Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates
Abstract
:1. Introduction
2. Cross-Coupling Reaction of Copper Carbene Intermediate with Terminal Alkyne
2.1. Alkynylation
2.1.1. Alkynylation Terminated by Protonation
2.1.2. Alkynylation Terminated by Electrophilic Addition
2.1.3. Alkynylation Terminated by β-Elimination
2.2. Allenylation
2.2.1. Allenylation Terminated by Protonation
2.2.2. Allenylation Terminated by Electrophilic Addition
2.2.3. Allenylation Terminated by Allylation
2.2.4. Cascade Transformations Involving Allenylation Process
3. Copper Carbene Intermediate Addition onto C–C Triple Bond
3.1. Cyclopropenation
3.2. Cascade Reaction Involving Carbene/Alkyne Metathesis Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Cu(acac)2 | Copper(II) acetylacetonate |
Cu(hfacac)2 | Copper(II) hexafluoroacetylacetonate |
CuOTf | Copper(I) trifluoromethanesulfonate |
Cu(OTf)2 | Copper(II) trifluoromethanesulfonate |
CuPF6 | Copper(I) hexafluorophosphate |
Cu(MeCN)4PF6 | Tetrakis(acetonitrile)copper(I) hexafluorophosphate |
DAFO | 4,5-Diazafluoren-9-one |
TBAI | Tetrabutylammonium iodide |
TBAB | Tetrabutylammonium bromide |
Xantphos | 9,9-Dimethyl-4,5-bis(diphenylphosphino)xanthene |
TMS | Trimethylsilyl |
TIPS | Triisopropylsilyl |
TBDPS | tert-Butyldiphenylsiyl |
Boc | tert-Butoxycarbonyl |
Ts | 4-Toluolsulfonyl |
Bpin | Boron pinacol ester |
EDA | Ethyl diazoacetate |
PG | Protecting group |
References
- Trost, B.M.; Masters, J.T. Transition Metal-Catalyzed Couplings of Alkynes to 1,3-Enynes: Modern Methods and Synthetic Applications. Chem. Soc. Rev. 2016, 45, 2212–2238. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.L.; Wang, J. Cu(I)-Catalyzed Cross-Coupling of Diazo Compounds with Terminal Alkynes: An Efficient Access to Allenes. Chem. Rec. 2018, 18, 1548–1559. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kong, W. Ni-Catalyzed Stereoselective Difunctionalization of Alkynes. Org. Chem. Front. 2020, 7, 3941–3955. [Google Scholar] [CrossRef]
- Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Recent Advances in Tandem Selenocyclization and Tellurocyclization with Alkenes and Alkynes. Org. Chem. Front. 2020, 7, 3100–3119. [Google Scholar] [CrossRef]
- Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of Heterocycles via Electrophilic Cyclization of Alkynes Containing Heteroatom. Chem. Rev. 2011, 111, 2937–2980. [Google Scholar] [CrossRef] [PubMed]
- Trotus, I.T.; Zimmermann, T.; Schueth, F. Catalytic Reactions of Acetylene: A Feedstock for the Chemical Industry Revisited. Chem. Rev. 2014, 114, 1761–1782. [Google Scholar] [CrossRef]
- Campeau, D.; León Rayo, D.; Mansour, A.; Muratov, K.; Gagosz, F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem. Rev. 2021, 121, 8756–8867. [Google Scholar] [CrossRef]
- Patil, N.T.; Yamamoto, Y. Coinage Metal-Assisted Synthesis of Heterocycles. Chem. Rev. 2008, 108, 3395–3442. [Google Scholar] [CrossRef]
- Lipshutz, B.H.; Yamamoto, Y. Introduction: Coinage Metals in Organic Synthesis. Chem. Rev. 2008, 108, 2793–2795. [Google Scholar] [CrossRef]
- Ye, T.; McKervey, M.A. Organic Synthesis with α-Diazo Carbonyl Compounds. Chem. Rev. 1994, 94, 1091–1160. [Google Scholar] [CrossRef]
- Doyle, M.P.; McKervey, M.A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Doyle, M.P.; Forbes, D.C. Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. Chem. Rev. 1998, 98, 911–935. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.; Miel, H.; Ring, A.; Slattery, C.N.; Maguire, A.R.; McKervey, M.A. Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chem. Rev. 2015, 115, 9981–10080. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.F.; Chen, K.; Zhu, S. Transition-Metal-Catalyzed Intramolecular Nucleophilic Addition of Carbonyl Groups to Alkynes. Chem 2018, 4, 1208–1262. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Ma, X.; Cheng, X.; Zhao, K.; Gutman, K.; Li, T.; Zhang, L. Homogeneous Gold-Catalyzed Oxidation Reactions. Chem. Rev. 2021, 121, 8979–9038. [Google Scholar] [CrossRef]
- Hong, F.L.; Ye, L.W. Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N-Heterocycle Synthesis. Acc. Chem. Res. 2020, 53, 9, 2003–2019. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, Y.; Wang, J. Diazo Compounds and N-Tosylhydrazones: Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Acc. Chem. Res. 2013, 46, 236–247. [Google Scholar] [CrossRef]
- Wang, T.; Hashmi, A.S.K. 1,2-Migrations onto Gold Carbene Centers. Chem. Rev. 2021, 121, 8948–8978. [Google Scholar] [CrossRef]
- Fructos, M.R.; Díaz-Requejo, M.M.; Pérez, P.J. Gold and Diazo Reagents: A Fruitful Tool for Developing Molecular Complexity. Chem. Commun. 2016, 52, 7326–7335. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Au-Catalysed Oxidative Cyclisation. Chem. Soc. Rev. 2016, 45, 4448–4458. [Google Scholar] [CrossRef]
- Zhang, L. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation. Acc. Chem. Res. 2014, 47, 877–888. [Google Scholar] [CrossRef]
