Total Release of 21 Indicator Pharmaceuticals Listed by the Swedish Medical Products Agency from Wastewater Treatment Plants to Surface Water Bodies in the 1.3 Million Populated County Skåne (Scania), Sweden
Abstract
:1. Introduction
- The amount of pharmaceutical residues that are discharged into the recipients;
- The recipient’s water turnover;
- The number of WWTPs that discharge to the same recipient;
- The recipient’s sensitivity;
- Variations over the year;
- Variations in discharged amounts from the WWTP.
2. Results and Discussion
2.1. Wastewater Treatment Plants (WWTPs)
2.2. Results of Pharmaceutical Analyses
2.2.1. Chemical Emissions of Pharmaceuticals as Concentrations (ng/L)
Metoprolol, Diclofenac, Carbamazepine, Losartan, Naproxen, Oxazepam and Ibuprofen
Seasonal Variation in Concentrations of the Top Six Pharmaceuticals at Kristianstad WWTP
Antibiotics
Tramadol, Citalopram, Fluconazole and Sertraline
Hormones
Ketoconazole, Zolpidem and Methotrexate
2.2.2. Chemical Emissions of Pharmaceuticals from Eight WWTPs in Kilograms
2.3. Estimate of Total Pharmaceutical Emissions in All of Scania Based on Open Data of Amount Treated Wastewater from Scanian WWTP Operators
2.3.1. Northwestern Scania
2.3.2. Southwestern Scania
2.3.3. Southern Scania
2.3.4. Southeastern Scania
2.3.5. Northeastern Scania
2.3.6. Central Scania
2.3.7. Total Estimated Emission of Pharmaceuticals in Scania
2.4. Occurrence of Pharmaceuticals in Scanian Streams and Lakes Downstream WWTPs
2.4.1. Gärds Köpinge WWTP and Vramsån River
2.4.2. Klippan WWTP and Bäljane Å River
2.4.3. Sankt Olof WWTP and Rörums Södra Å River
2.4.4. Svedala WWTP and Sege Å River
2.4.5. Kristianstad WWTP and Hammarsjön Lake
2.4.6. Ormanäs WWTP and Västra Ringsjön Lake
2.4.7. Höganäs WWTP and Öresund and Simrishamn WWTP and the Baltic Sea
3. Materials and Methods
3.1. Questionnaire, Wastewater Treatment Plants (WWTPs) and Recipients
3.2. Sampling and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Halling-Sørensen, B.; Nors Nielsen, S.; Lanzky, F.; Ingerslev, F.; Holten Lützhøft, S.; Jørgensen, S. Occurrence, fate and effects of pharmaceutical substances in the environment—A review. Chemosphere 1998, 36, 357–393. [Google Scholar] [CrossRef]
- Cleuvers, M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 2004, 59, 309–315. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Runnqvist, H.; Bak, S.; Hansen, M.; Styrishave, B.; Halling-Sørensen, B.; Björklund, E. Determination of pharmaceuticals in environmental and biological matrices using pressurised liquid extraction—Are we developing sound extraction methods? J. Chromatogr. A 2010, 1217, 2447–2470. [Google Scholar] [CrossRef]
- Santos, L.; Araújo, A.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 2010, 389, 416–428. [Google Scholar] [CrossRef]
- Vulliet, E.; Cren-Olivé, C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ. Pollut. 2011, 159, 2929–2934. [Google Scholar] [CrossRef]
- Martín, J.; Camacho-Munoz, D.; Santos, J.; Aparicio, I.; Alonso, E. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard. Mater. 2012, 239–240, 40–47. [Google Scholar] [CrossRef]
- Arnold, K.; Boxall, A.; Ross Brown, A.; Cuthbert, R.; Gaw, S.; Hutchinson, T.; Jobling, S.; Madden, J.; Metcalfe, C.; Naidoo, V.; et al. Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Biol. Lett. 2013, 9, 20130492. [Google Scholar] [CrossRef] [Green Version]
- Li, W. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef]
- Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrence and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef]
