Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Eco-MgZnOx
2.1.1. Preparation of Eco-MgZnOx
2.1.2. Characterization of Eco-MgZnOx by MP–AES Analysis
2.1.3. Characterization of Eco-MgZnOx by X-ray Powder Diffraction
2.1.4. Characterization of Eco-MgZnOx by Electron Microscopy
2.2. Reactivity of Eco-MgZnOx in the Hydrophosphonylation Reaction
2.2.1. Catalyst Impact on the Formation of Model α-Hydroxyphosphonate 3a
2.2.2. Recyclability and Reuse of Eco-MgZnOx Catalysts
2.2.3. Scope of the Hydrophosphonylation Reaction of Carbonyl Substrates Catalyzed by Eco-MgZnOx
2.3. Theoretical Assessment of the Catalytic Activity of Eco-MgZnOx in Hydrophosphonylation Reaction
3. Materials and Methods
3.1. General Information
3.2. Plant Growth and Biomass Information—Study Sites and Sampling of Plant Material
3.3. Preparation of the Eco-MgZnOx
3.4. Characterization of the Eco-MgZnOx
3.5. General Procedure for Hydrophosphonylation Reaction with Eco-MgZnOx Catalysts
3.6. General Recovery and Reuse of Eco-MgZnOx Catalysts
3.7. Experimental Theoretical Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wendels, S.; Chavez, T.; Bonnet, M.; Salmeia, K.A.; Gaan, S. Recent developments in organophosphorus flame retardants containing P-C bond and their applications. Materials 2017, 10, 784. [Google Scholar] [CrossRef] [Green Version]
- Wehbi, M.; Mehdi, A.; Negrell, C.; David, G.; Alaaeddine, A.; Ameduri, B. Phosphorus-containing fluoropolymers: State of the art and applications. ACS Appl. Mater. Interfaces 2020, 12, 38–59. [Google Scholar] [CrossRef]
- Verma, C.; Verma, D.K.; Ebenso, E.E.; Quraishi, M.A. Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: An overview. Heteroat. Chem. 2018, 29, e21437. [Google Scholar] [CrossRef] [Green Version]
- David, G.; Negrell-Guirao, C. Complexation with metals: Anticorrosion phosphorus-containing polymer coatings. In Phosphorus-Based Polymers: From Synthesis to Applications; Monge, S., David, G., Eds.; The Royal Society of Chemistry: Oxford, UK, 2014; pp. 210–224. [Google Scholar]
- Cabre, A.; Riera, A.; Verdaguer, X. P-Stereogenic amino-phosphines as chiral ligands: From privileged intermediates to asymmetric catalysis. Acc. Chem. Res. 2020, 53, 676–689. [Google Scholar] [CrossRef]
- Ingoglia, B.T.; Wagen, C.C.; Buchwald, S.L. Biaryl monophosphine ligands in palladium-catalyzed C–N coupling: An updated User’s guide. Tetrahedron 2019, 75, 4199–4211. [Google Scholar] [CrossRef]
- Guo, H.; Fan, C.Y.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine organocatalysis. Chem. Rev. 2018, 118, 10049–10293. [Google Scholar] [CrossRef]
- Bayne, J.M.; Stephan, D.W. Phosphorus Lewis acids: Emerging reactivity and applications in catalysis. Chem. Soc. Rev. 2016, 45, 765–774. [Google Scholar] [CrossRef]
- Dutartre, M.; Bayardon, J.; Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 2016, 45, 5771–5794. [Google Scholar] [CrossRef]
- Dann, E.; McLeod, A. Phosphonic acid: A long-standing and versatile crop protectant. Pest. Manag. Sci. 2021, 77, 2197–2208. [Google Scholar] [CrossRef]
- Zhou, C.; Luo, X.; Chen, N.; Zhang, L.; Gao, J. C–P Natural products as next-generation herbicides: Chemistry and biology of Glufosinate. J. Agric. Food Chem. 2020, 68, 3344–3353. [Google Scholar] [CrossRef]