- Asiria, A.M.; Hashmi, A.S.K. Gold-Catalysed Reactions of Diynes. Chem. Soc. Rev. 2016, 45, 4471–4503. [Google Scholar] [CrossRef] [PubMed]
- Obradors, C.; Echavarren, A.M. Gold-Catalyzed Rearrangements and Beyond. Acc. Chem. Res. 2014, 47, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Zia, W.; Toste, F.D. Recent Advances in Enantioselective Gold Catalysis. Chem. Soc. Rev. 2016, 45, 4567–4589. [Google Scholar] [CrossRef] [PubMed]
- Rokade, B.V.; Barkera, J.; Guiry, P.J. Development of and Recent Advances in Asymmetric A3 Coupling. Chem. Soc. Rev. 2019, 48, 4766–4790. [Google Scholar] [CrossRef]
- Mo, J.N.; Su, J.; Zhao, J. The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargylamines. Molecules 2019, 24, 1216. [Google Scholar] [CrossRef] [Green Version]
- Bisai, V.; Suneja, A.; Singh, V.K. Asymmetric Alkynylation/Lactamization Cascade: An Expeditious Entry to Enantiomerically Enriched Isoindolinones. Angew. Chem. Int. Ed. 2014, 53, 10737–10741. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, Y.; Huang, T.; Liu, X.; Lin, L.; Feng, X. Copper/Guanidine-Catalyzed Asymmetric Alkynylation of Isatins. Angew. Chem. Int. Ed. 2016, 55, 5286–5289. [Google Scholar] [CrossRef]
- Maity, P.; Srinivas, H.D.; Watson, M.P. Copper-Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynylation of Isochroman Acetals. J. Am. Chem. Soc. 2011, 133, 17142–17145. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.; Gao, W.; Wu, H.; Yu, Y.H.; Zhou, J. Asymmetric Copper(I)-Catalyzed Azide–Alkyne Cycloaddition to Quaternary Oxindoles. J. Am. Chem. Soc. 2013, 135, 10994–10997. [Google Scholar] [CrossRef]
- Guo, S.; Dong, P.; Chen, Y.; Feng, X.; Liu, X. Chiral Guanidine/Copper Catalyzed Asymmetric Azide-Alkyne Cycloaddition/[2 + 2] Cascade Reaction. Angew. Chem. Int. Ed. 2018, 57, 16852–16856. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, X.H.; Wang, Y.H.; Zheng, Z.; Xu, J.; Hu, X.P. Highly Diastereo- and Enantioselective Cu-Catalyzed [3 + 3] Cycloaddition of Propargyl Esters with Cyclic Enamines toward Chiral Bicyclo[n. 3. 1] Frameworks. J. Am. Chem. Soc. 2012, 134, 9585–9588. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Takiguchi, Y.; Maruoka, K. Catalytic Asymmetric Three-Component 1,3-Dipolar Cycloaddition of Aldehydes, Hydrazides, and Alkynes. J. Am. Chem. Soc. 2013, 135, 11473–11476. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.L.; Wang, Z.S.; Wei, D.D.; Zhai, T.Y.; Deng, G.C.; Lu, X.; Liu, R.S.; Ye, L.W. Generation of Donor/Donor Copper Carbenes through Copper-Catalyzed Diyne Cyclization: Enantioselective and Divergent Synthesis of Chiral Polycyclic Pyrroles. J. Am. Chem. Soc. 2019, 141, 16961–16970. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Yang, C.; Xue, Q.Y.; Zhao, M.; Shan, C.C.; Xu, Y.H.; Loh, T.P. Copper-Catalyzed Asymmetric Silylation of Propargyl Dichlorides: Access to Enantioenriched Functionalized Allenylsilanes. Angew. Chem. Int. Ed. 2019, 58, 16538–16542. [Google Scholar] [CrossRef]
- Kondo, Y.; Nagao, K.; Ohmiya, H. Reductive Umpolung for Asymmetric Synthesis of Chiral α-Allenic Alcohols. Chem. Commun. 2020, 56, 7471–7474. [Google Scholar] [CrossRef]
- Zhong, F.; Xue, Q.Y.; Yin, L. Construction of Chiral 2,3-Allenols through a Copper(I)-Catalyzed Asymmetric Direct Alkynylogous aldol Reaction. Angew. Chem. Int. Ed. 2020, 59, 1562–1566. [Google Scholar] [CrossRef]
- Huang, Y.; Pozo, J.; Torker, S.; Hoveyda, A. Enantioselective Synthesis of Trisubstituted Allenyl–B(pin) Compounds by Phosphine–Cu-Catalyzed 1,3-Enyne Hydroboration. Insights Regarding Stereochemical Integrity of Cu–Allenyl Intermediates. J. Am. Chem. Soc. 2018, 140, 2643–2655. [Google Scholar] [CrossRef]
- Gao, D.W.; Xiao, Y.; Liu, M.; Liu, Z.; Karunananda, M.; Chen, J.; Engle, K. Catalytic, Enantioselective Synthesis of Allenyl Boronates. ACS Catal. 2018, 8, 3650–3654. [Google Scholar] [CrossRef]
- Jung, H.Y.; Feng, X.; Kim, H.; Yun, J. Copper-Catalyzed Boration of Activated Alkynes. Chiral Boranes via A One-pot Copper-Catalyzed Boration and Reduction Protocol. Tetrahedron 2012, 68, 3444–3449. [Google Scholar] [CrossRef]
- Jung, H.Y.; Yun, J. Copper-Catalyzed Double Borylation of Silylacetylenes: Highly Regio- and Stereoselective Synthesis of Syn-Vicinal Diboronates. Org. Lett. 2012, 14, 2606–2609. [Google Scholar] [CrossRef]
- Liu, P.; Fukui, Y.; Tian, P.; He, Z.T.; Sun, C.Y.; Wu, N.Y.; Lin, G.Q. Cu-Catalyzed Asymmetric Borylative Cyclization of Cyclohexadienone-Containing 1,6-Enynes. J. Am. Chem. Soc. 2013, 135, 11700–11703. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.W.; Gao, Y.; Shao, H.; Qiao, T.Z.; Wang, X.; Sanchez, B.B.; Chen, J.S.; Liu, P.; Engle, K.M. Cascade CuH-Catalysed Conversion of Alkynes into Enantioenriched 1,1-Disubstituted Products. Nat. Catal. 2020, 3, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.L.; Buchwald, S.L. Copper-Catalysed Selective Hydroamination Reactions of Alkynes. Nat. Chem. 2015, 7, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silberrad, O.; Roy, C.S. Gradual Decomposition of Ethyl Diazoacetate. J. Chem. Soc. Trans. 1906, 89, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, H.; Moriuti, S.; Yamabe, M.; Noyori, R. Reactions of Diphenyldiazomethane in the Presence of Bis(acetylacetonato) Copper (II). Modified Diphenylmethylene Reactions. Tetrahedron Lett. 1966, 7, 59–63. [Google Scholar] [CrossRef]
- Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Homogeneous Catalysis in the Decomposition of Diazo Compounds by Copper Chelates: Asymmetric Carbenoid Reactions. Tetrahedron 1968, 24, 3655–3669. [Google Scholar] [CrossRef]
- Dauben, W.G.; Hendricks, R.T.; Luzzio, M.J.; Ng, H.P. Enantioselectively Catalyzed Intramolecular Cyclopropanations of Unsaturated Diazo Carbonyl Compounds. Tetrahedron Lett. 1990, 31, 6969–6972. [Google Scholar] [CrossRef]
- Lowenthal, R.E.; Abiko, A.; Masamune, S. Asymmetric Catalytic Cyclopropanation of Olefins: Bis-Oxazoline Copper Complexes. Tetrahedron Lett. 1990, 31, 6005–6008. [Google Scholar] [CrossRef]
- Evans, D.A.; Woerpel, K.A.; Hinman, M.M.; Faul, M.M. Bis(oxazolines) as Chiral Ligands in Metal-Catalyzed Asymmetric Reactions. Catalytic, Asymmetric Cyclopropanation of Olefins. J. Am. Chem. Soc. 1991, 113, 726–728. [Google Scholar] [CrossRef]
- Evans, D.A.; Woerpel, K.A.; Scott, M.J. Bis(oxazolines)’ as Ligands for Self-Assembling Chiral Coordination Polymers—Structure of a Copper(I) Catalyst for the Enantioselective Cyclopropanation of Olefins. Angew. Chem. Int. Ed. 1992, 31, 430–432. [Google Scholar] [CrossRef]
- Pfaltz, A. Chiral Semicorrins and Related Nitrogen Heterocycles as Ligands in Asymmetric Catalysis. Acc. Chem. Res. 1993, 26, 339–345. [Google Scholar] [CrossRef]
- Díaz-Requejo, M.M.; Pérez, P.J. The Use of Polypyrazolylborate Copper(I) Complexes as Catalysts in the Conversion of Olefins into Cyclopropanes, Aziridines and Epoxides and Alkynes into Cyclopropenes. J. Organomet. Chem. 2001, 617, 110–118. [Google Scholar] [CrossRef]
- Straub, B.F.; Hofmann, P. Copper(I) Carbenes: The Synthesis of Active Intermediates in Copper-Catalyzed Cyclopropanation B.F.S. thanks the Fonds der Chemischen Industrie for a doctoral fellowship. Angew. Chem. Int. Ed. 2001, 40, 1288–1290. [Google Scholar] [CrossRef]
- Fraile, J.M.; GarcTa, J.I.; MartTnez-Merino, V.; Mayoral, J.A.; Salvatella, L. Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis. J. Am. Chem. Soc. 2001, 123, 7616–7625. [Google Scholar] [CrossRef]
- Liao, S.; Sun, X.L.; Tang, Y. Side Arm Strategy for Catalyst Design: Modifying Bisoxazolines for Remote Control of Enantioselection and Related. Acc. Chem. Res. 2014, 47, 2260–2272. [Google Scholar] [CrossRef]
- Xie, J.H.; Zhu, Q.L. Chiral Diphosphine and Monodentate Phosphorus Ligands on a Spiro Scaffold for Transition-Metal-Catalyzed Asymmetric Reactions. Acc. Chem. Res. 2008, 41, 581–593. [Google Scholar] [CrossRef]
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef]
- Diaz-Requejo, M.M.; Belderrain, T.R.; Nicasio, M.C.; Trofimenko, S.; Pérez, P.J. Intermolecular Copper-Catalyzed Carbon-Hydrogen Bond Activation via Carbene insertion. J. Am. Chem. Soc. 2002, 124, 896–897. [Google Scholar] [CrossRef]
- Flynn, C.J.; Elcoate, C.J.; Lawrence, S.E.; Maguire, A.R. Highly Enantioselective Intramolecular Copper Catalyzed C-H Insertion Reactions of α-Diazosulfones. J. Am. Chem. Soc. 2010, 132, 1184–1185. [Google Scholar] [CrossRef]
- Carreras, V.; Besnard, C.; Gandon, V.; Ollevier, T. Asymmetric CuI-Catalyzed Insertion Reaction of 1-Aryl-2,2,2-trifluoro-1-diazoethanes into Si–H Bonds. Org. Lett. 2019, 21, 9094–9098. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhu, S.F.; Wang, L.X.; Zhou, Q.L. Copper-Catalyzed Highly Enantioselective Carbenoid Insertion into Si-H Bonds. Angew. Chem. Int. Ed. 2008, 47, 8496–8498. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.C.; Fu, G.C. Catalytic Enantioselective O-H Insertion Reactions. J. Am. Chem. Soc. 2006, 128, 4594–4595. [Google Scholar] [CrossRef] [PubMed]
- Morilla, M.E.; Molina, M.J.; Diaz-Requejo, M.M.; Belderrain, T.R.; Nicasio, M.C.; Trofimenko, S.; Pérez, P.J. Copper-Catalyzed Carbene Insertion into O−H Bonds: High Selective Conversion of Alcohols into Ethers. Organometallics 2003, 22, 2914–2918. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Cai, Y.; Wang, G.; Zhu, S.F.; Zhou, Q.L. Highly Enantioselective Copper- and Iron-Catalyzed Intramolecular Cyclopropanation of Indoles. J. Am. Chem. Soc. 2017, 139, 7697–7700. [Google Scholar] [CrossRef] [PubMed]
- Noyori, R.; Takaya, H.; Nakanisi, Y.; Nozaki, H. Partial Asymmetric Synthesis of Methylenecyclopropanes and Spiropentanes. Can. J. Chem. 1969, 47, 1242–1245. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Wang, X.; Yu, Y.; Zheng, J.; Wu, W.; Jiang, H. Copper-Catalyzed Cyanothiolation to Incorporate a Sulfur-Substituted Quaternary Carbon Center. Chem. Sci. 2017, 8, 7047–7051. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.; Pei, C.; Zeng, Q.; Qiu, L.; Hu, W.; Qian, Y.; Xu, X. Copper-Catalyzed [4 + 1]-Annulation of 2-Alkenylindoles with Diazoacetates: A Facile Access to Dihydrocyclopenta[b]indoles. Chem. Commun. 2019, 55, 6393–6396. [Google Scholar] [CrossRef]
