Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Modified Oyster Shell Powder
2.3. Set-Up of Ca, P and B Reaction Systems
2.3.1. B Removal with P Addition
2.3.2. Optimum Ca/P Molar Ration for Co-Precipitation Experiment
2.3.3. Adsorption Experiments
2.4. Characterization
3. Results
3.1. Occurrence of P on B Removal from Water
3.2. B Removal through Co-Precipitation
3.3. Adsorption Mechanism
3.4. Characterization Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nielsen, F.H.; Eckhert, C.D. Boron. Adv. Nutr. 2020, 11, 461–462. [Google Scholar] [PubMed]
- Cotruvo, J.A. 2017 WHO guidelines for drinking water quality: First addendum to the fourth edition. J. Am. Water Works Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, E.; Sasaki, A.; Endo, M. Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia. J. Hazard. Mater. 2012, 237–238, 277–282. [Google Scholar] [CrossRef]
- Vera, A.; Moreno, J.; García, C.; Morais, D.; Bastida, F. Boron in soil: The impacts on the biomass, composition and activity of the soil microbial community. Sci. Total Environ. 2019, 685, 564–573. [Google Scholar] [CrossRef]
- Hong, M.; Li, D.; Wang, B.; Zhang, J.; Peng, B.; Xu, X.; Wang, Y.; Bao, C.; Chen, J.; Zhang, Q. Cellulose-derived polyols as high-capacity adsorbents for rapid boron and organic pollutants removal from water. J. Hazard. Mater. 2021, 419, 126503. [Google Scholar] [CrossRef]
- Fuchida, S.; Hobo, S.; Tsuchiya, K.; Tanaka, Y.; Nakamura, T.; Tokoro, C. Experimental Investigation of Boron Removal Mechanism from Wastewater by Calcined Ettringite. Water Air Soil Pollut. 2020, 231, 1–9. [Google Scholar] [CrossRef]
- Guan, Z.; Lv, J.; Bai, P.; Guo, X. Boron removal from aqueous solutions by adsorption—A review. Desalination 2016, 383, 29–37. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Mahasti, N.N.; Huang, Y.-H. Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review. J. Hazard. Mater. 2021, 407, 124401. [Google Scholar] [CrossRef]
- Jing-Mei, S.; Chii, S.; Ju-Chang, H. Co-removal of hexavalent chromium through copper precipitation in synthetic wastewater. Environ. Sci. Technol. 2003, 37, 4281–4287. [Google Scholar]
- Sasaki, K.; Hayashi, Y.; Toshiyuki, K.; Guo, B. Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite. Chemosphere 2018, 207, 139–146. [Google Scholar] [CrossRef]
- Sasaki, K.; Toshiyuki, K.; Ideta, K.; Miki, H.; Hirajima, T.; Miyawaki, J.; Murayama, M.; Dabo, I. Removal mechanism of high concentration borate by co-precipitation with hydroxyapatite. J. Environ. Chem. Eng. 2016, 4, 1092–1101. [Google Scholar] [CrossRef]
- Sasaki, K.; Toshiyuki, K.; Ideta, K.; Miyawaki, J.; Hirajima, T. Interfacial effects of MgO in hydroxylated calcined dolomite on the co-precipitation of borates with hydroxyapatite. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 1–10. [Google Scholar] [CrossRef]
- Petit, S.; Thomas, C.; Millot, Y.; Averseng, F.; Brouri, D.; Krafft, J.; Dzwigaj, S.; Rousse, G.; Laberty-Robert, C.; Costentin, G. Synergistic Effect Between Ca4V4O14 and Vanadium-Substituted Hydroxyapatite in the Oxidative Dehydrogenation of Propane. ChemCatChem 2021, 13, 3995–4009. [Google Scholar] [CrossRef]
- Gibert, O.; Valderrama, C.; Martínez, M.M.; Darbra, R.M.; Moncunill, J.O.; Martí, V. Hydroxyapatite Coatings on Calcite Powder for the Removal of Heavy Metals from Contaminated Water. Water 2021, 13, 1493. [Google Scholar] [CrossRef]
- Wu, C.-S.; Wu, D.-Y.; Wang, S.-S. Antibacterial properties of biobased polyester composites achieved through modification with a thermally treated waste scallop shell. ACS Appl. Bio Mater. 2019, 2, 2262–2270. [Google Scholar] [CrossRef]