- Hall, R.H. The role of phosphorus in crop protection: Commercial and experimental weed control agents. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 258–265. [Google Scholar] [CrossRef]
- Ju, K.-S.; Gao, J.; Doroghazi, J.R.; Wang, K.-K.A.; Thibodeaux, C.J.; Li, S.; Metzger, E.; Fudala, J.; Su, J.; Zhang, J.K.; et al. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc. Natl. Acad. Sci. USA 2015, 112, 12175–12180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.-K.A.; Ng, T.L.; Wang, P.; Huang, Z.; Balskus, E.P.; van der Donk, W.A. Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin. Nat. Commun. 2018, 9, 3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, D.V.; Rielly-Gauvin, K.; Ryono, D.E.; Free, C.A.; Rogers, W.L.; Smith, S.A.; DeForrest, J.M.; Oehl, R.S.; Petrillo, E.W. alpha-Hydroxy phosphinyl-based inhibitors of human renin. J. Med. Chem. 1995, 38, 4557–4569. [Google Scholar] [CrossRef]
- Wang, P.-C.; Fang, J.-M.; Tsai, K.-C.; Wang, S.-Y.; Huang, W.-I.; Tseng, Y.-C.; Cheng, Y.-S.E.; Cheng, T.-J.R.; Wong, C.-H. Peramivir phosphonate derivatives as influenza neuraminidase inhibitors. J. Med. Chem. 2016, 59, 5297–5310. [Google Scholar] [CrossRef]
- Cheviet, T.; Wein, S.; Bourchenin, G.; Lagacherie, M.; Peŕigaud, C.; Cerdan, R.; Peyrottes, S. β-Hydroxy- and β-aminophosphnate acyclonucleosides as potent inhibitors of plasmodium falciparum growth. J. Med. Chem. 2020, 63, 8069–8087. [Google Scholar] [CrossRef]
- Rádai, Z.; Keglevich, G. Synthesis and reactions of α-hydroxyphosphonates. Molecules 2018, 23, 1493. [Google Scholar] [CrossRef] [Green Version]
- Kerim, M.D.; Katsina, T.; Cattoen, M.; Fincias, N.; Arseniyadis, S.; El Kaim, L. O-Allylated Pudovik and Passerini adducts as versatile scaffolds for product diversification. J. Org. Chem. 2020, 85, 12514–12525. [Google Scholar] [CrossRef]
- Kiss, N.Z.; Radai, Z.; Mucsi, Z.; Keglevich, G. Synthesis of α-aminophosphonates from α-hydroxyphosphonates; a theoretical study. Heteroatom. Chem. 2016, 27, 260–268. [Google Scholar] [CrossRef]
- Radai, Z.; Szabo, R.; Szigetvari, A.; Kiss, N.Z.; Mucsi, Z.; Keglevich, G. A Study on the rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates to benzyl phosphates. Curr. Org. Chem. 2020, 24, 465–471. [Google Scholar] [CrossRef]
- Cao, D.K.; Lu, Y.H.; Zheng, T.; Zhang, Y.H.; Li, Y.Z.; Zheng, L.M. Reaction of an anthracene-based cyclic phosphonate ester with trimethylsilyl bromide unexpectedly generating two phosphonates: Syntheses, crystal structures and fluorescent properties. RSC Adv. 2013, 3, 4001–4007. [Google Scholar] [CrossRef]
- Kazmierczak, M.; Kubicki, M.; Koroniak, H. Regioselective fluorination of α-hydroxy-β-aminophosphonates by using PyFluor. Eur. J. Org. Chem. 2018, 2018, 3844–3852. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Majumdar, B.; Sarma, T.K. Compositional effect in AuPd bimetallic nanoparticles towards product selectivity during aerobic oxidation of α-hydroxy esters and phosphonates. Chem. Select. 2016, 1, 5265–5269. [Google Scholar] [CrossRef]