- Luo, H.; He, C.; Jiang, H.; Zhu, S. Rapid Access to Oxabicyclo[2.2.2]octane Skeleton through Cu(I)-Catalyzed Generation and Trapping of Vinyl-o-quinodimethanes (Vinyl-o-QDMs). Chin. J. Chem. 2020, 38, 1052–1056. [Google Scholar] [CrossRef]
- Qu, J.; Xu, Z.; Zhou, J.; Cao, C.; Sun, X.; Dai, L.; Tang, Y. Ligand-Accelerated Asymmetric [1, 2]-Stevens Rearrangment of Sulfur Ylides via Decomposition of Diazomalonates Catalyzed by Chiral Bisoxazoline/Copper Complex. Adv. Synth. Catal. 2009, 351, 308–312. [Google Scholar] [CrossRef]
- Alavala, G.K.; Sajjad, F.; Shi, T.; Kang, Z.; Ma, M.; Xing, D.; Hu, W. Diastereoselective Synthesis of Isochromans via the Cu(II)-Catalysed Intramolecular Michael-type Trapping of Oxonium Ylides. Chem. Commun. 2018, 54, 12650–12653. [Google Scholar] [CrossRef]
- Nair, V.N.; Kojasoy, V.; Laconsay, C.J.; Kong, W.Y.; Tantillo, D.J.; Tambar, U.K. Catalyst-Controlled Regiodivergence in Rearrangements of Indole-Based Onium Ylides. J. Am. Chem. Soc. 2021, 143, 9016–9025. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Dong, K.; Pei, C.; Dong, S.; Hu, W.; Qiu, L.; Xu, X. Divergent Construction of Macrocyclic Alkynes via Catalytic Metal Carbene C(sp2)–H Insertion and the Buchner Reaction. ACS Catal. 2019, 9, 10773–10779. [Google Scholar] [CrossRef]
- Pei, C.; Rong, G.W.; Yu, Z.X.; Xu, X. Copper-Catalyzed Intramolecular Annulation of Conjugated Enynones to Substituted 1H-Indenes and Mechanistic Studies. J. Org. Chem. 2018, 83, 13243–13255. [Google Scholar] [CrossRef] [PubMed]
- Marichev, K.O.; Wang, K.; Dong, K.; Greco, N.; Massey, L.A.; Deng, Y.; Arman, H.; Doyle, M.P. Synthesis of Chiral Tetrasubstituted Azetidines from Donor-acceptor Azetines via Asymmetric Copper(I)-catalyzed Imido-ylide [3 + 1]-cycloaddition with Metallo-enolcarbenes. Angew. Chem. Int. Ed. 2019, 58, 16188–16192. [Google Scholar] [CrossRef] [PubMed]
- Marichev, K.O.; Dong, K.; Massey, L.A.; Deng, Y.; Angelis, L.; Wang, K.; Arman, H.; Doyle, M.P. Chiral Donor-acceptor Azetines as Powerful Reactants for Synthesis of Amino Acid Derivatives. Nat. Commun. 2019, 10, 5328. [Google Scholar] [CrossRef] [Green Version]
- Marichev, K.O.; Doyle, M.P. Catalytic Asymmetric Cycloaddition Reactions of Enoldiazo Compounds. Org. Biomol. Chem. 2019, 17, 4183–4195. [Google Scholar] [CrossRef]
- Yang, J.M.; Li, Z.Q.; Li, M.L.; He, Q.; Zhu, S.F.; Zhou, Q.L. Catalytic B−H Bond Insertion Reactions Using Alkynes as Carbene Precursors. J. Am. Chem. Soc. 2017, 139, 3784–3789. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, Q.L. Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions. Acc. Chem. Res. 2012, 45, 1365–1377. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, J. Transition-Metal-Catalyzed Cross-Coupling with Ketones or Aldehydes via N-Tosylhydrazones. J. Am. Chem. Soc. 2020, 142, 10592–10605. [Google Scholar] [CrossRef]
- Xia, Y.; Qiu, D.; Wang, J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem. Rev. 2017, 117, 13810–13889. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, J. N-Tosylhydrazones: Versatile Synthons in the Construction of Cyclic Compounds. Chem. Soc. Rev. 2017, 46, 2306–2362. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.; Besora, M.; Molina, F.; Maseras, F.; Belderrain, T.R.; Pérez, P.J. Two Copper-Carbenes from One Diazo Compound. J. Am. Chem. Soc. 2021, 143, 4837–4843. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.M.; Molina, F.; Díaz-Requejo, M.M.; Pérez, P.J. Copper-Catalyzed Selective Pyrrole Functionalization by Carbene Transfer Reaction. Adv. Synth. Catal. 2020, 362, 1998–2004. [Google Scholar] [CrossRef]
- Hedleya, S.J.; Davies, H.M.L. Intermolecular Reactions of Electron-rich Heterocycles with Copper and Rhodium Carbenoids. Chem. Soc. Rev. 2007, 36, 1109–1119. [Google Scholar]
- Alford, J.S.; Davies, H.M.L. Reactions of Metallocarbenes Derived from N-sulfonyl-1,2,3-triazoles. Chem. Soc. Rev. 2014, 43, 5151–5162. [Google Scholar]
- Che, J.; Xing, D.; Hu, W. Metal-Catalyzed Cross-Coupling of Terminal Alkynes with Different Carbene Precursors. Curr. Org. Chem. 2015, 20, 41–60. [Google Scholar] [CrossRef]
- Jones, V.K.; Deutschman, A.J., Jr. The Copper Sulfate Catalyzed Reaction of Ethyl Diazoacetate and 1-Octyne1. J. Org. Chem. 1965, 30, 3978–3980. [Google Scholar] [CrossRef]
- Suarez, A.; Fu, G.C. A Straightforward and Mild Synthesis of Functionalized 3-Alkynoates. Angew. Chem. Int. Ed. 2004, 43, 3580–3582. [Google Scholar] [CrossRef]
- Ye, F.; Ma, X.; Xiao, Q.; Li, H.; Zhang, Y.; Wang, J. C(sp)–C(sp3) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethynes. J. Am. Chem. Soc. 2012, 134, 5742–5745. [Google Scholar] [CrossRef]
