family
2.3.6. Scorpion Toxin like Family
2.3.7. SCP Family
2.3.8. Theriditoxin Family
2.4. Other Venom Components
2.5. Screening Activity of Crude Venom on Voltage-Gated Ion Channels
2.6. Shotgun Proteomics of Latrodectus geometricus
3. Discussion
4. Materials and Methods
4.1. Specimens
4.2. Transcriptomic Analysis
4.2.2. Raw Data, De Novo Assembly, and Functional Annotation
4.2.3. Toxin-like Protein Searching
4.3. Electrophysiology
4.3.1. Spider Venom Purification
4.3.2. Heterologous Expression in Xenopus laevis Oocytes
4.3.3. Electrophysiological Recordings
4.3.4. Shotgun Proteomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Spider Catalog. Version 22.5. Available online: http://wsc.nmbe.ch (accessed on 30 August 2021).
- Wang, X.; Tang, X.; Xu, D.; Yu, D. Molecular basis and mechanism underlying the insecticidal activity of venoms and toxins from Latrodectus spiders. Pest. Manag. Sci. 2019, 75, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Chen, X.; Deng, M.; Xiao, Y.; Wu, Y.; Liu, Z.; Zhou, S.; He, Y.; Liang, S. Interaction site for the inhibition of tarantula Jingzhaotoxin-XI on voltage-gated potassium channel Kv2.1. Toxicon 2016, 124, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, Z.; Lei, S.; Li, S.; Li, X.; Yuan, C. Effects and mechanism of gating modifier spider toxins on the hERG channel. Toxicon 2021, 189, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.S.; Necaise, J.S.; Goddard, J. Additions to the known U.S. distribution of Latrodectus geometricus (Araneae: Theridiidae). J. Med. Entomol. 2008, 45, 959–962. [Google Scholar] [CrossRef]
- Muslimin, M.; Wilson, J.J.; Ghazali, A.R.M.; Braima, K.A.; Jeffery, J.; Wan-Nor, F.; Alaa-Eldin, M.E.; Mohd-Zin, S.W.; Wan-Yusoff, W.S.; Noram-Rashid, Y.; et al. First report of brown widow spider sightings in Peninsular Malaysia and notes on its global distribution. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 11. [Google Scholar] [CrossRef] [Green Version]
- Goddard, J.; Upshaw, S.; Held, D.; Johnnson, K. Severe reaction from envenomation by the brown widow spider, Latrodectus geometricus (Araneae: Theridiidae). South. Med. J. 2008, 101, 1269–1270. [Google Scholar] [CrossRef]
- Earwood, R.C.; Ladde, J.; Giordano, P.A. A case of brown widow envenomation in Central Florida. Cureus 2020, 12, e9165. [Google Scholar] [CrossRef]
- Müller, G.J. Black and brown widow spider bites in South Africa. A series of 45 cases. S. Afr. Med. J. 1993, 83, 399–405. [Google Scholar]
- Castillo, J.D.; Pumplin, D.W. Discrete and discontinuous action of brown widow spider venom on the presynaptic nerve terminals of frog muscle. J. Physiol. 1975, 252, 491–508. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, B.; Finol, H.J.; Reyes-Lugo, M.; Salazar, A.M.; Sánchez, E.E.; Estrella, A.; Roschman-González, A.; Ibarra, C.; Salvi, I.; Rodríguez-Acosta, A. Activities against hemostatic proteins and adrenal gland ultrastructural changes caused by the brown widow spider Latrodectus geometricus (Araneae: Theridiidae) venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 113–121. [Google Scholar] [CrossRef]
- Liu, Y.; Maas, A.; Waloszek, D. Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). Arthropod Struct. Dev. 2009, 38, 401–416. [Google Scholar] [CrossRef]
- Keyler, D.E.; Ahmad, M.; Rodriguez, A.; De Silva, P.M.K. Latrodectus geometricus (Aranea: Theridiidae) envenoming: Rapid resolution of symptoms following F(ab’)2 antivenom therapy. Toxicon 2020, 188, 76–79. [Google Scholar] [CrossRef]
