Non-Alcoholic Fatty Liver Disease in Long-Term Type 2 Diabetes: Role of rs738409 PNPLA3 and rs499765 FGF21 Polymorphisms and Serum Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Design and Patients’ Selection
2.2. Variables
2.3. Definition of Non-Alcoholic Fatty Liver Disease
2.4. Non-Invasive Evaluation of Liver Fibrosis
2.5. Serum Biomarkers
2.6. DNA Extraction and Genotyping
2.7. Ethical Considerations
2.8. Statistical Analysis
3. Results
3.1. Evaluation of NAFLD and Liver Fibrosis
3.2. Factors Associated with NAFLD
3.3. Factors Associated with Significant Liver Fibrosis and Cirrhosis in NAFLD Patients
3.4. PNPLA3 and FGF21 Polymorphisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pinto Marques Souza de Oliveira, C.; Pinchemel Cotrim, H.; Arrese, M. Nonalcoholic Fatty Liver Disease Risk Factors in Latin American Populations: Current Scenario and Perspectives. Clin. Liver. Dis. 2019, 13, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Hossain, N.; Afendy, A.; Stepanova, M.; Nader, F.; Srishord, M.; Rafiq, N.; Goodman, Z.; Younossi, Z. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.B.; Hu, E.D.; Xu, L.M.; Chen, L.; Wu, J.L.; Li, H.; Chen, D.Z.; Chen, Y.P. The relationship between obesity and the severity of non-alcoholic fatty liver disease: Systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, R.; Godinez Leiva, E.; Bril, F.; Shrestha, S.; Mansour, L.; Budd, J.; Portillo Romero, J.; Schmidt, S.; Chang, K.L.; Samraj, G.; et al. Advanced Liver Fibrosis Is Common in Patients with Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening. Diabetes Care 2021, 44, 399–406. [Google Scholar] [CrossRef]
- Tucker, B.; Li, H.; Long, X.; Rye, K.A.; Ong, K.L. Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism 2019, 101, 153994. [Google Scholar] [CrossRef]
- Staiger, H.; Keuper, M.; Berti, L.; Hrabe de Angelis, M.; Häring, H.U. Fibroblast Growth Factor 21-Metabolic Role in Mice and Men. Endocr. Rev. 2017, 38, 468–488. [Google Scholar] [CrossRef]
- Hui, X.; Feng, T.; Liu, Q.; Gao, Y.; Xu, A. The FGF21-adiponectin axis in controlling energy and vascular homeostasis. J. Mol. Cell. Biol. 2016, 8, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Barb, D.; Bril, F.; Kalavalapalli, S.; Cusi, K. Plasma Fibroblast Growth Factor 21 Is Associated with Severity of Nonalcoholic Steatohepatitis in Patients with Obesity and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 3327–3336. [Google Scholar] [CrossRef]
- Ritchie, M.; Hanouneh, I.A.; Noureddin, M.; Rolph, T.; Alkhouri, N. Fibroblast growth factor (FGF)-21 based therapies: A magic bullet for nonalcoholic fatty liver disease (NAFLD)? Expert Opin. Investig. Drugs 2020, 29, 197–204. [Google Scholar] [CrossRef]
- Martin, K.; Hatab, A.; Athwal, V.S.; Jokl, E.; Piper Hanley, K. Genetic Contribution to Non-alcoholic Fatty Liver Disease and Prognostic Implications. Curr. Diab. Rep. 2021, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef] [PubMed]
- Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.; Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008, 40, 1461–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazo, D.F.; Malta, F.M.; Stefano, J.T.; Salles, A.P.M.; Gomes-Gouvea, M.S.; Nastri, A.C.S.; Almeida, J.R.; Pinho, J.R.R.; Carrilho, F.J.; Oliveira, C.P. Validation of PNPLA3 polymorphisms as risk factor for NAFLD and liver fibrosis in an admixed population. Ann. Hepatol. 2019, 18, 466–471. [Google Scholar] [CrossRef]
- Machado, C.M.; Leite, N.C.; França, P.H.; Cardoso, C.R.; Salles, G.F.; Villela-Nogueira, C.A. PNPLA3 gene polymorphism in Brazilian patients with type 2 diabetes: A prognostic marker beyond liver disease? Nutr. Metab. Cardiovasc. Dis. 2019, 29, 965–971. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, R.; Li, H.; Fang, Q.; Jiang, F.; Hou, X.; Hu, C.; Jia, W. The single nucleotide polymorphism rs499765 is associated with fibroblast growth factor 21 and nonalcoholic fatty liver disease in a Chinese population with normal glucose tolerance. J. Nutrigenet. Nutr. 2014, 7, 121–129. [Google Scholar] [CrossRef]
- Simonovský, V. The diagnosis of cirrhosis by high resolution ultrasound of the liver surface. Br. J. Radiol. 1999, 72, 29–34. [Google Scholar] [CrossRef]
- European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, D.W.; Yan, H.Y.; Wang, Z.Y.; Zhao, S.H.; Wang, B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: Evidence from a meta-analysis of 21 cohort studies. Obes. Rev. 2016, 17, 510–519. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Patel, J.; Soni, M.; Prokop, L.J.; Younossi, Z.; Sebastiani, G.; Ekstedt, M.; Hagstrom, H.; Nasr, P.; et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 2017, 65, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wai-Sun Wong, V.; Peleg, N.; et al. Association Between Fibrosis Stage and Outcomes of Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 158, 1611–1625.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; Hossain, F.; Horsfall, L.U.; Banh, X.; Hayward, K.L.; Williams, S.; Johnson, T.; Bernard, A.; Brown, N.N.; Lampe, G.; et al. A Pragmatic Approach Identifies a High Rate of Nonalcoholic Fatty Liver Disease with Advanced Fibrosis in Diabetes Clinics and At-Risk Populations in Primary Care. Hepatol. Commun. 2018, 2, 893–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bril, F.; McPhaul, M.J.; Caulfield, M.P.; Clark, V.C.; Soldevilla-Pico, C.; Firpi-Morell, R.J.; Lai, J.; Shiffman, D.; Rowland, C.M.; Cusi, K. Performance of Plasma Biomarkers and Diagnostic Panels for Nonalcoholic Steatohepatitis and Advanced Fibrosis in Patients with Type 2 Diabetes. Diabetes Care 2020, 43, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Castera, L. Non-invasive tests for liver