Quality of Oil Pressed from Hemp Seed Varieties: ‘Earlina 8FC’, ‘Secuieni Jubileu’ and ‘Finola’
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Efficiency of the Pressing Process
2.2. Physicochemical Characteristics of Hemp Oil
2.3. Fatty Acid Profile of Hemp Oil
Hemp Seeds Oils | |||||||||
---|---|---|---|---|---|---|---|---|---|
‘Finola’ (C) | ‘Finola’ (H) | ‘Finola’ (mean) | ‘Earlina’ (C) | ‘Earlina’ (H) | ‘Earlina’ (mean) | ‘S. Jubileu’ (C) | ‘S. Jubileu’ (H) | ‘S. Jubileu’ (mean) | |
C16:0 | 6.52 ± 0.01 | 6.61 ± 0.02 | 6.57 ± 0.06 a | 6.25 ± 0.01 | 6.30 ± 0.01 | 6.27 ± 0.03 b | 6.27 ± 0.00 | 6.28 ± 0.02 | 6.28 ± 0.01 b |
C16:1 n-7 | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.00 b | 0.08 ± 0.00 | 0.09 ± 0.01 | 0.08 ± 0.01 a | 0.06 ± 0.02 | 0.05 ± 0.00 | 0.05 ± 0.01 b |
C17:0 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 a | nd | nd | nd | nd | nd | nd |
C18:0 | 3.20 ± 0.01 | 3.19 ± 0.01 | 3.20 ± 0.01 b | 3.10 ± 0.02 | 3.21 ± 0.02 | 3.16 ± 0.06 b | 3.53 ± 0.03 | 3.60 ± 0.05 | 3.57 ± 0.05 a |
C18:1 n-9 | 10.67 ± 0.01 | 10.56 ± 0.05 | 10.62 ± 0.07 b | 10.34 ± 0.00 | 10.82 ± 0.01 | 10.58 ± 0.27 b | 11.49 ± 0.13 | 11.62 ± 0.00 | 11.64 ± 0.15 a |
C18:1 n-7 | 0.93 ± 0.00 | 1.03 ± 0.05 | 0.98 ± 0.06 a | 1.02 ± 0.01 | 0.77 ± 0.16 | 0.90 ± 0.17 a | 0.89 ± 0.18 | 0.67 ± 0.06 | 0.78 ± 0.16 a |
C18:2 n-6 | 54.70 ± 0.01 | 54.66 ± 0.04 | 54.68 ± 0.03 a | 54.86 ± 0.07 | 54.86 ± 0.04 | 54.86 ± 0.05 a | 54.56 ± 0.09 | 54.67 ± 0.15 | 54.67 ± 0.16 a |
C18:3 n-6 | 4.054 ± 0.02 | 4.25 ± 0.08 | 4.15 ± 0.14 a | 3.25 ± 0.05 | 3.61 ± 0.01 | 3.43 ± 0.21 b | 3.62 ± 0.12 b | 3.77 ± 0.23 b | 3.69 ± 0.17 b |
C18:3 n-3 | 16.02 ± 0.01 | 16.03 ± 0.01 | 16.02 ± 0.02 c | 18.29 ± 0.08 | 17.81 ± 0.01 | 18.05 ± 0.28 a | 17.25 ± 0.01 | 17.26 ± 0.04 | 17.26 ± 0.02 b |
C20:0 | 1.26 ± 0.00 | 1.07 ± 0.09 | 1.17± 0.13 a | 0.70 ± 0.03 | 0.43 ± 0.00 | 0.56 ± 0.16 b | 0.45 ± 0.02 | 0.34 ± 0.13 | 0.38 ± 0.09 b |
C20:1 n-9 | 0.54 ± 0.00 | 0.52 ± 0.01 | 0.53 ± 0.01 a | 0.47 ± 0.00 | 0.49 ± 0.00 | 0.48 ± 0.01 b | 0.46 ± 0.01 | 0.48 ± 0.02 | 0.47 ± 0.01 b |
C20:2 n-9 | 0.07 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.01 a | 0.05 ± 0.00 | 0.05 ± 0.01 | 0.05 ± 0.01 b | nd | nd | - |
C21:0 | 1.14 ± 0.00 | 1.13 ± 0.01 | 1.14 ± 0.01 a | 1.00 ± 0.00 | 0.93 ± 0.03 | 0.96 ± 0.04 b | 0.90 ± 0.00 | 0.90 ± 0.00 | 0.90 ± 0.00 c |
C22:0 | 0.56 ± 0.03 | 0.57± 0.01 | 0.57 ± 0.01 a | 0.40 ± 0.05 | 0.42 ± 0.01 | 0.41 ± 0.03 b | 0.40 ± 0.05 | 0.37 ± 0.04 | 0.39 ± 0.04 b |
C24:0 | 0.25 ± 0.02 | 0.23 ± 0.03 | 0.24 ± 0.01 a | 0.19 ± 0.01 | 0.21 ± 0.00 | 0.20 ± 0.02 a | 0.11 ± 0.07 | 0.00 ± 0.00 | 0.05 ± 0.07 b |