- Pumplin, D.W.; del Castillo, J. Release of packets of acetylcholine and synaptic vesicle elicited by brown widow spider venom in frog motor nerve endings poisoned by botulinum toxin. Life Sci. 1975, 17, 137–141. [Google Scholar] [CrossRef]
- Pumplin, D.W.; Reese, T.S. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. J. Physiol. 1977, 273, 443–457. [Google Scholar] [CrossRef]
- Reyes-Lugo, M.; Sánchez, T.; Finol, H.J.; Sánchez, E.E.; Suárez, J.A.; Guerreiro, B.; Rodríguez-Acosta, A. Neurotoxin activity and ultrastructural changes in muscles caused by the brown widow spider Latrodectus geometricus venom. Rev. Inst. Med. Trop. São Paulo 2009, 51, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Riddle, M.; Carstairs, S. Successful treatment of brown widow spider envenomation with Latrodectus mactans antivenom. Clin. Toxicol. 2020, 58, 301–302. [Google Scholar] [CrossRef]
- Khamtorn, P.; Rungsa, P.; Jangpromma, N.; Klaynongsruang, S.; Daduang, J.; Tessiri, T.; Daduang, S. Partial proteomic analysis of brown widow spider (Latrodectus geometricus) venom to determine the biological activities. Toxicon X 2020, 8, 100062. [Google Scholar] [CrossRef]
- Diego-García, E.; Peigneur, S.; Waelkens, E.; Debaveye, S.; Tytgat, J. Venom components from Citharischius crawshayi spider (Family Theraphosidae): Exploring transcriptome, venomics, and function. Cell. Mol. Life Sci. 2010, 67, 2799–2813. [Google Scholar] [CrossRef]
- Diniz, M.R.V.; Paiva, A.L.B.; Guerra-Duarte, C.; Nishiyama Jr, M.Y.; de Oliveira, U.; Borges, M.H.; Yates, J.R.; Junqueira-de-Azevedo, I.D. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 2018, 13, e0200628. [Google Scholar] [CrossRef]
- Garb, J. Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses. J. Vis. Exp. 2014, 93, e51618. [Google Scholar] [CrossRef] [Green Version]
- Haney, R.A.; Matte, T.; Forsyth, F.S.; Garb, J.E. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol. 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Hu, A.; Chen, B.; Xiao, Z.; Zhou, X.; Liu, Z. Transcriptomic analysis of the spider venom gland reveals venom diversity and species consanguinity. Toxins 2019, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Koua, D.; Mary, R.; Ebou, A.; Barrachina, C.; Koulali, K.E.; Cazals, G.; Charnet, P.; Dutertre, S. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins 2020, 12, 501. [Google Scholar] [CrossRef]
- Medina-Santos, R.; Guerra-Duarte, C.; Lima, S.A.; Costa-Oliveira, F.; de Aquino, P.A.; do Camo, A.O.; Ferreyra, C.B.; Gonzalez-Kozlova, E.E.; Kalapothakis, E.; Chávez-Olórtegui, C. Diversity of astacin-like metalloproteases identified by transcriptomic analysis in Peruvian Loxosceles laeta spider venom and in vitro activity characterization. Biochimie 2019, 167, 81–92. [Google Scholar] [CrossRef]
- Oldrati, V.; Koua, D.; Allard, P.; Hulo, N.; Arrell, M.; Nentwig, W.; Lisacek, F.; Wolfender, J.; Kuhn-Nentwig, L.; Stöcklin, R. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE 2017, 12, e0172966. [Google Scholar] [CrossRef]
- Paiva, A.L.B.; Mudadu, M.A.; Pereira, E.H.T.; Marri, C.A.; Guerra-Duarte, C.; Diniz, M.R.V. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Toxicon 2019, 163, 59–69. [Google Scholar] [CrossRef]
- Tang, X.; Yang, J.; Duan, Z.; Jiang, L.; Liu, Z.; Liang, S. Molecular diversification of antimicrobial peptides from the wolf spider Lycosa sinensis venom based on peptidomic, transcriptomic, and bioinformatic analyses. Acta Biochim. Sin. 2020, 52, 1274–1280. [Google Scholar] [CrossRef]