- Xiao, T.; Zhang, P.; Xie, Y.; Wang, J.; Zhou, L. CuI-catalyzed Cross-coupling of Terminal Alkynes with Dialkoxycarbenes: A General Method for the Synthesis of Unsymmetrical Propargylic Acetals. Org. Biomol. Chem. 2014, 12, 6215–6222. [Google Scholar] [CrossRef] [Green Version]
- Osako, T.; Nagaosa, M.; Hamasaka, G.; Uozumi, Y. Asymmetric Copper-Catalyzed C(sp)–H Bond Insertion of Carbenoids Derived from N-Tosylhydrazones. Synlett 2018, 29, 2251–2256. [Google Scholar]
- Wang, C.; Ye, F.; Wu, C.; Zhang, Y.; Wang, J. Construction of All-Carbon Quaternary Centers through Cu-Catalyzed Sequential Carbene Migratory Insertion and Nucleophilic Substitution/Michael Addition. J. Org. Chem. 2015, 80, 8748–8757. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Kang, Z.; Xing, D.; Hu, W. Cu(I)-Catalyzed Three-Component Reaction of Diazo Compound with Terminal Alkyne and Nitrosobenzene for the Synthesis of Trifluoromethyl Dihydroisoxazoles. Org. Lett. 2018, 20, 4843–4847. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Reddy, A.; Niu, L.; Xing, D.; Hu, W. Cu(I)-Catalyzed Three-Component Reaction of α-Diazo Amide with Terminal Alkyne and Isatin Ketimine via Electrophilic Trapping of Active Alkynoate-Copper Intermediate. Org. Lett. 2019, 21, 4571–4574. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Wu, G.; Zhang, Y.; Wang, J. Cu(I)-Catalyzed Cross-Coupling of Terminal Alkynes with Trifluoromethyl Ketone N-Tosylhydrazones: Access to 1,1-Difluoro-1,3-enynes. Org. Lett. 2015, 17, 2474–2477. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Zhang, Z.; Ye, F.; Deng, G.; Zhang, Y.; Wang, J. Copper(I)-Catalyzed Stereoselective Synthesis of (E)-α-Alkynyl α, β-Unsaturated Esters from a Terminal Alkyne, Diazoesters and Aldehydes. Adv. Synth. Catal. 2016, 358, 2480–2488. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, F.; Zhou, Q.; Zhang, Y.; Wang, J. Cu(I)-Catalyzed Tandem Reaction of Carbene Coupling and Horner–Wadsworth–Emmons Type Olefination: Access Toward Enynes. Org. Lett. 2016, 18, 2024–2027. [Google Scholar] [CrossRef]
- Hassink, M.; Liu, X.; Fox, J.M. Copper-Catalyzed Synthesis of 2,4-Disubstituted Allenoates from α-Diazoesters. Org. Lett. 2011, 13, 2388–2391. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ding, D.; Liu, L.; Sun, J. CuI-Catalyzed Cross-Coupling of Diazoacetamide with Terminal Alkynes: An Approach to Synthesizing Substituted Dienamides and 3-Butynamides. RSC Adv. 2013, 3, 21260–21266. [Google Scholar] [CrossRef]
- Hossain, M.L.; Ye, F.; Zhang, Y.; Wang, J. CuI-Catalyzed Cross-Coupling of N-Tosylhydrazones with Terminal Alkynes: Synthesis of 1,3-Disubstituted Allenes. J. Org. Chem. 2013, 78, 1236–1241. [Google Scholar] [CrossRef]
- Wu, C.; Hu, F.; Liu, Z.; Deng, G.; Ye, F.; Zhang, Y.; Wang, J. Cu(I)-Catalyzed Coupling of Diaryldiazomethanes with Terminal Alkynes: An Efficient Synthesis of Tri-aryl-substituted Allenes. Tetrahedron 2015, 71, 9196–9201. [Google Scholar] [CrossRef]
- Ye, F.; Wang, C.; Ma, X.; Hossain, M.L.; Xia, Y.; Zhang, Y.; Wang, J. Synthesis of Terminal Allenes through Copper-Mediated Cross-Coupling of Ethyne with N-Tosylhydrazones or α-Diazoesters. J. Org. Chem. 2015, 80, 647–652. [Google Scholar] [CrossRef]
- Xu, S.; Chen, R.; Fu, Z.; Gao, Y.; Wang, J. Cu(I)-Catalyzed Coupling of Bis(trimethylsilyl)diazomethane with Terminal Alkynes: A Synthesis of 1,1-Disilyl Allenes. J. Org. Chem. 2018, 83, 6186–6192. [Google Scholar] [CrossRef] [PubMed]
- Poh, J.S.; Tran, D.N.; Battilocchio, C.; Hawkins, J.M.; Ley, S.V. A Versatile Room-Temperature Route to Di- and TrisubstitutedAllenes Using Flow-Generated Diazo Compounds. Angew. Chem. Int. Ed. 2015, 54, 7920–7923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. Cu(I)-Catalyzed Synthesis of Furan-Substituted Allenes by Use of Conjugated Ene-yne Ketones as Carbene Precursors. J. Org. Chem. 2016, 81, 3275–3285. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Q.; Liu, X.; Wang, G.; Lin, L.; Feng, X. Direct Synthesis of Chiral Allenoates from the Asymmetric C-H bond Insertion of α-Diazoesters into Terminal Alkynes. Angew. Chem. Int. Ed. 2015, 54, 9512–9516. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective Synthesis of Trisubstituted Allenes via Cu(I)-Catalyzed Coupling of Diazoalkanes with Terminal Alkynes. J. Am. Chem. Soc. 2016, 138, 14558–14561. [Google Scholar] [CrossRef]
- Poh, J.S.; Makai, S.; Keutz, T.; Tran, D.N.; Battilocchio, C.; Pasau, P.; Ley, S.V. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow-Generated Diazo Compounds and Propargylated Amines. Angew. Chem. Int. Ed. 2017, 56, 1864–1868. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Xu, J.; Yang, J.; Lin, L.; Feng, X.; Liu, X. Asymmetric Three-Component Reaction for the Synthesis of Tetrasubstituted Allenoates via Allenoate-Copper Intermediates. Chem 2018, 4, 1658–1672. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wang, Z.; Shao, Y.; Sun, J. Copper-Catalyzed Tandem Cross-Coupling and Alkynylogous aldol Reaction: Access to Chiral Exocyclic α-Allenols. Org. Lett. 2021, 23, 5175–5179. [Google Scholar] [CrossRef]