fibrosis in NAFLD: Creating pathways between primary healthcare and liver clinics. Liver Int. 2020, 40 (Suppl. S1), 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, H.; Unler, G.K.; Gokturk, H.S.; Schmidt, W.E.; Kebapcilar, L. Noninvasive estimation of disease activity and liver fibrosis in nonalcoholic fatty liver disease using anthropometric and biochemical characteristics, including insulin, insulin resistance, and 13C-methionine breath test. Eur. J. Gastroenterol. Hepatol. 2015, 27, 1137–1143. [Google Scholar] [CrossRef]
- Lai, L.L.; Wan Yusoff, W.N.I.; Vethakkan, S.R.; Nik Mustapha, N.R.; Mahadeva, S.; Chan, W.K. Screening for non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus using transient elastography. J. Gastroenterol. Hepatol. 2019, 34, 1396–1403. [Google Scholar] [CrossRef]
- Koenig, G.; Seneff, S. Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Dis. Markers 2015, 2015, 818570. [Google Scholar] [CrossRef] [Green Version]
- Corti, A.; Belcastro, E.; Dominici, S.; Maellaro, E.; Pompella, A. The dark side of gamma-glutamyltransferase (GGT): Pathogenic effects of an 'antioxidant' enzyme. Free Radic. Biol. Med. 2020, 160, 807–819. [Google Scholar] [CrossRef]
- Jaafar, R.F.; Hajj Ali, A.M.; Zaghal, A.M.; Kanso, M.; Habib, S.G.; Halaoui, A.F.; Daniel, F.; Mokaddem, F.; Khalife, M.J.; Mukherji, D.M.; et al. Fibroscan and low-density lipoprotein as determinants of severe liver fibrosis in diabetic patients with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1540–1544. [Google Scholar] [CrossRef]
- McGlinchey, A.J.; Govaere, O.; Geng, D.; Ratziu, V.; Allison, M.; Bousier, J.; Petta, S.; de Oliviera, C.; Bugianesi, E.; Schattenberg, J.M.; et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 2022, 4, 100477. [Google Scholar] [CrossRef] [PubMed]
- Prati, D.; Taioli, E.; Zanella, A.; Della Torre, E.; Butelli, S.; Del Vecchio, E.; Vianello, L.; Zanuso, F.; Mozzi, F.; Milani, S.; et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann. Intern. Med. 2002, 137, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Darlay, R.; Cockell, S.; Meroni, M.; Govaere, O.; Tiniakos, D.; Burt, A.D.; Bedossa, P.; Palmer, J.; Liu, Y.L.; et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J. Hepatol. 2020, 73, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, Q.C.; Nardelli, M.J.; Pereira, P.A.; Miranda, D.M.; Ribeiro, S.N.; Costa, R.S.N.; Versiani, C.A.; Vidigal, P.V.T.; Ferrari, T.C.A.; Couto, C.A. PNPLA3 and TM6SF2 polymorphisms in Brazilian patients with nonalcoholic fatty liver disease. World J. Hepatol. 2020, 12, 792–806. [Google Scholar] [CrossRef]
- Gabriel-Medina, P.; Ferrer-Costa, R.; Rodriguez-Frias, F.; Ciudin, A.; Augustin, S.; Rivera-Esteban, J.; Pericàs, J.M.; Selva, D.M. Influence of Type 2 Diabetes in the Association of PNPLA3 rs738409 and TM6SF2 rs58542926 Polymorphisms in NASH Advanced Liver Fibrosis. Biomedicines 2022, 10, 1015. [Google Scholar] [CrossRef]
