Attribution Markers and Data Mining in Art Authentication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement of Authenticity
2.2. Case Studies
2.3. Attribution Markers
2.4. Analyzed Dataset
2.5. Decision Trees
3. Results and Discussion
3.1. Dataset Characteristics
3.2. Building the Decision Tree
Algorithm 1. |
if state_consistent equal to −1 or 0: |
if supporting_documents equal to −1 or 0: |
return FORGED (9 paintings) |
else: |
if typical_ground_layer equal to −1 or 0: |
return AUTHENTIC (1 painting) |
else: |
return FORGED (1 painting) |
else: |
return AUTHENTIC (35 paintings) |
3.3. Relevance of the Attribution Markers
3.4. First Attempt to Classification
3.5. Decision Trees on Subsets of Features
3.6. Cross-Validation of the Classifier
3.7. Towards a Robust Classifier
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrmann, T. The Contemporary Art Market Report 2016. Available online: https://www.artprice.com/artprice-reports/the-contemporary-art-market-report-2016/contemporary-art-market-2016 (accessed on 20 September 2021).
- Ehrmann, T.; Wan, J. The Art Market in 2020 by AMMA & Artprice.com. AMMA (Art Mark Monit Artron). 2020. Available online: https://imgpublic.artprice.com/pdf//the-art-market-in-2020.pdf (accessed on 20 September 2021).
- Amineddoleh, L. Purchasing Art in a Market Full of Forgeries: Risks and Legal Remedies for Buyers. Int. J. Cult. Prop. 2015, 22, 419–435. [Google Scholar] [CrossRef] [Green Version]
- Maslin; Nir, S.; Cohen, P.; Rashbaumaug, W.K. Struggling Immigrant Artist Tied to $80 Million New York Fraud. New York Times, 17 August 2013; p. 1. [Google Scholar]
- Fleming, S.J. Authenticity in Art: The Scientific Detection of Forgery; Institute of Physics: Bristol, UK, 1975; p. 164. [Google Scholar]
- Craddock, P. Scientific Investigation of Copies, Fakes and Forgeries; Elsevier: Amsterdam, The Netherlands, 2009; p. 628. [Google Scholar]
- Blumberg, N. Wolfgang Beltracchi. In Encyclopedia Britannica. Available online: https://www.britannica.com/biography/Wolfgang-Beltracchi (accessed on 20 September 2021).
- Birkenstock, A. Beltracchi—Die Kunst der Fälschung; Fruitmarket Kultur und Medien GmbH: Cologne, Germany, 2014. [Google Scholar]
- Wolters, C. Die Bedeutung der Gemälde Durchleuchtung mit Röntgenstrahlen für Die Kunstgeschichte Dargestellt an Beispielen aus der Niederländischen Unddeutschen Malerei des 15. Und 16. Lichtungen zur Kunstgeschichte; Frankfurt am Main Prestel Verlag: Frankfurt, Germany, 1938. [Google Scholar]
- De Wild, A.M. The Scientific Examination of Pictures; An Investigation of the Pigments Used by the Dutch and Flemish Masters from the Brothers Van Eyck to the Middle of the 19th Century; G. Bell & Sons Ltd.: London, UK, 1929; p. 121. [Google Scholar]
- Keen, P.G.W. Decision Support Systems: An Organizational Perspective; Massachusetts Institute of Technology: Cambridge, MA, USA, 1980; p. 50. [Google Scholar]
- Garg, A.X.; Adhikari, N.K.J.; McDonald, H.; Rosas-Arellano, M.P.; Devereaux, P.J.; Beyene, J.; Sam, J.; Haynes, R.B. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. J. Am. Med. Assoc. 2005, 293, 1223–1238. [Google Scholar] [CrossRef] [PubMed]
- Hand, D.J.; Henley, W.E. Statistical classification methods in consumer credit scoring: A review. J. R. Stat. Soc. Ser. A Stat. Soc. 1997, 160, 523–541. [Google Scholar] [CrossRef]
- Samuel, A.L. Some Studies in Machine Learning. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007, 31, 249–268. [Google Scholar]
- Awad, W.; Elseuofi, S.M. Machine Learning Methods for Spam E-Mail Classification. Int. J. Comput. Sci. Inf. Technol. 2011, 3, 173–184. [Google Scholar] [CrossRef]
- Fawcett, T.; Provost, F. Combining Data Mining and Machine Learning for Effective User Profiling. KDD 1996, 8–13. [Google Scholar]
- Wu, R.S.; Ou, C.S.; Lin, H.Y.; Chang, S.I.; Yen, D.C. Using data mining technique to enhance tax evasion detection performance. Expert Syst. Appl. 2012, 39, 8769–8777. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology—Systems, Man and Cybernetics. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Ellen, D.; Day, S.; Davies, C. Scientific Examination of Documents: Methods and Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018; p. 266. [Google Scholar]
- Ciesla, R.; Trzciński, M.; Szwagrzyk, K.; Drawc, M. Interdisciplinary examination of documents of historical significance. Int. J. Conserv. Sci. 2020, 11, 669–678. [Google Scholar]
- Cieśla, R. Questioned document examination with the use of alternative and complementary non-destructive methods. Nowa Kodyfikacja Prawa Karnego 2021, 57, 149–167. [Google Scholar] [CrossRef]
- Ciba, M.; Kozieł, A.; Łydżba-Kopczyńska, B. Obrazy Michaela Willmanna Pod Lupą; Kozieł, A., Ed.; Muzeum Regionalne w Jaworze: Jawor, Poland, 2011; pp. 1–111. [Google Scholar]