- Daughton, C. Pharmaceuticals in the environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. Sci. Total Environ. 2016, 562, 391–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tlili, I.; Caria, G.; Ouddane, B.; Ghorbel-Abid, I.; Ternane, R.; Trabelsi-Ayadi, M.; Net, S. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application. Sci. Total Environ. 2016, 563–564, 424–433. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lu, G.; Li, S.; Nie, Y.; Ma, B.; Liu, J. Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline. Chemosphere 2018, 135, 146–155. [Google Scholar] [CrossRef]
- Brodin, T.; Fick, J.; Jonsson, M.; Klaminder, J. Dilute Concentrations of a Psychiatric Drug Alter Behavior of Fish from Natural Populations. Science 2013, 339, 814–815. [Google Scholar] [CrossRef]
- Whitlock, S.; Glória Pereira, M.; Shore, R.; Lane, J.; Arnold, K. Environmentally relevant exposure to an antidepressant alters courtship behaviours in a songbird. Chemosphere 2018, 211, 17–24. [Google Scholar] [CrossRef]
- Saaristo, M.; Brodin, T.; Balshine, S.; Bertram, M.; Brooks, B.; Ehlman, S.; McCallum, E.; Sih, A.; Sundin, J.; Wong, B.; et al. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc. R. Soc. B 2018, 285, 20181297. [Google Scholar] [CrossRef]
- Escher, B.; Stapleton, H.; Schymanski, E. Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367, 388–392. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcóna, J.; Koukoulakis, P.; Asanoc, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Maria Bayona, J.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, V.; Changani, F.; Mohammadi, A.; Hadei, M.; Ashabi, R.; Ebrahimi Majd, L.; Hossein Mahvi, A. Sustainable development of water resources based on wastewater reuse and upgrading of treatment plants: A review in the Middle East. Desalination Water Treat. 2017, 65, 463–473. Available online: https://www.deswater.com/DWT_abstracts/vol_65/65_2017_463.pdf (accessed on 21 December 2021).
- SMHI—Sveriges Meteorologiska och Hydrologiska Institut. Available online: https://www.smhi.se/klimat/klimatet-da-och-nu/arets-vader/sommaren-2018-extremt-varm-och-solig-1.138134 (accessed on 31 January 2021).
- Wahlberg, C.; Björlenius, B.; Paxéus, N. Läkemedelsrester I Stockholms vattenmiljö—Förekomst, förebyggande åtgärder och rening av avloppsvatten. Stockholm Vatten 2010, 2010, 140. Available online: https://www.stockholmvattenochavfall.se/globalassets/pdf1/rapporter/avlopp/avloppsrening/lakemedelsrapport_slutrapport.pdf (accessed on 21 December 2021).
- MistraPharma—Identification and Reduction of Environmental Risks Caused by Human Pharmaceuticals, MistraPharma Research 2008–2015. Final. Rep. 2016, 2016, 86.
- Ågerstrand, M.; Berg, C.; Björlenius, B.; Breitholtz, M.; Brunström, B.; Fick, J.; Gunnarsson, L.; Larsson, J.; Sumpter, J.; Tysklind, M.; et al. Improving Environmental Risk Assessment of Human Pharmaceuticals. Environ. Sci. Technol. 2015, 49, 5336–5345. [Google Scholar] [CrossRef] [Green Version]
- Cimbritz, M.; Mattsson, A. Reningstekniker för läkemedel och mikroföroreningar i avloppsvatten. Havs-Och Vattenmyndighetens Rapp. 2018, 2018, 60. [Google Scholar]
- Sundin, A.-M.; Linderholm, L.; Hedlund, B.; Bly Joyce, K.; Klingspor, K. Avancerad rening av avloppsvatten för avskiljning av läkemedelsrester och andra oönskade ämnen-Behov, teknik och konsekvenser. Nat. Rep. 2017, 2017, 88. [Google Scholar]
- Mattson, B.; Andersson, A.; Ovesjö, M.-L. Miljöindikatorer inom ramen för nationella läkemedelsstrategin (NLS). In Rapport Frän CBL-Kansliet, Läkemedelsverket; 2015; Volume 7, Available online: https://docplayer.se/16152094-Miljoindikatorer-inom-ramen-for-nationella-lakemedelsstrategin-nls.html (accessed on 21 December 2021).