- Pudovik, A.N. Addition of dialkyl phosphites to unsaturated compounds. A new method of synthesis of β-ketophosphonic and unsaturated α-hydroxyphosphonic esters. Dokl. Akad. Nauk. 1950, 73, 499–502. [Google Scholar]
- Abramov, V.S. Reaction of dialkyl phosphites with aldehydes and ketones (a new method of synthesis of esters of hydroxyalkanephosphonic acids). Dokl. Akad. Nauk. 1950, 73, 487–489. [Google Scholar]
- Olszewski, T.K. Environmentally benign syntheses of α-substituted phosphonates: Preparation of α-amino- and α-hydroxyphosphonates in water, in ionic liquids, and under solvent-free conditions. Synthesis 2014, 46, 403–429. [Google Scholar] [CrossRef]
- Aouf, Z.; Boughaba, S.; Lakrout, S.; Bechiri, O.; Aouf, N.-E. A Methodology study of hydrophosphonylation of aldehydes derivatives with H6P2W18O62•14H2O as a catalyst. Chem. Chem. Technol. 2020, 14, 154–160. [Google Scholar] [CrossRef]
- Mahesh, R.; Sharma, R.; Kour, P.; Kumar, A. CeCl3.7H2O-catalysed hydrophosphonylation of aldehydes and ketones: An expeditious route to α-hydroxyphosphonates under solvent-free conditions. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 1091–1097. [Google Scholar] [CrossRef]
- Sonar, S.S.; Kategaonkar, A.H.; Ware, M.N.; Gill, C.H.; Shingate, B.B.; Shingare, M.S. Ammonium metavanadate: An effective catalyst for synthesis of α-hydroxyphosphonates. Arkivoc 2009, 2009, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Cabrita, I.R.; Florindo, P.R.; Costa, P.J.; Oliveira, M.C.; Fernandes, A.C. Hydrophosphonylation of aldehydes catalyzed by cyclopentadienyl ruthenium(II) complexes. Mol. Catal. 2018, 450, 77–86. [Google Scholar] [CrossRef]
- Santacroce, V.; Paris, E.; Cauzzi, D.; Maggi, R.; Maestri, G. A Simple heterogeneous catalyst for phosphite addition on carbonyl groups. Eur. J. Org. Chem. 2016, 463–466. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Qian, Q.; Yuan, D.; Yao, Y. n-BuLi as a Highly efficient precatalyst for hydrophosphonylation of aldehydes and unactivated ketones. Org. Lett. 2014, 16, 6172–6175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ding, H.; Zhao, B.; Lu, C.; Yao, Y. Synthesis and characterization of amidate rare-earth metal amides and their catalytic activities toward hydrophosphonylation of aldehydes and unactivated ketones. Polyhedron 2014, 83, 50–59. [Google Scholar] [CrossRef]
- Kulkarni, M.A.; Lad, U.P.; Desai, U.V.; Mitragotri, S.D.; Wadgaonkar, P.P. Mechanistic approach for expeditious and solvent-free synthesis of α-hydroxy phosphonates using potassium phosphate as catalyst. C. R. Chim. 2013, 16, 148–152. [Google Scholar] [CrossRef]
- Angelini, T.; Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. E-Factor minimized hydrophosphonylation of aldehydes catalyzed by polystyryl-BEMP under solvent-free conditions. Org. Biomol. Chem. 2013, 11, 5042–5046. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, Z.; Rong, J.; Wang, S.; Yang, G.; Zhu, X.; Zhang, L. Highly Efficient Hydrophosphonylation of Aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes. Chem. Eur. J. 2012, 18, 2653–2659. [Google Scholar] [CrossRef]