- Łydżba-Kopczyńska, B. Chemia obrazu: Badania spektroskopowe obrazu “Św. Jan Kapistran” Michaela Leopolda Willmanna. In Fides et Scientia: Wokół Obrazu Michaela Leopolda Willmanna Św Jan Kapistran; Muzeum Miejskie Wrocławia: Wrocław, Poland, 2011; pp. 133–141. [Google Scholar]
- Woźny, Ł. Ocena Zakresu Zastosowania Metod Mikroskopowych i Spektroskopowych w Badaniach Pigmentów i Spoiw Malarskich. Master’s Thesis, University of Wrocław, Wrocław, Poland, 2015. [Google Scholar]
- Łydżba-Kopczyńska, B.; Iwanicka, M.; Kowalska, M.; Targowski, P. Combining macro-XRF, OCT, and sampling techniques in the authentication study of the painting attributed to Michael Willmann. X-ray Spectrom. 2021, 50, 384–400. [Google Scholar] [CrossRef]
- Frączek, P.; Klimek, A.; Klisińska-Kopacz, A.; Łydżba-Kopczyńska, B.; Obarzanowski, M. Report of National Center for Reseach on Heritage K1-2015-03—Badania Technologiczne Obrazu Pojmanie Samsona ze Zbiorów Muzeum Zamkowego w Pszczynie dla Muzeum Zamkowego w Pszczynie; National Museum in Kraków: Kraków, Poland, 2017; pp. 1–180. [Google Scholar]
- Ciba, M.; Łydżba-Kopczyńska, B. Technika malarska Jeremiasa Josepha Knechtla na podstawie badań fizykochemicznych obrazu Św. Karol Boromeusz z kościoła filialnego pw. św. Wawrzyńca w Przychowej. In Jeremias Joseph Knechtel (1679–1750) Legnicki Malarz Doby Baroku; Muzeum Miedz: Legnica, Poland, 2012; pp. 69–84. [Google Scholar]
- Łydżba-Kopczyńska, B. Raman Spectroscopy Applied to the Analysis of Typomorphic Minerals in Various Provenance Investigations of Cultural Heritage Objects. In Raman Spectroscopy in Archaeology and Art History, 2nd ed.; Vandenabeele, P., Edwards, H., Eds.; Royal Society of Chemistry: London, UK,, 2019; Volume 2, pp. 289–313. [Google Scholar]
- Łydżba-Kopczyńska, B.; Targowski, P.; Iwanicka, M. MACRO-XRF scannig and optical coherence tomography (OCT) techniques for the authentification of selected artworks. In Third International Congress on Chemistry for Cultural Heritage; Vienna University of Technology: Vienna, Austria, 2014; pp. 19–192. [Google Scholar]
- Bastek, G.; Łydżba-Kopczyńska, B.; Pilecka-Pietrusińska, E.I.M.S. Święta Rodzina ze świętym Janem Chrzcicielem i świętą Katarzyną Aleksandryjską Gianfrancesca Penniego: Badania technologiczne wersji z Warszawy i Bostonu/Technological Examination of the Warsaw and Boston Versions of The Holy Family with Saint John and Sa. Rocz Muz Nar w Warszawie Nowa Ser. J. Natl. Mus. Wars. New Ser. 2014, 3, 151–195. [Google Scholar]
- Łydżba-Kopczynska, B.; Czop, J.; Fraczek, P.; Klisinska-Kopacz, A.; Walczak, M.; Obarzanowski, M. The potentaial of interconnected X-ray techniques in the atribution investigations—“The Ecstasy od Saint Francis” by El Greco. In Book of Abstract 3rd International Conference on Innovation in Art Research and Technology—INART; University of Parma: Parma, Italy, 2018; pp. 158–159. [Google Scholar]
- Łydżba-Kopczyńska, B. Report of National Museum in Krakow, El Greco, Ekstaza Św. Franciszka “Badania Przekrojów Porzecznych Próbek Malarskich z Zastosowaniem SEM-EDS”; National Museum in Krakow: Kraków, Poland, 2016; pp. 1–74. [Google Scholar]
- Łydżba-Kopczyńska, B.; Klisińska-Kopacz, A.; Mendys, A.; . Frączek, P.; Obarzanowski, M.; Czarnecka, M. Scientific examination of a newly discovered painting by Bosch. In Proceedings of the 4th International Congress on Chemistry for Cultural Heritage—CHEMCH2016, Brussels, Belgium, 6–8 July 2016. [Google Scholar]
- Łydżba-Kopczyńska, B.; Cartecchini, L.; Doherty, B.; Anselmi, C.; Buti, D.; Grazia, C.A.R. Noninvasive in situ study of the authenticity of the paint layer in old-printed maps from the Niewodniczański Collection of Silesiaca (Poland) 16th to 18th century. In Proceedings of the 2nd International Congress of Chemistry for Cultural Heritage (ChemCH) Istanbul, Istanbul, Turkey, 8–11 July 2012. [Google Scholar]
- Zygier, E.; Klisińska-Kopacz, A.; Fraczek, P. Analiza technologii malarskiej Maksymiliana Gierymskiego z wykorzystaniem nieinwazyjnych technik badawczych na przykładzie obrazu, Jabłoń nad potokiem. Opusc. Musealia 2016, 23, 4560. [Google Scholar]
- Sarkowicz, D.; Sieklucka, M. The application of modern analitical techniques in the investigation of the large scale painting Nero’s torches by Henryk Siemiradzki. Opusc. Musealia 2016, 23, 8399. [Google Scholar]
- Sarkowicz, D.; Klisińska-Kopacz, A. Investigation of the Painting Idyll Attributed to Henryk Siemiradzki: The Unusual Technology of a Canvas Painting Executed on an Enlarged Photograph. Stud. Conserv. 2018, 63, 251–266. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Vandenabeele, P. Analytical Archaeometry. Selected Topics; Edwards, H.G.M., Vandenabeele, P., Eds.; The Royal Society of Chemistry: Cambridge, MA, USA, 2012; p. 569. [Google Scholar]