- Ma, S. Electrophilic Addition and Cyclization Reactions of Allenes. Acc. Chem. Res. 2009, 42, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Tius, M.A. Cationic Cyclopentannelation of Allene Ethers. Acc. Chem. Res. 2003, 36, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Ma, S. Transition Metal-Catalyzed/Mediated Reaction of Allenes with a Nucleophilic Functionality Connected to the α-Carbon Atom. Acc. Chem. Res. 2003, 36, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Mascareñas, J.L.; Varela, I.; López, F. Allenes and Derivatives in Gold(I)- and Platinum(II)-Catalyzed Formal Cycloadditions. Acc. Chem. Res. 2019, 52, 465–479. [Google Scholar] [CrossRef] [Green Version]
- Blieck, R.; Taillefer, M.; Monnier, F. Metal-Catalyzed Intermolecular Hydrofunctionalization of Allenes: Easy Access to Allylic Structures via the Selective Formation of C–N, C–C, and C–O Bonds. Chem. Rev. 2020, 120, 13545–13598. [Google Scholar] [CrossRef] [PubMed]
- Ma, S. Some Typical Advances in the Synthetic Applications of Allenes. Chem. Rev. 2005, 105, 2829–2872. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.M.; Almendros, P. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chem. Rev. 2021, 121, 4193–4252. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; Kwon, O. Phosphine Catalysis of Allenes with Electrophiles. Chem. Soc. Rev. 2014, 43, 2927–2940. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.S.; Weatherly, C.D.; Burkea, E.G.; Schomaker, J.M. The Conversion of Allenes to Strained Three-Membered Heterocycles. Chem. Soc. Rev. 2014, 43, 3136–3163. [Google Scholar] [CrossRef]
- Ye, F.; Shi, Y.; Zhou, L.; Xiao, Q.; Zhang, Y.; Wang, J. Expeditious Synthesis of Phenanthrenes via CuBr2-Catalyzed Coupling of Terminal Alkynes and N-Tosylhydrazones Derived from O-Formyl Biphenyls. Org. Lett. 2011, 13, 5020–5023. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, Y.; Xiao, Q.; Liu, Y.; Ye, F.; Zhang, Y.; Wang, J. CuBr-Catalyzed Coupling of N-Tosylhydrazones and Terminal Alkynes: Synthesis of Benzofurans and Indoles. Org. Lett. 2011, 13, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Kumaraswamy, G.; Jayaprakash, N.; Balakishan, G. Cu(I)-Catalyzed Tandem Benzyldiazoester Coupling with Terminal Alkyne–Allene Formation–Michael Reaction: Application to the Syntheses of Oxa and Azacycles. Org. Biomol. Chem. 2011, 9, 7913–7920. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhu, C.; Min, J.; Peng, S.; Xu, G.; Sun, J. Stereodivergent Synthesis of N-H bondeterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes. Angew. Chem. Int. Ed. 2015, 54, 12962–12967. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Liu, K.; Sun, J. Tandem Reaction of Allenoate Formation and Cyclization: Divergent Synthesis of Four- to Six-Membered Heterocycles. Org. Lett. 2018, 20, 7708–7711. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Song, R.; Guo, S.; Wang, Z.; Li, J. Copper/Silver-Cocatalyzed Conia-Ene Reaction of Linear β-Alkynic β-Ketoesters. Org. Lett. 2007, 9, 5111–5114. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Ferrali, A.; Sladojevich, F.; Campbell, L.; Dixon, D.J. Brønsted Base/Lewis Acid Cooperative Catalysis in the Enantioselective Conia-Ene Reaction. J. Am. Chem. Soc. 2009, 131, 9140–9141. [Google Scholar] [CrossRef] [PubMed]
- Kumaraswamy, G.; Balakishan, G. Copper(I)-Catalysed Domino Coupling and Cyclisation Reaction: A Mild, Expedient Route for the Synthesis of Indene and Dihydronaphthalene Derivatives. Eur. J. Org. Chem. 2015, 2015, 3141–3146. [Google Scholar] [CrossRef]
- Min, J.; Xu, G.; Sun, J. Synthesis of Six-Membered Carbo-/Heterocycles via Cascade Reaction of Alkynes and Diazo Compounds. J. Org. Chem. 2017, 82, 5492–5498. [Google Scholar] [CrossRef]
- Helan, V.; Gulevich, A.V.; Gevorgyan, V. Cu-Catalyzed Trans-Annulation Reaction of Pyridotriazoles with Terminal Alkynes under Aerobic Conditions: Efficient Synthesis of Indolizines. Chem. Sci. 2015, 6, 1928–1931. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Li, L.; Liu, L.; Guan, Q.; Yang, Y.; Zha, Z.; Wang, Z. Copper-Catalyzed Geminal Difunctionalization of Terminal Alkynes by Splitting Sulfonyl Hydrazones into Two Parts. Org. Lett. 2018, 20, 5592–5596. [Google Scholar] [CrossRef]
- Li, Z.; Sun, J. Copper-Catalyzed 1,1-Boroalkylation of Terminal Alkynes: Access to Alkenylboronates via a Three-Component Reaction. Org. Lett. 2021, 23, 3706–3711. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, V.N.G.; Fiset, D.; Gritsch, P.J.; Azzi, S.; Charette, A.B. Stereoselective Rh2(S-IBAZ)4-Catalyzed Cyclopropanation of Alkenes, Alkynes, and Allenes: Asymmetric Synthesis of Diacceptor Cyclopropylphosphonates and Alkylidenecyclopropanes. J. Am. Chem. Soc. 2013, 135, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Takeda, K.; Shimada, N.; Nambu, H.; Anada, M.; Shiro, M.; Ando, K.; Hashimoto, S. Highly Enantioselective Cyclopropenation Reaction of 1-Alkynes with α-Alkyl-α-Diazoesters Catalyzed by Dirhodium(II) Carboxylates. Angew. Chem. Int. Ed. 2011, 50, 6803–6808. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Zhao, Z.; Zhang, F.; Wu, S.; Yan, G.; Quan, Y.; Ma, B. One-Pot Novel Regioselective Cycloisomerization Synthesis of 2-Substituted or 3-Substituted 4H-Furo[3, 2-c]chromene through the Intermediate Cyclopropenes of 3-Diazochroman-4-one and Phenylacetylene. Org. Lett. 2014, 16, 5524–5527. [Google Scholar] [CrossRef]