- De Noronha, R.G.; Costa, P.J.; Romao, C.C.; Calhorda, M.J.; Fernandes, A.C. [MoO2Cl2] as a novel catalyst for C−P bond formation and for hydrophosphonylation of aldehydes. Organometallics 2009, 28, 6206–6212. [Google Scholar] [CrossRef]
- Babazadeh, S.; Miraki, M.K.; Pazoki, F.; Heydari, A. Tandem oxidative Pudovik Rraction using Fe3O4@SiO2-Metformin-Cu (II) as an efficient and recoverable catalyst. ChemistrySelect 2020, 5, 4263–4266. [Google Scholar] [CrossRef]
- Kumar, A.; Jamwal, S.; Khan, S.; Singh, N.; Rai, V.K. Bi(NO3)3.5H2O catalyzed phosphonylation of aldehydes: An efficient route to α-hydroxyphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 381–385. [Google Scholar] [CrossRef]
- Kalla, R.M.N.; Zhang, Y.; Kim, I. Highly efficient green synthesis of α-hydroxyphosphonates using a recyclable choline hydroxide catalyst. N. J. Chem. 2017, 41, 5373–5379. [Google Scholar] [CrossRef]
- Nie, K.; Liu, C.; Zhang, Y.; Yao, Y. Syntheses of bimetallic rare-earth bis(cyclopentadienyl) derivatives supported by bridged bis(guanidinate) ligands and their catalytic property for the hydrophosphonylation of aldehydes. J. Organomet. Chem. 2016, 804, 59–65. [Google Scholar] [CrossRef]
- Ramananarivo, H.R.; Solhy, A.; Sebti, J.; Smahi, A.; Zahouily, M.; Clark, J.; Sebti, S. An eco-friendly paradigm for the synthesis of α-hydroxyphosphonates using sodium-modified fluorapatite under solventless conditions. ACS Sustain. Chem. Eng. 2013, 1, 403–409. [Google Scholar] [CrossRef]
- Weng, S.-S.; Lin, G.-Y.; Li, H.-C.; Yang, K.-C.; Yang, T.-M.; Liu, H.-C.; Sie, S.-H. Nafion®-supported oxovanadium-catalyzed hydrophosphonylation of aldehydes under solventless conditions. Appl. Organometal. Chem. 2012, 26, 455–460. [Google Scholar] [CrossRef]
- Solhy, A.; Sebti, S.; Tahir, R.; Sebti, J.; Ould Abba, M.; Bousmina, M.; Vaudreuil, S.; Zahouily, M. Remarkable catalytic activity of sodium-modified-hydroxyapatite in the synthesis of α-hydroxyphosphonates. Curr. Org. Chem. 2010, 14, 1517–1522. [Google Scholar] [CrossRef]
- Martınez-Castro, E.; Lopez, O.; Maya, I.; Fernandez-Bolanos, J.G.; Petrini, M. A green procedure for the regio- and chemoselective hydrophosphonylation of unsaturated systems using CaO under solventless conditions. Green Chem. 2010, 12, 1171–1174. [Google Scholar] [CrossRef]
- Kaboudin, B.; Alavi, S.; Kazemi, F.; Aoyama, H.; Yokomatsu, T. Resolution of racemic α-hydroxyphosphonates: Bi(OTf)3-catalyzed stereoselective esterification of α-hydroxyphosphonates with (+)-dibenzoyl-l-tartaric anhydride. ACS Omega 2019, 4, 15471–15478. [Google Scholar] [CrossRef] [Green Version]
- Lima, Y.R.; Da Costa, G.P.; Xavier, M.C.D.F.; De Moraes, M.C.; Barcellos, T.; Alves, D.; Silva, M.S. Synthesis of α-hydroxyphosphonates containing dunctionalized 1,2,3-triazoles. ChemistrySelect 2020, 5, 12487–12493. [Google Scholar] [CrossRef]
- Keglevich, G. Microwaves as “Co-Catalysts” or as substitute for catalysts in organophosphorus chemistry. Molecules 2021, 26, 1196. [Google Scholar] [CrossRef]
- Koszelewski, D.; Ostaszewski, R. Biocatalytic promiscuity of lipases in carbon-phosphorus bond formation. ChemCatChem 2019, 11, 2554–2558. [Google Scholar] [CrossRef]