- Undheim, E.A.B.; Sunagar, K.; Herzig, V.; Kely, L.; Low, D.H.W.; Jackson, T.N.W.; Jones, A.; Kurniawan, N.; King, G.F.; Ali, S.A.; et al. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins 2013, 5, 2488–2503. [Google Scholar] [CrossRef] [Green Version]
- Saez, N.J.; Senff, S.; Jensen, J.E.; Er, S.Y.; Herzig, V.; Rash, L.D.; King, G.F. Spider-venom peptides as therapeutics. Toxins 2010, 2, 2851–2871. [Google Scholar] [CrossRef] [Green Version]
- Windley, M.J.; Herzig, V.; Dziemborowicz, S.A.; Hardy, M.C.; King, G.F.; Nicholson, G.M. Spider-venom peptides as bioinsecticides. Toxins 2012, 4, 191–227. [Google Scholar] [CrossRef] [Green Version]
- Klint, J.K.; Senff, S.; Rupasinghe, D.B.; Er, S.Y.; Herzig, V.; Nicholson, G.M.; King, G.F. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon 2012, 60, 478–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peigneur, S.; Paiva, A.L.B.; Cordeiro, M.R.; Borges, M.H.; Diniz, M.R.V.; de Lima, M.E.; Tytgat, J. Phoneutria nigriventer Spider Toxin PnTx2-1 (δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating. Toxicon 2018, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Duan, Z.; Yu, Y.; Liu, Z.; Liu, Z.; Liang, S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE 2013, 8, e81357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penaforte, C.L.; Prado, V.F.; Prado, M.A.; Romano-Silva, M.A.; Guimarães, P.E.; De Marco, L.; Gomez, M.V.; Kalapothakis, E. Molecular cloning of cDNAs encoding insecticidal neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon 2000, 38, 1443–1449. [Google Scholar] [CrossRef]
- Reily, M.D.; Thanabal, V.; Adams, M.E. The solution structure of omega-Aga-IVB, a P-type calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. J. Biomol. NMR 1995, 5, 122–132. [Google Scholar] [CrossRef]
- Fletcher, J.I.; Chapman, B.E.; Mackay, J.P.; Howden, M.E.; King, G.F. The structure of versutoxin (delta-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure 1997, 5, 1525–1535. [Google Scholar] [CrossRef] [Green Version]
- Luch, A. Mechanistic insights on spider neurotoxins. EXS 2010, 100, 293–315. [Google Scholar] [CrossRef]
- Orlova, E.V.; Ranhman, M.A.; Gowen, B.; Volynski, K.E.; Ashton, A.C.; Manser, C.; van Heel, M.; Ushkaryov, Y.A. Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nat. Strut. Biol. 2000, 7, 48–53. [Google Scholar] [CrossRef]
- Yan, S.; Wang, X. Recent advances in research on widow spider venoms and toxins. Toxins 2015, 7, 5055–5067. [Google Scholar] [CrossRef] [Green Version]
- Ashton, A.C.; Rahman, M.A.; Volynski, K.E.; Manser, C.; Orlova, E.V.; Matsushita, H.; Davletov, B.A.; van Heel, M.; Grishin, E.V.; Ushkaryov, Y.A. Tetramerisation of alpha-latrotoxin by divalent cations is responsible for toxin-induced non-vesicular release and contributes to the Ca(2+)-dependent vesicular exocytosis from synaptosomes. Biochimie 2000, 82, 453–468. [Google Scholar] [CrossRef]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef]
- Undheim, E.; Jones, A.; Clauser, K.R.; Holland, J.W.; Pineda, S.S.; King, G.F.; Fry, B.G. Clawing through evolution: Toxin diversification and convergence in the ancient lineage Chilopoda (Centipedes). Mol. Biol. Evol. 2014, 31, 2124–2148. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Zhang, D.; Zhang, Y.; Peng, L.; Chen, J.; Liang, S. Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2010, 5, 81–88. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Z.; Yu, N.; Li, J.; Liu, Z. Toxin diversity revealed by the venom gland transcriptome of Pardosa pseudoannulata, a natural enemy of several insect pests. Comp. Biochem. Physiol. Part D Genom. Proteom. 2008, 28, 172–182. [Google Scholar] [CrossRef]