- Svahn, O. Applied Environmental Analytical Chemistry for Monitoring and Measures against Antibiotics and Drug Residues in Vattenriket. Ph.D. Thesis, Centre for Environmental and Climate Change, Lund University, Lund, Sweden, 2016. [Google Scholar]
- Svahn, O.; Björklund, E. Increased electrospray ionization intensities and expanded chromatographic possibilities for emerging contaminants using mobile phases of different pH. J. Chromatogr. B 2016, 1033, 1–10. [Google Scholar] [CrossRef]
- Läkemedelsrester i Avloppsvatten. Länsstyrelsen Skåne. TVL-Info 2014, 6. Available online: https://www.lansstyrelsen.se/download/18.4df86bcd164893b7cd9361a4/1535032536259/TVL-info%202014:12%20L%C3%A4kemedelsrester%20i%20avloppsvatten.pdf (accessed on 21 December 2021).
- Wick, A.; Fink, G.; Joss, A.; Siegrist, H.; Ternes, T. Fate of beta blockers and psycho-active drugs in conventional wastewater treatment. Water Res. 2009, 123, 448–467. [Google Scholar] [CrossRef]
- Fick, J.; Lindberg, R.; Kaj, L.; Brorström-Lundén, E. Results from the Swedish National Screening Programme 2010. Pharmaceuticals 2011, 2011, 56. [Google Scholar]
- Golovko, O.; Rehrl, A.-L.; Köhler, S.; Ahrens, L. Organic micropollutants in water and sediment from Lake Mälaren, Sweden. Chemosphere 2020, 258, 127293. [Google Scholar] [CrossRef]
- Zou, H.; Radke, M.; Kierkegaard, A.; McLachlan, M. Temporal Variation of Chemical Persistence in a Swedish Lake Assessed by Benchmarking. Environ. Sci. Technol. 2015, 4, 9881–9888. [Google Scholar] [CrossRef]
- Näslund, J.; Fick, J.; Asker, N.; Ekman, E.; Larsson, J.; Norrgren, L. Diclofenac affects kidney histology in the three-spined stickleback (Gasterosteus aculeatus) at low μg/L concentrations. Aquat. Toxicol. 2017, 189, 87–96. [Google Scholar] [CrossRef]
- Ringbom, T.; Salin, K.; Scholz, B.; Hillver, S.-E.; Ljung, R. Tonvis med diklofenak i våra vatten–regeländring behövs. Läkartidningen 2017, 47. Available online: https://lakartidningen.se/opinion/debatt/2017/11/sverige-slapper-ut-flera-ton-diklofenak-i-miljon/ (accessed on 31 January 2021).
- Loos, R.; Carvalho, R.; António, D.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef]
- Durán-Alvarez, J.; Prado, B.; González, D.; Sánchez, Y.; Jiménez-Cisneros, B. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil—Results of laboratory scale experiments. Sci. Total Environ. 2015, 538, 350–362. [Google Scholar] [CrossRef]
- Björlenius, B.; Ripszámb, M.; Haglund, P.; Lindberg, R.; Tysklind, M.; Fick, J. Pharmaceutical residues are widespread in Baltic Sea coastal and offshore waters–Screening for pharmaceuticals and modelling of environmental concentrations of carbamazepine. Sci. Total Environ. 2018, 633, 496–1509. [Google Scholar] [CrossRef]
- Daneshvar, A.; Aboulfadl, K.; Viglino, L.; Broséus, R.; Sauvé, S.; Madoux-Humery, A.-S.; Weyhenmeyer, G.; Prévost, M. Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. Chemosphere 2012, 88, 131–139. [Google Scholar] [CrossRef]
- Sanzi Cortez, F.; da Silva Souza, L.; Lopes Guimarãe, L.; Emanoel Almeida, J.; Hermes Pusceddu, F.; Alves Maranho, L.; Gonçalves Mota, L.; Rodrigues Nobre, C.; Barbosa Moreno, B.; Moledo de Souza Abessa, D.; et al. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). Sci. Total Environ. 2018, 637–638, 1363–1371. [Google Scholar] [CrossRef] [Green Version]
- Näslund, J.; Asker, N.; Fick, J.; Larsson, J.; Norrgren, L. Naproxen affects multiple organs in fish but is still an environmentally better alternative to diclofenac. Aquat. Toxicol. 2020, 227, 105583. [Google Scholar] [CrossRef]
- Brodin, T.; Nordling, J.; Lagesson, A.; Klaminder, J.; Hellström, G.; Christensen, B.; Fick, J. Environmental relevant levels of a benzodiazepine (oxazepam) alters important behavioral traits in a common planktivorous fish, (Rutilus rutilus). J. Toxicol. Environ. Health Part A 2017, 80, 16–18. [Google Scholar] [CrossRef]