- Grison, C.; Lock Toy Ki, Y. Ecocatalysis, a new vision ofcgreen and sustainable chemistry. Curr. Opin. Green Sustain. Chem. 2021, 29, 100461. [Google Scholar] [CrossRef]
- Deyris, P.A.; Grison, C. Nature, Ecology and Chemistry: An unsual combination for a new green catalysis, Ecocatalysis. Curr. Opin. Green Sustain. Chem. 2018, 10, 6–10. [Google Scholar] [CrossRef]
- Grison, C.; Escande, V.; Olszewski, T.K. Ecocatalysis: A new approach towards bioeconomy. In Bioremediation and Bioeconomy, 1st ed.; Prasad, M.N.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 629–663. [Google Scholar]
- Escande, V.; Olszewski, T.K.; Grison, C. Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels—Alder reaction. C. R. Chim. 2014, 17, 731–737. [Google Scholar] [CrossRef]
- Losfeld, G.; Escande, V.; Vidal de la Blache, P.; l′Huillier, L.; Grison, C. Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel-Crafts alkylation and acylation. Catal. Today 2012, 189, 111–116. [Google Scholar] [CrossRef]
- Escande, V.; Garoux, L.; Grison, C.M.; Thillier, Y.; Debart, F.; Vasseur, J.J.; Boulanger, C.; Grison, C. Ecological catalysis and phytoextraction: Symbiosis for future. Appl. Catal. B Environ. 2013, 146, 279–288. [Google Scholar] [CrossRef]
- Deyris, P.-A.; Bert, V.; Diliberto, S.; Boulanger, C.; Petit, E.; Legrand, Y.-M.; Grison, C. Biosourced polymetallic catalysis: A surprising and efficient means to promote the Knoevenagel condensation. Front. Chem. 2018, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Grison, C.; Escande, V.; Petit, E.; Garoux, L.; Boulanger, C.; Grison, C. Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv. 2013, 3, 22340–22345. [Google Scholar] [CrossRef]
- Escande, V.; Petit, E.; Olszewski, T.; Grison, C. Zn biosourced catalysts: An efficient way for the synthesis of under-exploited platform molecules from carbohydrates. ChemSusChem 2014, 7, 1915–1923. [Google Scholar] [CrossRef]
- Escande, V.; Velati, A.; Grison, C. Ecocatalysis for 2H-chromenes synthesis: An integrated approach for phytomanagement of polluted ecosystems. Environ. Sci. Pollut. Res. 2015, 22, 5677–5685. [Google Scholar] [CrossRef]
- Garel, C.; Renard, B.L.; Escande, V.; Galtayries, A.; Hesemann, P.; Grison, C. C-C bond formation strategy through ecocatalysis: Insights from structural studies and synthetic potential. Appl. Catal. A 2016, 504, 272–286. [Google Scholar] [CrossRef]
- Clavé, G.; Garel, C.; Poullain, C.; Renard, B.-L.; Olszewski, T.K.; Lange, B.; Shutcha, M.; Faucon, M.-P.; Grison, C. Ullmann reaction through ecocatalysis: Insights from bioresource and synthetic potential. RSC Adv. 2016, 6, 59550–59564. [Google Scholar] [CrossRef]
- Clavé, G.; Pelissier, F.; Campidelli, S.; Grison, C. Ecocatalyzed Suzuki cross coupling of heteroaryl compounds. Green Chem. 2017, 19, 4093–4103. [Google Scholar] [CrossRef]
- Grison, C.; Adler, P.; Deyris, P.-A.; Diliberto, S.; Boulanger, C. A green approach for the reduction of representative aryl functional groups using palladium ecocatalysts. Green Chem. Lett. Rev. 2021, 14, 233–244. [Google Scholar] [CrossRef]