SFA [%] | 12.95 ± 0.04 | 12.81 ± 0.10 | 12.88 ± 0.01 a | 11.64 ± 0.11 | 11.50 ± 0.06 | 11.57 ± 0.10 b | 11.66 ± 0.01 | 11.48 ± 0.15 | 11.57 ± 0.14 b |
UFA [%] | 87.05 ± 0.06 | 87.19 ± 0.11 | 87.12 ± 0.10 b | 88.36 ± 0.11 | 88.50 ± 0.12 | 88.43 ± 0.10 a | 88.34 ± 0.15 | 88.52 ± 0.08 | 88.43 ± 0.24 a |
MUFA [%] | 12.21 ± 0.01 | 12.18 ± 0.02 | 12.20 ± 0.02 b | 11.91 ± 0.01 | 12.17 ± 0.16 | 12.04 ± 0.18 c | 12.89 ± 0.07 | 12.82 ± 0.04 | 12.86 ± 0.05 a |
PUFA [%] | 74.84 ± 0.04 | 75.01 ± 0.13 | 74.93 ± 0.12 c | 76.45 ± 0.10 | 76.26 ± 0.05 | 76.39 ± 0.09 a | 75.44 ± 0.22 | 75.70 ± 0.04 | 75.57 ± 0.24 b |
PUFA/SFA ratio | 5.78 ± 0.02 | 5.86 ± 0.05 | 5.82 ± 0.06 b | 6.57 ± 0.07 | 6.63 ± 0.03 | 6.60 ± 0.06 a | 6.47 ± 0.02 | 6.59 ± 0.09 | 6.53 ± 0.10 a |
n-6/n-3 ratio | 3.67 ± 0.00 | 3.68 ± 0.01 | 3.67 ± 0.01 a | 3.18 ± 0.01 | 3.28 ± 0.00 | 3.23 ± 0.06 c | 3.37 ± 0.01 | 3.38 ± 0.01 | 3.38 ± 0.01 b |
AI | 0.07 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.00 a | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.07 ± 0.00 b | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.07 ± 0.00 b |
h/H | 13.25 ± 0.00 | 13.09 ± 0.05 | 13.17 ± 0.05 b | 14.04 ± 0.01 | 13.94 ± 0.03 | 13.99 ± 0.06 a | 14.00 ± 0.03 | 14.01 ± 0.06 | 14.01 ± 0.05 a |
TI | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 a | 0.10 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 c | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 b |
Fatty Acids | Value | F | df Effect | df Error | P |
---|---|---|---|---|---|
Free parameter | 0.000000 | 403,402.8 | 6 | 1 | 0.001205 |
Variety | 0.000001 | 200.5 | 12 | 2 | 0.004972 |
Temperature | 0.015976 | 10.3 | 6 | 1 | 0.234481 |
Variety*Temperature | 0.001182 | 4.7 | 12 | 2 | 0.189336 |
2.4. Identification of Sterols in Hemp Oil
2.5. Principal Components Analysis
3. Materials and Methods
3.1. Materials
3.2. Pressing Process
3.3. Determination of the Fatty Acid Profile Using GC-FID
3.4. Lipid Health Indicators
- (1)
- PUFA/SFA ratio = (ΣDiUFA + ΣTriUFA + ΣTetraUFA)/ΣSFA [41];
- (2)
- n-6/n-3 PUFA ratio = (C18:2 n-6 + C18:3 n-6)/(C18:3 n-3 + C18:4 n-3) [41];
- (3)
- AI (Atherogenicity Index) = (C12:0 + 4 × C14:0 + C16:0)/ΣUFA [41];
- (4)
- TI (Thrombogenicity Index) = (C14:0 + C16:0 + C18:0)/[(0.5 × MUFA) + (0.5 × Σn-6) + (3 × Σn-3) + (Σn-3/Σn-6)] [55];
- (5)
- h/H (Hypocholesterolemic/Hypercholesterolemic Index) = [(C18:1 n-9 + C18:1 n-7 + C18:2 n-6 + C18:3 n-6 + C18:3 n-3 + C20:3 n-6 + C20:4 n-6 + C20:5 n-3 + C22:4 n-6 + C22:5 n-3 + C22:6 n-3)/(C14:0 + C16:0)] [56].
3.5. Method for Determining Sterols