- Tavaglione, F.; De Vincentis, A.; Jamialahmadi, O.; Pujia, R.; Spagnuolo, R.; Picardi, A.; Morano, S.; Valenti, L.; Romeo, S.; Vespasiani-Gentilucci, U. Inborn and acquired risk factors for severe liver disease in Europeans with type 2 diabetes from the UK Biobank. JHEP Rep. 2021, 3, 100262. [Google Scholar] [CrossRef]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: An updated meta-analysis of 501 022 adult individuals. Gut 2021, 70, 962–969. [Google Scholar] [CrossRef]
- Moon, S.; Chung, G.E.; Joo, S.K.; Park, J.H.; Chang, M.S.; Yoon, J.W.; Koo, B.K.; Kim, W. A PNPLA3 Polymorphism Confers Lower Susceptibility to Incident Diabetes Mellitus in Subjects with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2022, 20, 682–691. [Google Scholar] [CrossRef]
- He, L.; Deng, L.; Zhang, Q.; Guo, J.; Zhou, J.; Song, W.; Yuan, F. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2017, 2017, 9729107. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J.; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
Characteristics | T2D Patients (n = 158) % (n) or Mean ± SD |
---|---|
Age (years) | 61.2 ± 9.4 |
Men/Women | 38% (60)/62% (98) |
T2D time since diagnosis (years) | 18.2 ± 9.4 |
Overweight (BMI > 25 and <30) | 32.9% (52/158) |
Obesity (BMI ≥ 30) | 51.9% (82/158) |
BMI (kg/m2) | 30.9 ± 6 |
Waist circumference (cm) | 98.9 ± 17.7 |
Chronic kidney disease | 20.9% (33) |
Dyslipidemia | 83.5% (132) |
Hypertension | 90.5% (143) |
Hypothyroidism | 24.1% (38) |
Tobacco use | 7% (11) |
Coronary artery disease | 24.7% (39) |
Diabetes complications | |
Retinopathy | 60.8% (96) |
Diabetic kidney disease | 52.5% (83) |
Neuropathy | 38.6% (61) |
Glycated hemoglobin (%) | 8.5 ± 1.9 |
Total cholesterol (mg/dL) | 162.0 ± 47.0 |
LDL (mg/dL) | 88.0 ± 38.0 |
HDL (mg/dL) | 43.0 ± 18.0 |
Triglycerides (mg/dL) | 160.0 ± 97.0 |
Ferritin (ng/mL) | 177.0 ± 185.0 |
GGT (U/L) | 44.0 ± 42.0 |
AST (U/L) | 20.0 ± 10.0 |
ALT (U/L) | 22.0 ± 17.0 |
Elevated AST levels (>35 U/L) | 5.7% (9) |
Elevated ALT levels (>35 U/L) | 12.7% (20) |
Creatinine (mg/dL) | 1.3 ± 1.1 |
Albumin (g/dL) | 4.0 ± 0.7 |
Platelets (×109/L) | 245.5 ± 70.4 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Women | 1.0 | 0.3–2.8 | 0.9654 | |||
Diagnosis of T2D (years) | 0.9 | 0.9–1.0 | 0.9785 | |||
Overweight | 10.8 | 2.5–46.6 | 0.0019 1 | 22.6 | 2.4–206.4 | 0.0024 1 |
Obesity Grade I | 10.4 | 2.4–44.4 | 20.0 | 2.1–184.4 | ||
Obesity Grade II or III | 15.1 | 1.7–133.8 | 12.6 | 1.3–119.0 | ||
Obesity (BMI ≥ 30) | 4.6 | 1.4–15.1 | 0.0112 1 | |||
Waist circumference | 1.0 | 0.9–1.0 | 0.0686 | |||
Chronic kidney disease | 1.0 | 0.3–3.2 | 0.9975 | |||
Dyslipidemia | 1.0 | 0.2–4.1 | 0.9222 | |||
Hypothyroidism | 0.8 | 0.2–2.6 | 0.7988 | |||
Coronary artery disease | 0.8 | 0.2–2.6 | 0.8002 | |||
Diabetes complications | ||||||