- Cases, L.; Adler, P.; Pelissier, F.; Diliberto, S.; Boulanger, C.; Grison, C. New biomaterials for Ni biosorption turned into catalysts for Suzuki-Miyaura cross coupling of aryl iodides in green conditions. RSC Adv. 2021, 11, 28085–28091. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.; Dumas, T.; Deyris, P.A.; Petit, E.; Diliberto, S.; Boulanger, C.; Grison, C. II- From ecological recycling of Pd to greener Sonogashira cross-coupling reactions. J. Clean. Prod. 2021, 293, 126164. [Google Scholar] [CrossRef]
- Escande, V.; Velati, A.; Garel, C.; Renard, B.-L.; Petit, E.; Grison, C. Phytoextracted mining wastes for ecocatalysis: Eco-Mn®, an efficient and eco-friendly plant-based catalyst for reductive amination of ketones. Green Chem. 2015, 17, 2188–2199. [Google Scholar] [CrossRef]
- Escande, V.; Poullain, C.; Clavé, G.; Petit, E.; Masquelez, N.; Hesemann, P.; Grison, C. Alternative green and ecological input for transfer hydrogenation using EcoNi(0) catalyst in isopropanol. Appl. Catal. B 2017, 210, 495–503. [Google Scholar] [CrossRef]
- Escande, V.; Petit, E.; Garoux, L.; Boulanger, C.; Grison, C. Switchable Alkene Epoxidation/Oxidative Cleavage with H2O2/NaHCO3: Efficient Heterogeneous Catalysis Derived from Biosourced Eco-Mn. ACS Sustain. Chem. Eng. Am. Chem. Soc. 2015, 3, 2704–2715. [Google Scholar] [CrossRef]
- Bihanic, C.; Diliberto, S.; Pelissier, F.; Petit, E.; Boulanger, C.; Grison, C. Eco-CaMnOx: A greener generation of Eco-catalysts for eco-friendly oxidation processes. ACS Sustain. Chem. Eng. 2020, 8, 4044–4057. [Google Scholar] [CrossRef]
- Bihanic, C.; Richards, K.; Olszewski, T.K.; Grison, C. Eco-Mn Ecocatalysts: Toolbox for sustainable and green Lewis acid catalysis and oxidation reactions. ChemCatChem 2019, 12, 1529–1545. [Google Scholar] [CrossRef]
- Bihanic, C.; Lasbleiz, A.; Regnier, M.; Petit, E.; Le Blainvaux, P.; Grison, C. New sustainable synthetic routes to cyclic oxyterpenes using the Ecocatalyst toolbox. Molecules 2021, 26, 7194. [Google Scholar] [CrossRef]
- Escande, V.; Renard, B.-L.; Grison, C. Lewis acid catalysis and green oxidations: Sequential tandem oxidation processes induced by Mn-hyperaccumulating plants. Env. Sci. Poll. Res. 2015, 22, 5633–5652. [Google Scholar] [CrossRef] [PubMed]
- Grignet, A.; de Vaufleury, A.; Papin, A.; Bert, V. Urban soil phytomanagement for Zn and Cd in situ removal, greening and Zn-rich biomass production taking care of snail exposure. Env. Sci. Poll. Res. 2020, 27, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Grignet, A.; Lounès-Hadj Sahraoui, A.; Teillaud, S.; Fontaine, J.; Papin, A.; Bert, V. Phytoextraction of Zn and Cd with Arabidopsis halleri: A focus on fertilization and biological amendment as a means of increasing biomass and Cd and Zn concentrations. Env. Sci. Poll. Res. 2022, 29, 22675–22686. [Google Scholar] [CrossRef] [PubMed]
- Honjo, M.N.; Kudoh, H. Arabidopsis halleri: A perennial model system for studying population differentiation and local adaptation. AoB Plants 2019, 11, plz076. [Google Scholar] [CrossRef] [Green Version]
- Bert, V.; Macnair, M.R.; de Laguerie, P.; Saumitou-Laprade, P.; Petit, D. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). N. Phytolog. 2000, 146, 225–233. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Dietrich, C.C.; Tandy, S.; Murawska-Wlodarczyk, K.; Banas, A.; Korzeniak, U.; Seget, B.; Babst-Kostecka, A. Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. Chemosphere 2021, 285, 131437. [Google Scholar] [CrossRef]