- Liu, C.; Chen, S.-H.; Yang-Zhou, C.-H.; Zhang, Q.-G.; Michael, R. Application of Nano-Hydroxyapatite Derived from Oyster Shell in Fabricating Superhydrophobic Sponge for Efficient Oil/Water Separation. Molecules 2021, 26, 3703. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Liu, Y.; Xue, B.; Chen, J.; Wang, H.; Liu, Y. Facile Preparation of a Novel Bi2WO6/Calcined Mussel Shell Composite Photocatalyst with Enhanced Photocatalytic Performance. Catalysts 2020, 10, 1166. [Google Scholar] [CrossRef]
- Wang, C.; Cai, M.; Liu, Y.; Yang, F.; Zhang, H.; Liu, J.; Li, S. Facile construction of novel organic–inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight. J. Colloid Interface Sci. 2021, 605, 727–740. [Google Scholar] [CrossRef]
- Hossain, M.F.; Islam, M.S.; Kashem, M.A.; Osman, K.T.; Zhou, Y. Lead immobilization in soil using new hydroxyapatite-like compounds derived from oyster shell and its uptake by plant. Chemosphere 2021, 279, 130570. [Google Scholar] [CrossRef]
- Martins, M.C.; Santos, E.B.; Marques, C.R. First study on oyster-shell-based phosphorous removal in saltwater—A proxy to effluent bioremediation of marine aquaculture. Sci. Total Environ. 2017, 574, 605–615. [Google Scholar] [CrossRef]
- Harp, D.L. Modifications to the azomethine-H method for determining boron in water. Anal. Chim. Acta 1997, 346, 373–379. [Google Scholar] [CrossRef]
- Ha, S.; Lee, J.W.; Choi, S.-H.; Kim, S.-H.; Kim, K.; Kim, Y. Calcination characteristics of oyster shells and their comparison with limestone from the perspective of waste recycling. J. Mater. Cycles Waste Manag. 2019, 21, 1075–1084. [Google Scholar] [CrossRef]
- Inthapanya, X.; Wu, S.; Han, Z.; Zeng, G.; Wu, M.; Yang, C. Adsorptive removal of anionic dye using calcined oyster shells: Isotherms, kinetics, and thermodynamics. Environ. Sci. Pollut. Res. 2019, 26, 5944–5954. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.E.; Boncukcuoğlu, R.; Bayar, S.; Fil, B.A.; Kocakerim, M.M. Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean J. Chem. Eng. 2012, 29, 1382–1387. [Google Scholar] [CrossRef]
- Cichy, B.; Kużdżał, E.; Krztoń, H. Phosphorus recovery from acidic wastewater by hydroxyapatite precipitation. J. Environ. Manag. 2019, 232, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Gashti, M.P.; Shokri, A. Hydrogel-assisted low-temperature synthesis of calcium borate nanoparticles. J. Aust. Ceram. Soc. 2018, 54, 601–607. [Google Scholar] [CrossRef]
- Asimeng, B.O.; Fianko, J.R.; Kaufmann, E.E.; Tiburu, E.K.; Hayford, C.F.; Anani, P.A.; Dzikunu, O.K. Preparation and characterization of hydroxyapatite from Achatina achatina snail shells: Effect of carbonate substitution and trace elements on defluoridation of water. J. Asian Ceram. Soc. 2018, 6, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Chaikina, M.V.; Bulina, N.V.; Vinokurova, O.B.; Prosanov, I.Y.; Dudina, D.V. Interaction of calcium phosphates with calcium oxide or calcium hydroxide during the “soft” mechanochemical synthesis of hydroxyapatite. Ceram. Int. 2019, 45, 16927–16933. [Google Scholar] [CrossRef]
- Tsai, H.C.; Lo, S.L. Boron recovery from high boron containing wastewater using modified sub-micron Ca(OH)2 particle. Int. J. Environ. Sci. Technol. 2015, 12, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Nagato, S.; Ideta, K.; Miyawaki, J.; Hirajima, T. Enhancement of fluoride immobilization in apatite by Al3+ additives. Chem. Eng. J. 2017, 311, 284–292. [Google Scholar] [CrossRef]