Retinopathy | 0.3 | 0.1–1.2 | 0.1074 | |||
Diabetic kidney disease | 0.3 | 0.1–1.1 | 0.0929 | |||
Neuropathy | 0.5 | 0.2–1.6 | 0.3250 | |||
Glycated hemoglobin | 0.9 | 0.7–1.2 | 0.7719 | |||
Total cholesterol | 1.0 | 0.9–1.0 | 0.3507 | |||
LDL | 1.0 | 0.9–1.0 | 0.7273 | |||
Triglycerides | 1.0 | 0.9–1.0 | 0.1446 | |||
Ferritin | 1.0 | 0.9–1.0 | 0.9616 | |||
GGT | 1.0 | 0.9–1.0 | 0.6894 | |||
AST | 1.0 | 0.9–1.1 | 0.4316 | |||
ALT | 1.0 | 0.9–1.0 | 0.9888 | |||
Creatinine | 0.8 | 0.5–1.1 | 0.2234 | |||
Albumin | 1.3 | 0.4–3.8 | 0.5423 | |||
Platelet count | 1.0 | 0.9–1.0 | 0.9592 | |||
FGF21 | 1.0 | 0.9–1.0 | 0.0863 | |||
CK18 | 0.9 | 0.7–0.9 | 0.1539 | |||
PNPLA3 GG genotype | 1.0 | 0.1–10.4 | 0.5692 | |||
PNPLA3 CG genotype | 2.0 | 0.5–7.9 | ||||
FGF 21 GG genotype | 1.2 | 0.2–6.9 | 0.9382 | |||
FGF 21 CG genotype | 1.2 | 0.3–5.3 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Women | 1.1 | 0.4–2.5 | 0.7957 | |||
Diagnosis of T2D (years) | 0.9 | 0.9–1.0 | 0.6359 | |||
Overweight | 0.7 | 0.1–3.3 | 0.4757 | |||
Obesity Grade I | 1.4 | 0.3–6.1 | ||||
Obesity Grade II | 1.0 | 0.1–5.6 | ||||
Obesity Grade III | 3.2 | 0.4–24.6 | ||||
Obesity (BMI ≥ 30) | 3.0 | 1.2–7.5 | 0.0140 1 | 2.837 | 1.043–7.719 | 0.0412 1 |
Waist circumference | 1.0 | 0.9–1.0 | 0.7117 | |||
Chronic kidney disease | 0.4 | 0.1–1.4 | 0.1667 | |||
Dyslipidemia | 0.5 | 0.1–1.3 | 0.1684 | |||
Hypertension | 0.7 | 0.2–2.6 | 0.7011 | |||
Hypothyroidism | 1.7 | 0.7–4.3 | 0.1938 | |||
Tobacco use | 0.7 | 0.1–3.6 | 0.6965 | |||
Coronary artery disease | 0.9 | 0.3–2.4 | 0.8658 | |||
Diabetes complications | ||||||
Retinopathy | 0.9 | 0.3–2.0 | 0.7840 | |||
Diabetic kidney disease | 0.5 | 0.2–1.2 | 0.1616 | |||
Neuropathy | 0.5 | 0.2–1.3 | 0.1946 | |||
Glycated hemoglobin | 0.9 | 0.7–1.1 | 0.7910 | |||
Total cholesterol | 0.9 | 0.9–1.0 | 0.3791 | |||
LDL | 0.9 | 0.9–1.0 | 0.2014 | 0.980 | 0.970–0.998 | 0.0212 1 |
Triglycerides | 1.0 | 0.9–1.0 | 0.8070 | |||
Ferritin | 1.0 | 1.000–1.004 | 0.0512 | |||
GGT | 1.02 | 1.009–1.033 | 0.0005 1 | 1.029 | 1.013–1.044 | 0.0002 1 |
AST | 1.08 | 1.020–1.151 | 0.0091 1 | |||
ALT | 1.02 | 0.9–1.05 | 0.0842 | |||
Creatinine | 0.6 | 0.3–1.2 | 0.1733 | |||
Albumin | 1.020 | 0.6–1.7 | 0.9412 | |||
Platelet count | 0.99 | 0.98–0.99 | 0.0284 1 | |||
FGF21 | 1.0 | 0.9–1.0 | 0.9850 | |||
CK18 | 1.0 | 0.8–1.2 | 0.6583 | |||
PNPLA3 GG genotype | 5.0 | 1.3–18.1 | 0.0338 1 | |||
PNPLA3 CG genotype | 2.1 | 0.8–5.2 | ||||
FGF 21 GG genotype | 2.5 | 0.8–7.7 | 0.2084 | |||
FGF 21 CG genotype | 1.0 | 0.4–2.5 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Women | 1.6 | 0.3–6.5 | 0.5065 | |||
Diagnosis of T2D (years) | 0.9 | 0.8–1.0 | 0.4137 | |||
Overweight | 0.8 | 0.08–8.79 | 0.7166 | |||
Obesity Grade I | 1.3 | 0.1–14.0 | ||||
Obesity Grade II | 0.4 | 0.02–8.72 | ||||
Obesity Grade III | 2.5 | 0.1–38.5 | ||||