- Kushwaha, P.; Neilson, J.W.; Maier, R.M.; Babst-Kostecka, B. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Sci. Total Environ. 2022, 803, 150006. [Google Scholar] [CrossRef]
- Babst-Kostecka, A.; Schat, H.; Saumitou-Laprade, P.; Grodzińka, K.; Bourceaux, A.; Pauwels, M.; Frérot, H. Evolutionary dynamics of quantitative variation in an adaptive trait at the regional scale: The case of zinc hyperaccumulation in Arabidopsis halleri. Mol. Ecol. 2018, 27, 3257–3273. [Google Scholar] [CrossRef]
- Gomez-Balderas, C.; Cochet, N.; Bert, V.; Tarnaud, E.; Sarde, C. 16S rDNA analysis of bacterial communities associated with the hyper accumulator Arabidopsis halleri grown on a Zn and Cd polluted soil. Eur. J. Soil Biol. 2014, 60, 16–23. [Google Scholar] [CrossRef]
- Peterson, G.R.; Scarrah, W.P. Rapeseed oil transesterification by heterogeneous catalysis. J. Am. Oil Chem. Soc. 1984, 61, 1593–1597. [Google Scholar] [CrossRef]
- Karazhanov, S.Z.; Ravindran, P.; Fjellvåg, H.; Svensson, B.G. Electronic structure and optical properties of ZnSiO3ZnSiO3 and Zn2SiO4. J. Appl. Phys. 2009, 106, 123701–123707. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Nakatsuji, H.; Lu, X.; Ehara, M.; Cai, Y.; Wang, N.Q.; Zhang, Q.E. Cluster modeling of metal oxides: Case study of MgO and the CO/MgO adsorption system. Theor. Chem. Acc. 1999, 102, 170–179. [Google Scholar] [CrossRef]
- Escher, S.G.E.T.; Lazauskas, T.; Zwijnenburg, M.J.; Woodley, S.W. Synthesis target structures for alkaline earth oxide clusters. Inorganics 2018, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Chandraboss, V.L.; Karthikeyan, B.; Senthilvelan, S. Experimental and first-principles study of guanine adsorption on ZnO clusters. Phys. Chem. Chem. Phys. 2014, 16, 23461–23475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwapien, K.; Piccinin, S.; Fabris, S. Energetics of water oxidation catalyzed by cobalt oxide nanoparticles: Assessing the accuracy of DFT and DFT+U approaches against coupled cluster methods. J. Phys. Chem. Lett. 2013, 4, 4223–4230. [Google Scholar] [CrossRef]
- Farrow, C.L.; Bediako, D.K.; Surendranath, Y.; Nocera, D.G.; Billinge, S.J.L. Intermediate-range structure of self-assembled cobalt-based oxygen-evolving catalyst. J. Am. Chem. Soc. 2013, 135, 6403–6406. [Google Scholar] [CrossRef]
- Surendranath, Y.; Kanan, M.W.; Nocera, D.G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509. [Google Scholar] [CrossRef]
- Hu, X.L.; Piccinin, S.; Laio, A.; Fabris, S. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation. ACS Nano 2012, 6, 10497–10504. [Google Scholar] [CrossRef]
- Petitjean, H.; Guesmi, H.; Lauron-Pernot, H.; Costentin, G.; Loffreda, D.; Sautet, P.; Delbecq, F. How surface hydroxyls enhance MgO reactivity in basic catalysis: The case of methylbutynol conversion. ACS Catal. 2014, 4, 4004–4014. [Google Scholar] [CrossRef]