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schultz, C.J.; Lim, W.L.; Khor, S.F.; Neumann, K.A.; Schulz, J.M.; Ansari, O.; Skewes, M.A.; Burton, R.A. Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. J. Agric. Food Res. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Vuerich, M.; Ferfuia, C.; Zuliani, F.; Piani, B.; Sepulcri, A.; Baldini, M. Yield and quality of essential oils in hemp varieties in different environments. Agronomy 2019, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- El Bakali, I.; Sakar, E.H.; Boutahar, A.; Kadiri, M.; Merzouki, A. A comparative phytochemical profiling of essential oils isolated from three hemp (Cannabis sativa L.) cultivars grown in central-northern Morocco. Biocatal. Agric. Biotechnol. 2022, 42, 102327. [Google Scholar] [CrossRef]
- Tura, M.; Mandrioli, M.; Valli, E.; Rubino, R.C.; Parentela, D.; Gallina Toschi, T. Changes in the composition of a cold-pressed hemp seed oil during three months of storage. J. Food Compos. Anal. 2022, 106, 104270. [Google Scholar] [CrossRef]
- Mattila, P.H.; Pihlava, J.M.; Hellström, J.; Nurmi, M.; Eurola, M.; Mäkinen, S.; Jalava, T.; Pihlanto, A. Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Qual. Saf. 2018, 2, 213–219. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in seed traits in a collection of Cannabis sativa L. genotypes. Front. Plant Sci. 2016, 7, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT 2019, 102, 164–172. [Google Scholar] [CrossRef]
- Montserrat-De La Paz, S.; Marín-Aguilar, F.; García-Giménez, M.D.; Fernández-Arche, M.A. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. [Google Scholar] [CrossRef]
- Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. Biomed Res. Int. 2018, 2018, 1691428. [Google Scholar] [CrossRef] [Green Version]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schluttenhofer, C.; Yuan, L. Challenges towards Revitalizing Hemp: A Multifaceted Crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, M.B.; Cheng, M.H.; Clemente, T.E.; Dweikat, I.; Singh, V. Economic perspective of ethanol and biodiesel coproduction from industrial hemp. J. Clean. Prod. 2021, 299, 126875. [Google Scholar] [CrossRef]
- Patel, A.; Pravez, M.; Deeba, F.; Pruthi, V.; Singh, R.P.; Pruthi, P.A. Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production. Bioresour. Technol. 2014, 165, 214–222. [Google Scholar] [CrossRef]
- Blasi, F.; Tringaniello, C.; Verducci, G.; Cossignani, L. Bioactive minor components of Italian and Extra-European hemp seed oils. LWT 2022, 158, 113167. [Google Scholar] [CrossRef]