- Briones, J.F.; Davies, H.M.L. Rh2(S-PTAD)4-Catalyzed Asymmetric Cyclopropenation of Aryl Alkynes. Tetrahedron 2011, 67, 4313–4317. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, M.; Xue, X.; Marek, I.; Zhang, F.; Ma, J. Catalytic Enantioselective Cyclopropenation of Internal Alkynes: Access to Difluoromethylated Three-Membered Carbocycles. Angew. Chem. Int. Ed. 2019, 58, 618191–618196. [Google Scholar]
- Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X.P. Enantioselective Cyclopropenation of Alkynes with Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis. J. Am. Chem. Soc. 2011, 133, 3304–3307. [Google Scholar] [CrossRef]
- Briones, J.F.; Davies, H.M.L. Gold(I)-Catalyzed Asymmetric Cyclopropenation of Internal Alkynes. J. Am. Chem. Soc. 2012, 134, 11916–11919. [Google Scholar] [CrossRef]
- Briones, J.F.; Davies, H.M.L. Silver Triflate-Catalyzed Cyclopropenation of Internal Alkynes with Donor-/Acceptor-Substituted Diazo Compounds. Org. Lett. 2011, 13, 3984–3987. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.; Liao, P.; Bi, X. Silver-Catalyzed [2 + 1] Cyclopropenation of Alkynes with Unstable Diazoalkanes: N-Nosylhydrazones as Room-Temperature Decomposable Diazo Surrogates. Chem. Eur. J. 2017, 23, 4756–4760. [Google Scholar] [CrossRef]
- Chen, L.; Leslie, D.; Coleman, M.G.; Mack, J. Recyclable Heterogeneous Metal Foil-Catalyzed Cyclopropenation of Alkynes and Diazoacetates under Solvent-Free Mechanochemical Reaction Condition. Chem. Sci. 2018, 9, 4650–4661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uehara, M.; Suematsu, H.; Yasutomi, Y.; Katsuki, T. Enantioenriched Synthesis of Cyclopropenes with a Quaternary Stereocenter, Versatile Building Blocks. J. Am. Chem. Soc. 2011, 133, 170–171. [Google Scholar] [CrossRef] [PubMed]
- González, M.J.; López, L.A.; Vicente, R. Zinc-Catalyzed Cyclopropenation of Alkynes via 2-Furylcarbenoids. Org. Lett. 2014, 16, 5780–5783. [Google Scholar] [CrossRef] [PubMed]
- Martίnez-Garcί, H.; Morales, D.; Perez, J.; Puerto, M.; Miguel, D. 1,3,5-Tris(thiocyanatomethyl)mesitylene as a Ligand. Pseudooctahedral Molybdenum, Manganese, and Rhenium Carbonyl Complexes and Copper and Silver Dimers. Copper-Catalyzed Carbene- and Nitrene-Transfer Reactions. Inorg. Chem. 2010, 49, 6974–6985. [Google Scholar] [CrossRef] [PubMed]
- Noonikara-Poyil, A.; Ridlen, S.G.; Rasika Dias, H.V. Isolable Copper(I) η2-Cyclopropene Complexes. Inorg. Chem. 2020, 59, 17860–17865. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.J.; Merritt, B.A.; Lemma, B.E.; McKoy, A.M.; Nguyen, T.; Swenson, A.K.; Mills, J.L.; Coleman, M.G. Cyclopropenation of Internal Alkynylsilanes and Diazoacetates Catalyzed by Copper(I) N-H Bondeterocyclic Carbene Complexes. Org. Biomol. Chem. 2016, 14, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- Padin, D.; Varela, J.A.; Saá, C. Recent Advances in RutheniumCatalyzed Carbene/Alkyne Metathesis (CAM) Transformations. Synlett 2020, 31, 1147–1157. [Google Scholar]
- Dey, S.; De Sarkar, S. Synthetic Applications of Vinyl Ruthenium Carbenes Derived from Diazoalkanes and Alkynes. Adv. Synth. Catal. 2017, 359, 2709–2722. [Google Scholar] [CrossRef]
- Pei, C.; Zhang, C.; Qian, Y.; Xu, X. Catalytic Carbene/Alkyne Metathesis (CAM): A Versatile Strategy from Alkyne Bifunctionalization. Org. Biomol. Chem. 2018, 16, 8677–8685. [Google Scholar] [CrossRef]
- Qian, Y.; Shanahan, C.S.; Doyle, M.P. Templated Carbene Metathesis Reactions from the Modular Assembly of Enol-diazo Compounds and Propargyl Acetates. Eur. J. Org. Chem. 2013, 27, 6032–6037. [Google Scholar] [CrossRef]
- Archambeau, A.; Miege, F.; Meyer, C.; Cossy, J. Intramolecular Cyclopropanation and C–H Insertion Reactions with Metal Carbenoids Generated from Cyclopropenes. Acc. Chem. Res. 2015, 48, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Padwa, A.; Blacklock, T.J.; Loza, R. Silver-Promoted Isomerizations of Some Cyclopropene Derivatives. J. Am. Chem. Soc. 1981, 103, 2404–2405. [Google Scholar] [CrossRef]
- Padwa, A.; Xu, S.L. A New Phenol Synthesis from the Rhodium (I) Catalyzed Reaction of Cyclopropenes and Alkynes. J. Am. Chem. Soc. 1992, 114, 5881–5882. [Google Scholar] [CrossRef]
- Cambeiro, F.; López, S.; Varela, J.A.; Saá, C. Cyclization by Catalytic Ruthenium Carbene Insertion into C-H bond Bonds. Angew. Chem. Int. Ed. 2012, 51, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Hoye, T.R.; Dinsmore, C.J. Rhodium(II) Acetate Catalyzed Alkyne Insertion Reactions of Alpha.-Diazo Ketones: Mechanistic Inferences. J. Am. Chem. Soc. 1991, 113, 4343–4345. [Google Scholar] [CrossRef]