- Fick, J.; Brodin, T.; Heyne, M.; Klaminder, J.; Jonsson, M.; Grabicova, K.; Randa, T.; Grabic, R.; Kodes, V.; Slobodnik, J.; et al. Screening of benzodiazepines in thirty European rivers. Chemosphere 2017, 176, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Östman, M.; Lindberg, R.; Fick, J.; Björn, E.; Tysklind, M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 2017, 115, 318–328. [Google Scholar] [CrossRef]
- Svahn, O.; Björklund, E. Extraction Efficiency of a Commercial Espresso Machine Compared to a Stainless-Steel Column Pressurized Hot Water Extraction (PHWE) System for the Determination of 23 Pharmaceuticals, Antibiotics and Hormones in Sewage Sludge. Appl. Sci. 2019, 9, 1509. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, R.; Wennberg, P.; Johansson, M.; Tysklind, M.; Andersson, B. Screening of Human Antibiotic Substances and Determination of Weekly Mass Flows in Five Sewage Treatment Plants in Sweden. Environ. Sci. Technol. 2005, 39, 3421–3429. [Google Scholar] [CrossRef]
- Thiebault, T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review. Sci. Total Environ. 2020, 715, 136916. [Google Scholar] [CrossRef]
- Drzymała, J.; Kalka, J. Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. Chemosphere 2020, 259, 127407. [Google Scholar] [CrossRef]
- Östman, M.; Fick, J.; Näsström, E.; Lindberg, H. A snapshot of illicit drug use in Sweden acquired through sewage water analysis. Sci. Total Environ. 2014, 715, 136916. [Google Scholar] [CrossRef]
- Svahn, O.; Björklund, E. Interkalibrerad Läkemedelsanalys 2017—Ett Samarbetsprojekt för Ökad Analyskvalité; Kristianstad University: Kristianstad, Sweden, 2017. [Google Scholar]
- Kellner, M.; Porseryd, T.; Porsch-Hällström, I.; Hansen, S.; Olsén, K. Environmentally relevant concentrations of citalopram partially inhibit feeding in the three-spine stickleback (Gasterosteus aculeatus). Aquat. Toxicol. 2015, 158, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Kellner, M.; Porseryd, T.; Porsch-Hällström, I.; Borg, B.; Hansen, S.; Roufidou, C.; Olsén, K. Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus). Ecotoxicology 2018, 27, 12–22. [Google Scholar] [CrossRef]
- Lindberg, R.; Fick, J.; Tysklind, M. Screening of antimycotics in Swedish sewage treatment plants—Waters and sludge. Water Res. 2010, 44, 649–657. [Google Scholar] [CrossRef]
- Hedgespeth, M.; Karasek, T.; Ahlgren, J.; Berglund, O.; Brönmark, C. Behaviour of freshwater snails (Radix balthica) exposed to the pharmaceutical sertraline under simulated predation risk. Ecotoxicology 2018, 27, 144–153. [Google Scholar] [CrossRef]
- Hedgespeth, M.; Nilsson, A.; Berglund, O. Ecological implications of altered fish foraging after exposure to an antidepressant pharmaceutical. Aquat. Toxicol. 2014, 151, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Parkkonen, J.; Larsson, J.; Adolfsson-Erici, M.; Pettersson, M.; Berg, A.; Olsson, P.; Förlin, L. Contraceptive pill residues in sewage effluent are estrogenic to fish. Mar. Environ. Res. 2000, 50, 191–199. [Google Scholar] [CrossRef]
- Svensson, J.; Fick, J.; Brandt, I.; Brunström, B. Environmental concentrations of an androgenic progestin disrupts the seasonal breeding cycle in male three-spined stickleback (Gasterosteus aculeatus). Aquat. Toxicol. 2014, 147, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Statistics Sweden. Available online: https://www.scb.se/hitta-statistik/statistik-efter-amne/befolkning/befolkningens-sammansattning/befolkningsstatistik/pong/tabell-och-diagram/helarsstatistik--forsamling-landskap-och-stad/folkmangd-i-landskapen-den-31-december-2016/ (accessed on 2 February 2021).