- Shahzad, N.; Khan, W.; MD, S.; Ali, A.; Saluja, S.S.; Sharma, S.; Al-Allaf, F.A.; Abduljaleel, Z.; Ibrahim, I.A.A.; Abdel-Wahab, A.F.; et al. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed. Pharmacother. 2017, 88, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Grattan, B.J. Plant sterols as anticancer nutrients: Evidence for their role in breast cancer. Nutrients 2013, 5, 359–387. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.B.; Fink, C.S.; Williams, H.; Kim, U. In vitro and in vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. Eur. J. Cancer Prev. 2001, 10, 507–513. [Google Scholar] [CrossRef]
- Gylling, H.; Simonen, P. Phytosterols, phytostanols, and lipoprotein metabolism. Nutrients 2015, 7, 7965–7977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misawa, E.; Tanaka, M.; Nomaguchi, K.; Nabeshima, K.; Yamada, M.; Toida, T.; Iwatsuki, K. Oral Ingestion of Aloe vera Phytosterols Alters Hepatic Gene. J. Agric. Food Chem. 2012, 60, 2799–2806. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef]
- Blasi, F.; Pollini, L.; Cossignani, L. Varietal authentication of extra virgin olive oils by triacylglycerols and volatiles analysis. Foods 2019, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Matthäus, B.; Brühl, L. Virgin hemp seed oil: An interesting niche product. Eur. J. Lipid Sci. Technol. 2008, 110, 655–661. [Google Scholar] [CrossRef]
- Kiralan, M.; Gül, V.; Kara, Ş.M. Composición de ácidos grasos en aceites de semillas de cáñamo de diferentes localidades de Turquía. Spanish J. Agric. Res. 2010, 8, 385–390. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; González-Fernández, M.J.; Fabrikov, D.; Torija-Isasa, E.; Sánchez-Mata, M.d.C.; Guil-Guerrero, J.L. Hemp (Cannabis sativa L.) Varieties: Fatty Acid Profiles and Upgrading of γ-Linolenic Acid–Containing Hemp Seed Oils. Eur. J. Lipid Sci. Technol. 2020, 122. [Google Scholar] [CrossRef]
- Vogl, C.R.; Mölleken, H.; Lissek-Wolf, G.; Surböck, A.; Kobert, J. Hemp (Cannabis sativa L.) as a resource for green cosmetics: Yield of seed and fatty acid compositions of 20 varieties under the growing conditions of organic farming in Austria. J. Ind. Hemp 2004, 9, 51–68. [Google Scholar] [CrossRef]
- Iványi, I. Effect of genotype and environmental on the oil content and fatty acid composition of hempseed. Cereal Res. Commun. 2006, 34, 493–496. [Google Scholar] [CrossRef]
- Izzo, L.; Pacifico, S.; Piccolella, S.; Castaldo, L.; Narváez, A.; Grosso, M.; Ritieni, A. Chemical analysis of minor bioactive components and cannabidiolic acid in commercial hemp seed oil. Molecules 2020, 25, 3710. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Opinion on Nutrient Requirements and Dietary Intakes of Infants and Young Children in the European Union. 2013. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2013.3408 (accessed on 1 April 2022).