- Kubista, H.; Mafra, R.A.; Chong, Y.; Nicholson, G.M.; Beirão, P.S.L.; Cruz, J.S.; Boehm, S.; Nentwig, W.; Kuhn-Nentwig, L. CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons. Neuropharmacology 2007, 52, 1650–1662. [Google Scholar] [CrossRef] [Green Version]
- Kuhn-Nentwig, L.; Langenegger, N.; Heller, M.; Koua, D.; Nentwig, W. The dual prey-inactivation strategy of spiders-in-depth venomic analysis of Cupiennius salei. Toxins 2019, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Clémençon, B.; Kuhn-Nentwig, L.; Langenegger, N.; Kopp, L.; Peigneur, S.; Tytgat, J.; Nentwig, W.; Lüscher, B.P. Neurotoxin merging: A strategy deployed by the venom of spider Cupiennius salei to potentiate toxicity on insects. Toxins 2020, 12, 250. [Google Scholar] [CrossRef]
- Wullschleger, B.; Nentwig, W.; Kuhn-Nentwig, L. Spider venom: Enhancement of venom efficacy mediated by different synergistic strategies in Cupiennius salei. J. Exp. Biol. 2005, 208, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- Luna-Ramirez, K.; Quintero-Hernández, V.; Juárez-González, V.; Possani, L.D. Whole transcriptome of the venom gland from Urodacus yaschenkoi scorpion. PLoS ONE 2015, 10, e0127883. [Google Scholar] [CrossRef]
- Gibbs, G.M.; Roelants, K.; O’Bryan, M.K. The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—Roles in reproduction, cancer, and immune defense. Endocr. Rev. 2008, 29, 865–897. [Google Scholar] [CrossRef]
- Silva, E.C.; Camargos, T.S.; Maranhão, A.Q.; Silva-Pereira, I.; Silva, L.P.; Possani, L.D.; Schwartz, E.F. Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 2009, 54, 252–261. [Google Scholar] [CrossRef]
- Petegem, F.V. Ryanodine receptors: Structure and function. J. Biol. Chem. 2012, 287, 31624–31632. [Google Scholar] [CrossRef] [Green Version]
- McCleary, R.J.R.; Kini, R.M. Non-enzymatic proteins from snake venoms: A gold mine of pharmacological tools and drug leads. Toxicon 2013, 62, 56–74. [Google Scholar] [CrossRef]
- Lodovicho, M.E.; Costa, T.R.; Bernardes, C.P.; Menaldo, D.L.; Zoccal, K.L.; Carone, S.E.; Menaldo, D.L.; Zoccal, K.F.; Carone, S.E.; Rosa, J.C.; et al. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicol. Lett. 2017, 265, 156–169. [Google Scholar] [CrossRef]
- Lecht, S.; Chiaverelli, R.A.; Gerstenhaber, J.; Calvete, J.J.; Lazarovici, P.; Casewell, N.R.; Harrison, R.; Lelkes, P.I.; Marcinkiewicz, C. Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus scochureki. Biochim. Biophys. Acta 2015, 1850, 1169–1179. [Google Scholar] [CrossRef]
- Gasparini, S.; Kiyatkin, N.; Drevet, P.; Boulain, J.C.; Tacnet, F.; Ripoche, P.; Forest, E.; Grishin, E.; Ménez, A. The low molecular weight protein which co-purifies with alpha-latrotoxin is structurally related to crustacean hyperglycemic hormones. J. Biol. Chem. 1994, 269, 19803–19809. [Google Scholar] [CrossRef]
- Rohou, A.; Nield, J.; Ushkaryyov, Y.A. Insecticidal toxins from black widow spider venom. Toxicon 2007, 49, 531–549. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.C.; Duan, Z.G.; Yang, J.; Yan, X.J.; Zhou, H.; He, X.Z.; Liang, S.P. Physiological and biochemical analysis of L. tredecimguttatus venom collected by electrical stimulation. J. Physiol. Biochem. 2007, 63, 221–230. [Google Scholar] [CrossRef]