- Dong, K.; Pei, C.; Zeng, Q.; Wei, H.; Doyle, M.P.; Xu, X. Selective C(sp3)–H Bond Insertion in Carbene/Alkyne Metathesis Reactions. Enantioselective Construction of Dihydroindoles. ACS Catal. 2018, 8, 9543–9549. [Google Scholar] [CrossRef]
- Dong, K.; Fan, X.; Pei, C.; Zheng, Y.; Chang, S.; Cai, J.; Qiu, L.; Yu, Z.; Xu, X. Transient-Axial-Chirality Controlled Asymmetric Rhodium-Carbene C(sp2)-H bond Functionalization for the Synthesis of Chiral Fluorenes. Nat. Commun. 2020, 11, 2363. [Google Scholar] [CrossRef]
- Panne, P.; Fox, J.M. Rh-Catalyzed Intermolecular Reactions of Alkynes with α-Diazoesters That Possess β-H bondydrogens: Ligand-Based Control over Divergent Pathways. J. Am. Chem. Soc. 2007, 129, 22–23. [Google Scholar] [CrossRef]
- Ni, Y.; Montgomery, J. Synthetic Studies and Mechanistic Insight in Nickel-Catalyzed [4 + 2 + 1] Cycloadditions. J. Am. Chem. Soc. 2006, 128, 2609–2614. [Google Scholar] [CrossRef] [Green Version]
- Cambeiro, F.; López, S.; Varela, J.A.; Saá, C. Vinyl Dihydropyrans and Dihydrooxazines: Cyclizations of Catalytic Ruthenium Carbenes Derived from Alkynals and Alkynones. Angew. Chem. Int. Ed. 2014, 53, 5959–5963. [Google Scholar] [CrossRef]
- Xia, L.; Lee, Y.R. Regioselective Synthesis of Highly Functionalized Furans through the RuII-Catalyzed [3 + 2] Cycloaddition of Diazodicarbonyl Compounds. Eur. J. Org. Chem. 2014, 2014, 3430–3442. [Google Scholar] [CrossRef]
- Kurandina, D.; Gevorgyan, V. Rhodium Thiavinyl Carbenes from 1,2,3-Thiadiazoles Enable Modular Synthesis of Multisubstituted Thiophenes. Org. Lett. 2016, 18, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Xu, X.; Wojtas, L.; Kim, M.; Zhang, X.P. Regioselective Synthesis of Multisubstituted Furans via Metalloradical Cyclization of Alkynes with α-Diazocarbonyls: Construction of Functionalized α-Oligofurans. J. Am. Chem. Soc. 2012, 134, 19981–19984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition Metal-Mediated Synthesis of Monocyclic Aromatic Heterocycles. Chem. Rev. 2013, 113, 3084–3213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.L.; Ye, J.; Zhang, Y.; Wang, J. Cu(I)-Catalyzed Reaction of Diazo Compounds with Terminal Alkynes: A Direct Synthesis of Trisubstituted Furans. Tetrahedron 2014, 70, 6957–6962. [Google Scholar] [CrossRef]
- Thomas, T.J.; Merritt, B.A.; Lemma, B.E.; McKoy, A.M.; Nguyen, T.; Swenson, K.; Mills, J.L.; Coleman, M.G. Highly Selective Synthesis of Tetra-Substituted Furans and Cyclopropenes: Copper(I)-Catalyzed formal Cycloadditions of Internal Aryl Alkynes and Diazoacetates. Org. Biomol. Chem. 2016, 14, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chang, S.; Qiu, L.; Xu, X. Chemodivergent Synthesis of Multi-Substituted/Fused Pyrroles via Copper-Catalyzed Carbene Cascade Reaction of Propargyl α-Iminodiazoacetates. Chem. Commun. 2016, 52, 12470–12473. [Google Scholar] [CrossRef]
- Yao, R.; Rong, G.; Yan, B.; Qiu, L.; Xu, X. Dual-Functionalization of Alkynes via Copper-Catalyzed Carbene/Alkyne Metathesis: A direct Access to the 4-Carboxyl Quinolines. ACS Catal. 2016, 6, 1024–1027. [Google Scholar] [CrossRef]
- Shen, W.B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.Z.; Lu, X.; Ye, L.W. Divergent Synthesis of N-H bondeterocycles via Controllable Cyclization of Azido-Diynes Catalyzed by Copper and Gold. Nat. Commun. 2017, 8, 1748. [Google Scholar] [CrossRef]
- Qiu, H.; Deng, Y.; Marichev, K.O.; Doyle, M.P. Diverse Pathways in Catalytic Reactions of Propargyl Aryldiazoacetates. Selectivity Between Three Reaction Sites. J. Org. Chem. 2017, 82, 1584–1590. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, K.; Huang, J.; Qiu, L.; Xu, X. Copper-Catalyzed Carbene/Alkyne Metathesis Terminated with the Buchner reaction: Synthesis of Dihydrocyclohepta[b]indoles. Org. Biomol. Chem. 2019, 17, 2326–2330. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Qiu, L.; Hong, K.; Dong, S.; Xu, X. Copper- or Thermally Induced Divergent Outcomes: Synthesis of 4-Methyl 2H-Chromenes and Spiro-4H-Pyrazoles. Chem.–A Eur. J. 2018, 24, 6705–6711. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Huang, J.; Sha, H.; Qiu, L.; Hu, W.; Xu, X. Copper-Catalyzed Formal [1 + 2 + 2]-Annulation of Alkyne-Tethered Diazoacetates and Pyridines: Access to Polycyclic Indolizines. Org. Biomol. Chem. 2020, 18, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, K.; Liu, M.; Xu, X. Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules 2022, 27, 3088. https://doi.org/10.3390/molecules27103088
Dong K, Liu M, Xu X. Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules. 2022; 27(10):3088. https://doi.org/10.3390/molecules27103088
Chicago/Turabian StyleDong, Kuiyong, Mengting Liu, and Xinfang Xu. 2022. "Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates" Molecules 27, no. 10: 3088. https://doi.org/10.3390/molecules27103088
APA StyleDong, K., Liu, M., & Xu, X. (2022). Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules, 27(10), 3088. https://doi.org/10.3390/molecules27103088