- van Name, M.A.; Savoye, M.; Chick, J.M.; Galuppo, B.T.; Feldstein, A.E.; Pierpont, B.; Johnson, C.; Shabanova, V.; Ekong, U.; Valentino, P.L.; et al. A Low ω-6 to ω-3 PUFA Ratio (n–6:n–3 PUFA) Diet to Treat Fatty Liver Disease in Obese Youth. J. Nutr. 2020, 150, 2314–2321. [Google Scholar] [CrossRef] [PubMed]
- Toshimitsu, K.; Matsuura, B.; Ohkubo, I.; Niiya, T.; Furukawa, S.; Hiasa, Y.; Kawamura, M.; Ebihara, K.; Onji, M. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition 2007, 23, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Dinicolantonio, J.J.; Okeefe, J. Importance of maintaining a low omega-6/omega-3 ratio for reducing platelet aggregation, coagulation and thrombosis. Open Hear. 2019, 6, e001011. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Dimić, E.; Romanić, R.; Vujasinović, V. Essential fatty acids, nutritive value and oxidative stability of cold pressed hempseed (Cannabis sativa L.) oil from different varieties. Acta Aliment. 2009, 38, 229–236. [Google Scholar] [CrossRef]
- Petrović, M.; Debeljak, Ž.; Kezić, N.; Džidara, P. Relationship between cannabinoids content and composition of fatty acids in hempseed oils. Food Chem. 2015, 170, 218–225. [Google Scholar] [CrossRef]
- Callaway, J.C.; Pate, D.W. Hempseed Oil. Gourmet Health Spec. Oils 2009, 185–213. [Google Scholar] [CrossRef]
- Aladić, K.; Jarni, K.; Barbir, T.; Vidović, S.; Vladić, J.; Bilić, M.; Jokić, S. Supercritical CO2 extraction of hemp (Cannabis sativa L.) seed oil. Ind. Crops Prod. 2015, 76, 472–478. [Google Scholar] [CrossRef]
- Shen, P.; Gao, Z.; Fang, B.; Rao, J.; Chen, B. Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends Food Sci. Technol. 2021, 112, 1–15. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Szabo, Z.; Marosvölgyi, T.; Szabo, E.; Koczka, V.; Verzar, Z.; Figler, M.; Decsi, T. Effects of Repeated Heating on Fatty Acid Composition of Plant-Based Cooking Oils. Foods 2022, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Jung, S.Y.; Park, Y.A.; Lee, Y.J.; Jo, J.Y.; Lee, S.M.; Oh, Y.H. Fatty acid composition and characterisation of commercial vegetable oils with chemometric approaches. Int. Food Res. J. 2020, 27, 270–279. [Google Scholar]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible Fedora cultivar hemp (Cannabis sativa L.). Molecules 2019, 24, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryś, A.; Bryś, J.; Mellado, Á.F.; Głowacki, S.; Tulej, W.; Ostrowska-Ligęza, E.; Koczoń, P. Characterization of oil from roasted hemp seeds using the PDSC and FTIR techniques. J. Therm. Anal. Calorim. 2019, 138, 2781–2786. [Google Scholar] [CrossRef] [Green Version]
- Kostadinović Veličkovska, S.; Brühl, L.; Mitrev, S.; Mirhosseini, H.; Matthäus, B. Quality evaluation of cold-pressed edible oils from Macedonia. Eur. J. Lipid Sci. Technol. 2015, 117, 2023–2035. [Google Scholar] [CrossRef] [Green Version]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Lopez, C.; Novales, B.; Rabesona, H.; Weber, M.; Chardot, T.; Anton, M. Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability. Food Res. Int. 2021, 150, 110759. [Google Scholar] [CrossRef]