- Dunbar, J.P.; Fort, A.; Redureau, D.; Sulpice, R.; Dugon, M.M.; Quinton, L. Venomics approach reveals a high proportion of Latrodectus-like toxins in the venom of the Noble false widow spider Steatoda nobilis. Toxins 2020, 12, 402. [Google Scholar] [CrossRef]
- Ye, J.; Zhao, H.; Wang, H.; Bian, J.; Zheng, R. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon 2010, 56, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Langengger, N.; Nentwig, W.; Kuhn-Nentwig, L. Spider venom: Components, modes of action, and novel strategies in transcriptomic and proteomic analyses. Toxins 2019, 11, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubocskii, P.V.; Vassilevski, A.A.; Samsonova, O.V.; Egorova, N.S.; Kozlov, S.A.; Feofanov, A.V.; Arseniev, A.S.; Grishin, E.V. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J. 2011, 278, 4382–4393. [Google Scholar] [CrossRef] [PubMed]
- Haney, R.A.; Ayoub, N.A.; Clarke, T.H.; Hayashi, C.Y.; Garb, J.E. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom. 2014, 15, 366. [Google Scholar] [CrossRef] [Green Version]
- Liberato, T.; Troncine, L.R.P.; Yamashiro, E.T.; Serrana, S.M.T.; Zelamis, A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids 2015, 48, 901–906. [Google Scholar] [CrossRef]
- Washburn, M.P.; Wolters, D.; Yates, J.R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, 242–247. [Google Scholar] [CrossRef]
- Sade, Y.B.; Bóia-Ferreira, M.; Gremski, L.H.; da Silveira, R.B.; Gremski, W.; Senff-Ribeiro, A.; Chaim, O.M.; Veiga, S.S. Molecular cloning, heterologous expression and functional characterization of a novel translationally-controlled tumor protein (TCTP) family member from Loxosceles intermedia (brown spider) venom. Int. J. Biochem. Cell Biol. 2012, 44, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Serrano, S.M.T. The long read of research on snake venom serine proteases. Toxicon 2013, 62, 19–26. [Google Scholar] [CrossRef]
- Borges, M.H.; Figueriredo, S.G.; Leprevost, F.V.; Lima, M.E.D.; Cordeiro, M.N.; Diniz, M.R.V.; Moresco, J.; Carvalho, P.C.; Yates, J.R. Venomous extract protein profile of Brazilian tarantula Grammostola iheringi: Searching for potential biotechnological applications. J. Proteom. 2016, 136, 35–47. [Google Scholar] [CrossRef]
- da Silveira, R.B.; Wille, A.C.M.; Chaim, O.M.; Appel, M.H.; Silva, D.T.; Franco, C.R.C.; Toma, L.; Mangili, O.C.; Gremski, W.; Dietrich, C.P.; et al. Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. Biochem. J. 2007, 406, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Gomez, S.; Munoz, L.J.V.; Lanchero, P.; Latorre, C.S. Partial characterization of venom from the Colombian spider Phoneutria boliviensis (Aranae:Ctenidae). Toxins 2015, 7, 2872–2887. [Google Scholar] [CrossRef] [Green Version]
- Kiyatkin, N.I.; Dulubova, I.E.; Chekhovskaya, I.A.; Grishin, E.V. Cloning and structure of cDNA encoding alpha-latrotoxin from black widow spider venom. FEBS Lett. 1990, 270, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Kiyatkin, N.; Dulubova, I.; Grishin, E. Cloning and structural analysis of alpha-latroinsectotoxin cDNA. Abundance of ankyrin-like repeats. Eur. J. Biochem. 1993, 213, 121–127. [Google Scholar] [CrossRef]
- Cock, P.A.; Fields, C.J.; Goto, N.; Heuer, M.; Rice, P. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010, 38, 1767–1771. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Shyamal, S.; Durica, D.S. Analysis of annotation and differential expression methods used in RNA-seq studies in crustacean systems. Intergr. Comp. Biol. 2016, 56, 1067–1079. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short oiligonucleotide alignment program. Bioinfomatics 2008, 24, 713–714. [Google Scholar] [CrossRef] [Green Version]