- Tsai, H.-C.; Lo, S.-L. Boron removal and recovery from concentrated wastewater using a microwave hydrothermal method. J. Hazard. Mater. 2011, 186, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Huang, Z.; Zhang, Y.; Hu, H.; Liang, X.; Gong, S.; Zhou, J.; Tu, R. Magnetic chitosan-hydroxyapatite composite microspheres: Preparation, characterization, and application for the adsorption of phenolic substances. Bioresour. Technol. 2019, 274, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Chaïrat, C.; Schott, J.; Oelkers, E.H.; Lartigue, J.-E.; Harouiya, N. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12. Geochim. Cosmochim. Acta 2007, 71, 5901–5912. [Google Scholar] [CrossRef]
- Fukuda, H.; Tsuchiya, K.; Toba, Y.; Eguchi, M.; Tokoro, C. Rapid boron removal from wastewater using low-crystalline magnesium oxide. J. Environ. Chem. Eng. 2020, 8, 104171. [Google Scholar] [CrossRef]
- Sasaki, K.; Qiu, X.; Moriyama, S.; Tokoro, C.; Ideta, K.; Miyawaki, J. Characteristic sorption of H3BO3/B(OH)4− on magnesium oxide. Mater. Trans. 2013, 54, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Hashimoto, Y.; Wang, S.-L. Boron incorporation into precipitated calcium carbonates affected by aqueous pH and boron concentration. J. Hazard. Mater. 2019, 383, 121183. [Google Scholar] [CrossRef]
- Vu, X.; Lin, J.-Y.; Shih, Y.-J.; Huang, Y.-H. Reclaiming Boron as Calcium Perborate Pellets from Synthetic Wastewater by Integrating Chemical Oxo-Precipitation within a Fluidized-Bed Crystallizer. ACS Sustain. Chem. Eng. 2018, 6, 4784–4792. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Q.; Lyu, J.; Bai, P.; Guo, X. Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: An adsorption and isotopic separation study. Sep. Purif. Technol. 2020, 231, 115930. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, Y.; Yu, T.; Zhu, P.; Yan, X.; Wang, Z.; Guan, S. Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior. Carbon 2017, 113, 266–273. [Google Scholar] [CrossRef]
- Sasaki, K.; Toshiyuki, K.; Guo, B.; Ideta, K.; Hayashi, Y.; Hirajima, T.; Miyawaki, J. Calcination effect of borate-bearing hydroxyapatite on the mobility of borate. J. Hazard. Mater. 2018, 344, 90–97. [Google Scholar] [CrossRef]
- Ternane, R.; Cohen-Adad, M.; Panczer, G.; Goutaudier, C.; Kbir-Ariguib, N.; Trabelsi-Ayedi, M.; Florian, P.; Massiot, D. Introduction of boron in hydroxyapatite: Synthesis and structural characterization. J. Alloys Compd. 2002, 333, 62–71. [Google Scholar] [CrossRef]
- Klochko, K.; Cody, G.D.; Tossell, J.A.; Dera, P.; Kaufman, A.J. Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR. Geochim. Cosmochim. Acta 2009, 73, 1890–1900. [Google Scholar] [CrossRef]
- Mavromatis, V.; Montouillout, V.; Noireaux, J.; Gaillardet, J.; Schott, J. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochim. Cosmochim. Acta 2015, 150, 299–313. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang-Zhou, C.-H.; Cao, J.-X.; Dong, S.-S.; Chen, S.-H.; Michael, R.N. Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder. Molecules 2022, 27, 54. https://doi.org/10.3390/molecules27010054
Yang-Zhou C-H, Cao J-X, Dong S-S, Chen S-H, Michael RN. Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder. Molecules. 2022; 27(1):54. https://doi.org/10.3390/molecules27010054
Chicago/Turabian StyleYang-Zhou, Chi-Hao, Jia-Xin Cao, Shan-Shan Dong, Su-Hua Chen, and Ruby N. Michael. 2022. "Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder" Molecules 27, no. 1: 54. https://doi.org/10.3390/molecules27010054
APA StyleYang-Zhou, C. -H., Cao, J. -X., Dong, S. -S., Chen, S. -H., & Michael, R. N. (2022). Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder. Molecules, 27(1), 54. https://doi.org/10.3390/molecules27010054