- Agostoni, C.; Bresson, J.-L.; Fairweather-Tait, S.; Flynn, A.; Golly, I.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; et al. Scientific Opinion on the substantiation of a health claim related to 3 g/day plant sterols/stanols and lowering blood LDL-cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC) No 1924/2006. EFSA J. 2012, 10, 2693. [Google Scholar] [CrossRef] [Green Version]
- Vásquez-Ocmín, P.G.; Marti, G.; Bonhomme, M.; Mathis, F.; Fournier, S.; Bertani, S.; Maciuk, A. Cannabinoids vs. whole metabolome: Relevance of cannabinomics in analyzing Cannabis varieties. Anal. Chim. Acta 2021, 1184, 339020. [Google Scholar] [CrossRef]
- Farinon, B.; Costantini, L.; Molinari, R.; Di Matteo, G.; Garzoli, S.; Ferri, S.; Ceccantoni, B.; Mannina, L.; Merendino, N. Effect of malting on nutritional and antioxidant properties of the seeds of two industrial hemp (Cannabis sativa L.) cultivars. Food Chem. 2022, 370, 131348. [Google Scholar] [CrossRef]
- Pagnani, G.; Pellegrini, M.; Galieni, A.; D’Egidio, S.; Matteucci, F.; Ricci, A.; Stagnari, F.; Sergi, M.; Lo Sterzo, C.; Pisante, M.; et al. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops Prod. 2018, 123, 75–83. [Google Scholar] [CrossRef]
- Firestone, D. (Ed.) Official Methods and Recommended Practices, 5th ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1998. [Google Scholar]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.d.S.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.d.M. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Qian, Y.; Grygier, A.; Majewski, A.; Walkowiak-Tomczak, D.; Siger, A.; Rudzińska, M. Purity of Olive Oil Commercially Available in Poland. J. Oleo Sci. 2022, 71, 43–50. [Google Scholar] [CrossRef] [PubMed]
Variety | Pressing Parameters * | T [°C] | P [kg/h] | E [%] |
---|---|---|---|---|
‘Finola’ | 33 rpm/20 °C | 45.4 ± 0.3 | 8.43 ± 0.16 | 82.4 ± 1.9 |
70 rpm/60 °C | 57.4 ± 0.1 | 17.31 ± 1.10 | 81.6 ± 2.4 | |
33 rpm/60 °C | 62.13 ± 0.4 | 11.69 ± 0.26 | 86.0 ± 4.0 | |
70 rpm/20 °C | 41.0 ± 0.5 | 10.47 ± 0.31 | 67.0 ± 1.6 | |
‘Earlina 8FC’ | 33 rpm/20 °C | 44.5 ± 1.2 | 9.00 ± 0.21 | 84.6 ± 0.9 |
70 rpm/60 °C | 52.7 ± 0.5 | 16.78 ± 1.40 | 81.5 ± 2.2 | |
33 rpm/60 °C | 55.2 ± 0.3 | 10.85 ± 0.23 | 87.2 ± 2.3 | |
70 rpm/20 °C | 42.0 ± 0.7 | 11.60 ± 0.37 | 73.9 ± 1.7 | |
‘S. Jubileu’ | 33 rpm/20 °C | 49.1 ± 0.2 | 8.88 ± 0.24 | 87.9 ± 2.7 |
70 rpm/60 °C | 57.2 ± 0.4 | 17.05 ± 1.10 | 84.5 ± 1.3 | |
33 rpm/60 °C | 60.8 ± 0.5 | 11.13 ± 0.47 | 90.6 ± 1.7 | |
70 rpm/20 °C | 46.4 ± 0.12 | 11.51 ± 0.19 | 73.6 ± 1.6 |
Parametry | ‘Finola’ (C) | ‘Finola’ (H) | ‘Earlina’ (C) | ‘Earlina’ (H) | ‘S. Jubileu’ (C) | ‘S. Jubileu’ (H) |
---|---|---|---|---|---|---|
L* | 23.31 ± 0.01 | 23.22 ± 0.01 | 23.42 ± 0.01 | 23.59 ± 0.01 | 22.03 ± 0.01 | 22.06 ± 0.01 |
a* | 1.33 ± 0.01 | 1.89 ± 0.01 | 1.43 ± 0.01 | 1.12 ± 0.01 | 2.04 ± 0.01 | 1.92 ± 0.01 |
b* | 5.47 ± 0.01 | 2.99 ± 0.01 | 4.94 ± 0.01 | 4.49 ± 0.01 | 2.84 ± 0.01 | 3.21 ± 0.01 |