- Buckingham, S.D.; Pym, L.; Sattelle, D.B. Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides. Methods Mol. Biol. 2006, 322, 331–345. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342. [Google Scholar] [CrossRef]
Latrodectus geometricus Venom Gland Sample | |
---|---|
Total Raw Reads | 85,709,012 |
Total Clean Reads | 67,659,540 |
Total Clean Nucleotide (nt) | 6,765,954,000 |
Q20 (%) 1 | 95.15 |
Assembly | Number | Total Length (nt) | Mean Length (nt) | N50 1 (nt) | GC% 2 |
---|---|---|---|---|---|
Contig | 47,379 | 23,845,768 | 503 | 681 | 34.34 |
Unigene | 32,505 | 18,752,035 | 576 | 770 | 34.67 |
Venom Components | Functions | Latrodectus hesperus [67] | Latrodectus tredecimguttatus [34] | Latrodectus geometricus | Steatoda nobilis [61] |
---|---|---|---|---|---|
α-Latrotoxin | Targeting vertebrates, form Ca2+ channel on presynaptic neurons, massive neurotransmitter release | √ | √ | √ | √ |
α, δ-Latroinsectotoxins | Targeting insects, form Ca2+ channel on presynaptic neurons, massive neurotransmitter release | √ | √ | √ | √ |
α-Latrocrustotoxin | Targeting crustaceans, form Ca2+ channel on presynaptic neurons, massive neurotransmitter release | √ | √ | √ | √ |
Ctenitoxin | Protease inhibitors and ion channel blocker | N/A | √ | √ | √ |
Agatotoxin | Ion channel blockers | N/A | N/A | √ | N/A |
Centipede toxin | Voltage-gated ion channel inhibitor | N/A | N/A | √ | N/A |
Lycotoxin | Calcium channel inhibitor/ potential insecticides | N/A | √ | √ | N/A |
Scorpion toxin like | Unknown function | N/A | √ | √ | N/A |
Cysteine Rich Secretory Protein (CRISPs) | Calcium channel inhibitor | √ | N/A | √ | √ |
Metalloprotease | Tissue damage/enhancing latrotoxins spreading | √ | N/A | √ | √ |
Serine protease | Tissue damage/enhancing latrotoxins spreading | √ | N/A | √ | √ |
Hyaluronidase | Spreading factor/enhancing latrotoxins spreading | √ | N/A | √ | √ |
Chitinase | Arthropod exoskeletons digestion | √ | N/A | √ | √ |
Inhibitor cystine knot (ICK) | Ion channel function alternation | √ | N/A | √ | √ |
Lipase | Breaking down fat/enhancing latrotoxins spreading | √ | N/A | √ | √ |
Phospholipase | Phospholipids degradation/enhancing latrotoxins spreading | N/A | N/A | √ | √ |
Defensins | Antibacterial activity | N/A | N/A | √ | N/A |
Translationally Controlled Tumor Proteins (TCTPs) | Inducing the local inflammatory reaction | N/A | N/A | √ | N/A |
Leucine-rich | Pathogen infection protection | N/A | N/A | √ | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamtorn, P.; Peigneur, S.; Amorim, F.G.; Quinton, L.; Tytgat, J.; Daduang, S. De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules 2022, 27, 47. https://doi.org/10.3390/molecules27010047
Khamtorn P, Peigneur S, Amorim FG, Quinton L, Tytgat J, Daduang S. De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules. 2022; 27(1):47. https://doi.org/10.3390/molecules27010047
Chicago/Turabian StyleKhamtorn, Pornsawan, Steve Peigneur, Fernanda Gobbi Amorim, Loïc Quinton, Jan Tytgat, and Sakda Daduang. 2022. "De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator" Molecules 27, no. 1: 47. https://doi.org/10.3390/molecules27010047
APA StyleKhamtorn, P., Peigneur, S., Amorim, F. G., Quinton, L., Tytgat, J., & Daduang, S. (2022). De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules, 27(1), 47. https://doi.org/10.3390/molecules27010047