- Olshammar, M.; Ek, M.; Rosenquist, L.; Ejhed, H.; Sidvall, A.; Svanström, S. Uppdatering Av Kunskapsläget Och Statistik för Små Avloppsanläggningar; Report 166; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2015; p. 34. [Google Scholar]
- Kommittén för Samordnad Kontroll av Helgeån. Med Långtidsdiagram 1973–2011; Rapport 2012-05-25; Kommittén för Samordnad Kontroll av Helgeån: Kristianstad, Sweden, 2012; 224p. [Google Scholar]
- Klippans Läderfabrik. Kompletterande undersökningar av Bäljane Å 2005. In Rapport Klippans Kommun; 2005; Volume 60, Available online: https://www.klippan.se/download/18.126f9670127a4c8435b800017151/1358344559597/Unders%C3%B6kningar%20av%20B%C3%A4ljane%20%C3%A5,%20ALcontrol%202005.pdf (accessed on 21 December 2021).
- Miljöövervakning Länsstyrelsen i Kristianstads Län. Klammersbäck, Mölleån, Rörums norra å, Rörums södra å, Kvarnbybäcken. In Österlen-Åar–Underl.; 1995; Volume 111, Available online: http://www.osterlensvattenrad.se/wp-content/uploads/2012/08/Osterlenaar_rapport_1995-Klammersback-Mollean-Rorums_Norra_a-Rorums_Sodra_a-Kvarnbybacken.pdf (accessed on 21 December 2021).
- Available online: http://www.segea.se/Om-Segea.html (accessed on 31 October 2018).
- Available online: https://vattenriket.kristianstad.se/other-languages/english/ (accessed on 3 February 2021).
- Björklund, E.; Svahn, O.; Bak, S.; Oppong Bekoe, S.; Hansen, M. Pharmaceutical Residues Affecting the UNESCO Biosphere Reserve Kristianstads Vattenrike Wetlands: Sources and Sinks. Arch. Environ. Contam. Toxicol. 2016, 71, 423–436. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency; Office of Water; Office of Science and Technology Engineering and Analysis Division. US EPA Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS; EPA: Washington, DC, USA, 2007; Volume 2007, p. 72. [Google Scholar]
- Available online: https://vattenriket.kristianstad.se/vramsan-vattendrag/ (accessed on 3 February 2021).
- Dunca, E.; Söderberg, H.; Norrgrann, O. Shell growth and age determination in the freshwater pearl mussel Margaritifera margaritifera in Sweden: Natural versus limed streams. Ferrantia 2011, 64, 48–58. [Google Scholar]
- Hartmut, F.; Gerstmann, S. Declining Populations of Freshwater Pearl Mussels (Margaritifera margaritifera) Are Burdened with Heavy Metals and DDT/DDE. AMBIO: A J. Hum. Environ. 2007, 36, 571–574. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Björklund, E.; Svahn, O. Total Release of 21 Indicator Pharmaceuticals Listed by the Swedish Medical Products Agency from Wastewater Treatment Plants to Surface Water Bodies in the 1.3 Million Populated County Skåne (Scania), Sweden. Molecules 2022, 27, 77. https://doi.org/10.3390/molecules27010077
Björklund E, Svahn O. Total Release of 21 Indicator Pharmaceuticals Listed by the Swedish Medical Products Agency from Wastewater Treatment Plants to Surface Water Bodies in the 1.3 Million Populated County Skåne (Scania), Sweden. Molecules. 2022; 27(1):77. https://doi.org/10.3390/molecules27010077
Chicago/Turabian StyleBjörklund, Erland, and Ola Svahn. 2022. "Total Release of 21 Indicator Pharmaceuticals Listed by the Swedish Medical Products Agency from Wastewater Treatment Plants to Surface Water Bodies in the 1.3 Million Populated County Skåne (Scania), Sweden" Molecules 27, no. 1: 77. https://doi.org/10.3390/molecules27010077
APA StyleBjörklund, E., & Svahn, O. (2022). Total Release of 21 Indicator Pharmaceuticals Listed by the Swedish Medical Products Agency from Wastewater Treatment Plants to Surface Water Bodies in the 1.3 Million Populated County Skåne (Scania), Sweden. Molecules, 27(1), 77. https://doi.org/10.3390/molecules27010077