- Pawlowski, L. Chemical threat to the environment in Poland. Sci. Total Environ. 1990, 96, 1–21. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian16 Revision, A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6.1; Semichem, Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Adamo, C.; Scuseria, G.E.; Barone, V. Accurate excitation energies from time-dependent density functional theory: Assessing the PBE0 model. J. Chem. Phys. 1999, 111, 2889–2899. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Shnigirev, R.B.; Kondrashov, E.V.; Ushakov, I.A.; Rulev, A.Y. As a proof for continuous interest in preparation of α-hydroxyphosphonates under green conditions, very recently a report on the use of 0.25 equiv of CaO as catalyst in the hydrophoshonylation of organochalcogenyl enals and dialkyl phosphites in a solvent free system at room temperature was reported: Green synthesis of α-hydroxy phosphonates containing unsaturated organochalcogenyl moiety. Tetrahedron Lett. 2021, 85, 153466. [Google Scholar] [CrossRef]
Eco-MgZnOx | Al | Ca | Cd | Fe | K | Mg | Na | Zn | |
---|---|---|---|---|---|---|---|---|---|
EcoMgZnOx-P | wt % | 0.05 | 16.71 | 0.18 | 0.08 | 14.41 | 5.24 | 0.08 | 11.44 |
%RSD | 0.31 | 0.63 | 0.72 | 0.5 | 0.33 | 0.39 | 0.61 | 0.61 | |
EcoMgZnOx-F | wt % | 0.19 | 13.95 | 0.09 | 0.34 | 11.53 | 2.64 | 0.14 | 9.89 |
%RSD | 0.63 | 1.32 | 2.37 | 4.41 | 1.39 | 0.19 | 0.77 | 0.41 |
Entry | Ecocatalysts | Conversion (%) b |
---|---|---|
1 | no catalyst | 0 |
2 | Eco-MgZnOx-P c | 97 |
3 | Eco-MgZnOx-F d | 96 |
4 | ZnO e | 14 |
5 | MgO f | 70 |
6 | ZnO + MgO g | 78 |
7 | FeO + MgO h | 70 |
8 | FeO + MgO + ZnO i | 78 |
9 | K2CO3 j | 61 |
10 | CaCO3 k | 0 |
Eco-MgZnOx | Run | Conversion b (%) | Mineral Composition c of Eco-MgZnOx | |||
---|---|---|---|---|---|---|
Ca | Mg | Zn | ||||
Eco-MgZnOx-P | 1 | 97 | wt % | 16.21 | 4.32 | 8.02 |
2 | 96 | 15.92 | 3.72 | 6.96 | ||
3 | 94 | 13.65 | 2.94 | 5.27 | ||
Eco-MgZnOx-F | 1 | 96 | wt % | 14.77 | 1.69 | 7.22 |
2 | 58 | 14.46 | 1.26 | 5.23 | ||
3 | 14 | 15.42 | 0.79 | 3.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cybulska, P.; Legrand, Y.-M.; Babst-Kostecka, A.; Diliberto, S.; Leśniewicz, A.; Oliviero, E.; Bert, V.; Boulanger, C.; Grison, C.; Olszewski, T.K. Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis. Molecules 2022, 27, 3075. https://doi.org/10.3390/molecules27103075
Cybulska P, Legrand Y-M, Babst-Kostecka A, Diliberto S, Leśniewicz A, Oliviero E, Bert V, Boulanger C, Grison C, Olszewski TK. Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis. Molecules. 2022; 27(10):3075. https://doi.org/10.3390/molecules27103075
Chicago/Turabian StyleCybulska, Pola, Yves-Marie Legrand, Alicja Babst-Kostecka, Sébastien Diliberto, Anna Leśniewicz, Erwan Oliviero, Valérie Bert, Clotilde Boulanger, Claude Grison, and Tomasz K. Olszewski. 2022. "Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis" Molecules 27, no. 10: 3075. https://doi.org/10.3390/molecules27103075
APA StyleCybulska, P., Legrand, Y. -M., Babst-Kostecka, A., Diliberto, S., Leśniewicz, A., Oliviero, E., Bert, V., Boulanger, C., Grison, C., & Olszewski, T. K. (2022). Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis. Molecules, 27(10), 3075. https://doi.org/10.3390/molecules27103075