Water content [ppm] | 142 ± 2 | 146 ± 3 | 121 ± 2 | 127 ± 1 | 153 ± 3 | 159 ± 2 |
Phytotserol [mg/g] | Hemp Seeds Oils | |||||
---|---|---|---|---|---|---|
‘Finola’ (C) | ‘Finola’ (H) | ‘Earlina’ (C) | ‘Earlina’ (H) | ‘S. Jubileu (C) | ‘S. Jubileu’ (H) | |
campesterol | 0.33 ± 0.00 | 0.33 ± 0.01 | 0.32 ± 0.01 | 0.33 ± 0.02 | 0.29 ± 0.02 | 0.29 ± 0.02 |
campestanol | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 |
stigmasterol | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.01 | 0.04 ± 0.00 | 0.03 ± 0.00 |
β-sitosterol | 1.35 ± 0.02 | 1.28 ± 0.00 | 1.23 ± 0.09 | 1.27 ± 0.09 | 1.26 ± 0.11 | 1.25 ± 0.07 |
sitostanol | 0.02 ± 0.00 | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.01 | 0.02 ± 0.01 |
Δ5-avenasterol | 0.16 ± 0.00 | 0.15 ± 0.02 | 0.15 ± 0.01 | 0.16 ± 0.02 | 0.14 ± 0.02 | 0.15 ± 0.02 |
Δ5,24-stigmastadienol | 0.06 ± 0.00 | 0.06 ± 0.01 | 0.05 ± 0.00 | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.00 |
Δ7-avenasterol | 0.10 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.09 ± 0.01 | 0.10 ± 0.01 | 0.05 ± 0.00 |
24-methylenecycloartenol | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.01 |
TOTAL | 2.13 ± 0.03 | 2.06 ± 0.03 | 1.95 ± 0.10 | 2.05 ± 0.15 | 1.97 ± 0.20 | 1.97 ± 0.11 |
Phytosterols | Value | F | df Effect | df Error | P |
---|---|---|---|---|---|
Free parameter | 0.000163 | 1020.114 | 6 | 1 | 0.023962 |
Variety | 0.002106 | 3.465 | 12 | 2 | 0.245647 |
Temperature | 0.098883 | 1.519 | 6 | 1 | 0.551892 |
Variety*Temperature | 0.014996 | 1.194 | 12 | 2 | 0.543322 |
Variety | Fat Content [%] | Average Seed Size [mm] | Seed Density [kg/m3] | Moisture [%] |
---|---|---|---|---|
‘Finola’ | 30.45 ± 0.85 | 1.152 ± 0.06 | 516.06 ± 3.89 | 8.39 ± 0.09 |
‘Earlina 8FC’ | 29.47 ± 0.84 | 1.096 ± 0.02 | 521.00 ± 1.55 | 8.32 ± 0.09 |
‘S. Jubileu’ | 31.03 ± 1.03 | 1.213 ± 0.01 | 506.73 ± 1.76 | 8.31 ± 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golimowski, W.; Teleszko, M.; Marcinkowski, D.; Kmiecik, D.; Grygier, A.; Kwaśnica, A. Quality of Oil Pressed from Hemp Seed Varieties: ‘Earlina 8FC’, ‘Secuieni Jubileu’ and ‘Finola’. Molecules 2022, 27, 3171. https://doi.org/10.3390/molecules27103171
Golimowski W, Teleszko M, Marcinkowski D, Kmiecik D, Grygier A, Kwaśnica A. Quality of Oil Pressed from Hemp Seed Varieties: ‘Earlina 8FC’, ‘Secuieni Jubileu’ and ‘Finola’. Molecules. 2022; 27(10):3171. https://doi.org/10.3390/molecules27103171
Chicago/Turabian StyleGolimowski, Wojciech, Mirosława Teleszko, Damian Marcinkowski, Dominik Kmiecik, Anna Grygier, and Andrzej Kwaśnica. 2022. "Quality of Oil Pressed from Hemp Seed Varieties: ‘Earlina 8FC’, ‘Secuieni Jubileu’ and ‘Finola’" Molecules 27, no. 10: 3171. https://doi.org/10.3390/molecules27103171
APA StyleGolimowski, W., Teleszko, M., Marcinkowski, D., Kmiecik, D., Grygier, A., & Kwaśnica, A. (2022). Quality of Oil Pressed from Hemp Seed Varieties: ‘Earlina 8FC’, ‘Secuieni Jubileu’ and ‘Finola’. Molecules, 27(10), 3171. https://doi.org/10.3390/molecules27103171