- Łydżba-Kopczyńska, B.; Ciba, M.; Rusek, G. Implementation of scientific methods of fine art authentication into forensics procedures: The case study of “Bolko II Świdnicki” by J. J. Knechtel. In Proceedings of the 7th International Congress on the Application of Raman Spectroscopy in Art and Archaeology, Ljubljana, Slovenia, 2–6 September 2013; Ropret, N.O.P., Ed.; Institute for the Protection of Cultural Heritage of Slovenia: Ljubljana, Slovenia, 2013; pp. 198–199. [Google Scholar]
- Stolper, E.; Van De Wiel, M.; Van Royen, P.; Van Bokhoven, M.; Van Der Weijden, T.; Dinant, G.J. Gut feelings as a third track in general practitioners’ diagnostic reasoning. J. Gen. Intern. Med. 2011, 26, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th ed.Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; Volume 22, pp. 9117–9129. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Raschka, S. Python Machine Learning; Packt: Birmingham, UK, 2015. [Google Scholar]
Marker | Marker Description |
---|---|
Confirmed Authorship | Ownership (or property rights) documents are in accordance with the law and verified by a lawyer |
Unconfirmed Authorship | Ownership (or property rights) documents not verified by a lawyer |
Supporting Documents | Documents supporting ownership or authorship (e.g., letters and photographs) |
Test of Authenticity | Ownership, property rights and/or supporting documents verified by forensic investigations |
Verification of Artistic Style | Art historian analysis confirming the style |
Historical Support | Support consistent with the supposed time of the creation |
Support Consistency | Support consistent with the painter techniques |
Support Phys_Chem | Physicochemical examination of the support |
Support Dendrochronology | Dendrochronological examination of the support |
Transfer | Transfer (replacement) of the support |
Nails Morphology | Historical analysis of nails’ morphology |
Nails Composition | Physicochemical analysis of nails |
UV | UV photography/UV luminescence |
IR | IR photography/IR reflectography |
RTG | X-ray photography/X-ray imaging |
Underdrawings Typical | Underdrawings (or lack of them) consistent with the painter techniques |
Historical Pigments | Pigments and dyes consistent with supposed time of creation |
Pigments Characteristic | Pigments and dyes characteristic for the painter techniques |
Distinctive Value | The characteristic feature of the painting techniques—the presence of the color underpainting |
Dating Pigment | Dating pigment (i.e., pigment characteristic for the supposed time of creation) |
Historical Binding | Binding media consistent with the supposed time of creation |
Typical Ground | Ground layer typical for the painter techniques |
Accessory Minerals | Physicochemical investigation of the primary layer and trace element analysis |
Original Varnish | Presence of original varnish |
Stratigraphy | Stratigraphy typical for painter’s techniques |
Representative Sample | Samples representative for the object |
Number of Samples/Number of Measurements Points | Sufficient number of samples/Number of Measurement Points |
Conservator’s Interventions | Presence of conservator’s interventions |
Signature | Signature attributed to the author |
Signature Graphology | Handwriting investigations of the signature |
Signature Phys_Chem | Physicochemical investigations of the signature |
State Consistent | Declared state of the preservation consistent with the investigation results |
Marker | Painting ID | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | |
confirmed_ownership | 1 | ||||||||||||||||||||||||||
unconfirmed_ ownership | |||||||||||||||||||||||||||
supporting_ documents | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
test_of_authenticity | |||||||||||||||||||||||||||
verification_of_artistic_style | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
historical_ support | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
support_c onsistency | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
support_phys_ chem | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
support_dendrochronology | |||||||||||||||||||||||||||
transfer | 1 | 1 | |||||||||||||||||||||||||
nails_ morphology | |||||||||||||||||||||||||||
nails_ composition | |||||||||||||||||||||||||||
UV | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
IR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
RTG | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
underdrawings_typical | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
historical_ pigments | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 |
pigments_ characteristic | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | |
distinctive_ value | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||
dating_ pigment | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | ||||||
historical_ binding | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
typical_ground_layer | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
accesory_ minerals | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
original_varnish | |||||||||||||||||||||||||||
stratigraphy | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
representative_ sample | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
number_of_ samples | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
conservator_ interventions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
signature | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||||||
signature_ graphology | 1 | ||||||||||||||||||||||||||
signature_ phys_chem | 1 | 1 | 1 | ||||||||||||||||||||||||
state_consistent | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 |
is_original? | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Marker | Painting ID | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | |
confirmed_ ownership | 1 | 1 | 1 | ||||||||||||||||||||||||
unconfirmed_ ownership | |||||||||||||||||||||||||||
supporting_ documents | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||||||||
test_of_authenticity | |||||||||||||||||||||||||||
verification_of_artistic_style | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
historical_ support | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
support_c onsistency | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
support_phys_ chem | 1 | 1 | −1 | 1 | 1 | ||||||||||||||||||||||
support_dendrochronology | |||||||||||||||||||||||||||
transfer | 1 | ||||||||||||||||||||||||||
nails_ morphology | −1 | ||||||||||||||||||||||||||
nails_ composition | |||||||||||||||||||||||||||
UV | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
IR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
RTG | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
underdrawings_typical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | ||||||||||
historical_ pigments | 1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
pigments_ characteristic | 1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
distinctive_ value | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||
dating_ pigment | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
historical_ binding | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
typical_ground_layer | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
accesory_ minerals | 1 | 1 | 1 | 1 | |||||||||||||||||||||||
original_varnish | 1 | 1 | |||||||||||||||||||||||||
stratigraphy | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||||||
representative_ sample | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
number_of_ samples | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
conservator_ interventions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
signature | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||
signature_ graphology | |||||||||||||||||||||||||||
signature_ phys_chem | 1 | ||||||||||||||||||||||||||
state_consistent | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | |||
is_original? | YES | YES | YES | YES | YES | YES | NO | NO | NO | NO | NO | NO | NO | NO | NO | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | NO | NO |
Attribution Marker | Importance |
---|---|
State_consistent | 0.864 |
Supporting_documents | 0.081 |
Typical_ground_layer | 0.055 |
Painting ID | Predicted Class | Real Class |
---|---|---|
1 | Authentic | Authentic |
2 | Authentic | Authentic |
3 | Authentic | Authentic |
4 | Authentic | Authentic |
5 | Authentic | Authentic |
6 | Authentic | Authentic |
7 | Authentic | Authentic |
8 | Forged | Forged |
9 | Authentic | Forged |
Attribution Marker | Importance |
---|---|
Pigments_characteristic | 0.471 |
Distinctive_value | 0.268 |
Representative_sample | 0.132 |
Supporting_documents | 0.128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łydżba-Kopczyńska, B.I.; Szwabiński, J. Attribution Markers and Data Mining in Art Authentication. Molecules 2022, 27, 70. https://doi.org/10.3390/molecules27010070
Łydżba-Kopczyńska BI, Szwabiński J. Attribution Markers and Data Mining in Art Authentication. Molecules. 2022; 27(1):70. https://doi.org/10.3390/molecules27010070
Chicago/Turabian StyleŁydżba-Kopczyńska, Barbara I., and Janusz Szwabiński. 2022. "Attribution Markers and Data Mining in Art Authentication" Molecules 27, no. 1: 70. https://doi.org/10.3390/molecules27010070
APA StyleŁydżba-Kopczyńska, B. I., & Szwabiński, J. (2022). Attribution Markers and Data Mining in Art Authentication. Molecules, 27(1), 70. https://doi.org/10.3390/molecules27010070