Obesity (BMI ≥ 30) | 2.2 | 0.5–8.8 | 0.2577 | |||
Waist circumference | 1.007 | 0.972–1.043 | 0.6965 | |||
Chronic kidney disease | 0.4 | 0.05–4.13 | 0.5078 | |||
Dyslipidemia | 0.5 | 0.1–2.2 | 0.4037 | |||
Hypertension | 2.3 | 0.2–21.2 | 0.4449 | |||
Hypothyroidism | 1.7 | 0.4–6.4 | 0.4074 | |||
Coronary artery disease | 0.9 | 0.1–4.8 | 0.9281 | |||
Diabetes complications | ||||||
Retinopathy | 0.6 | 0.1–2.2 | 0.5040 | |||
Diabetic kidney disease | 0.4 | 0.1–1.7 | 0.2421 | |||
Neuropathy | 0.8 | 0.1–3.4 | 0.7939 | |||
Glycated hemoglobin | 1.010 | 0.7–1.364 | 0.9457 | |||
Total cholesterol | 1.000 | 0.988–1.012 | 0.9682 | |||
LDL | 1.001 | 0.986–1.015 | 0.9235 | |||
Triglycerides | 0.999 | 0.992–1.005 | 0.6729 | |||
Ferritin | 1.000 | 0.997–1.004 | 0.9282 | |||
GGT | 1.022 | 1.009–1.035 | 0.0006 1 | 1.022 | 1.008–1.036 | 0.0021 1 |
AST | 1.050 | 1.004–1.098 | 0.0325 1 | |||
ALT | 1.0 | 0.993–1.037 | 0.1938 | |||
Creatinine | 0.9 | 0.4–1.8 | 0.8303 | |||
Albumin | 0.6 | 0.2–1.9 | 0.4143 | |||
Platelet count | 0.978 | 0.966–0.991 | 0.0009 1 | |||
FGF21 | 1.001 | 0.994–1.008 | 0.7396 | |||
CK18 | 0.9 | 0.7–1.3 | 0.9908 | |||
PNPLA3 GG genotype | 16.4 | 3.135–85.828 | 0.0010 1 | 13.2 | 2.2–77.5 | 0.0040 1 |
PNPLA3 CG genotype | 1.1 | 0.2–6.1 | ||||
FGF 21 GG genotype | 0.4 | 0.046–4.066 | 0.7628 | |||
FGF 21 CG genotype | 0.8 | 0.2–3.0 |
Genotype Frequency %/(n) | Total % | p-Value | ||||
---|---|---|---|---|---|---|
C/C | C/G | G/G | ||||
PNPLA3 | No NAFLD (n = 13) | 61.5 (8) | 30.8 (4) | 7.7 (1) | 100 | 0.6521 |
NAFLD (n = 135) | 48.1 (65) | 40.8 (55) | 11.1 (15) | 100 | ||
C/C | C/G | G/G | ||||
FGF21 | No NAFLD (n = 13) | 30.8 (4) | 46.1 (6) | 23.1 (3) | 100 | 0.8660 |
NAFLD (n = 135) | 36.3 (49) | 45.2 (61) | 18.5 (25) | 100 |
Characteristics | CC (n = 73) % (n) or Mean ± SD | CG (n = 59) % (n) or Mean ± SD | GG (n = 16) % (n) or Mean ± SD | p-Value |
---|---|---|---|---|
Age (years) | 61.9 ± 8.3 | 61.3 ± 10.0 | 59.2 ± 8.5 | 0.5587 |
Men/Women | 38.4% (28)/61.6% (45) | 44.1% (26)/55.9% (33) | 18.8% (3)/81.3% (13) | 0.1819 |
T2D time since diagnosis (years) | 18.9 ± 9.2 | 18.0 ± 9.9 | 18.3 ± 10.8 | 0.7235 |
Obesity (BMI ≥ 30 kg/m2) | 53.4% (39) | 59.3% (35) | 62.5% (10) | 0.7035 |
BMI (kg/m2) | 31.0 ± 6.5 | 31.2 ± 5.3 | 29.6 ± 4.4 | 0.7218 |
Waist circumference (cm) | 98.2 ± 16.9 | 98.5 ± 20.1 | 101.1 ± 13.3 | 0.7340 |
Chronic kidney disease | 20.5% (15) | 16.9% (10) | 25.0% (4) | 0.7405 |
Dyslipidemia | 83.6% (61) | 86.4% (51) | 68.8% (11) | 0.2433 |
Hypertension | 94.5% (69) | 84.7% (50) | 87.5% (14) | 0.1709 |
Hypothyroidism | 24.7% (18) | 22.0% (13) | 31.3% (5) | 0.7447 |
Tobacco use | 6.8% (5) | 8.5% (5) | 0.0% (0) | 0.6439 |
Coronary artery disease | 20.5% (15) | 27.1% (16) | 25.0% (4) | 0.6709 |
Diabetes complications | ||||
Retinopathy | 64.4% (47) | 57.6% (34) | 50% (8) | 0.4991 |
Diabetic kidney disease | 54.8% (40) | 47.5% (28) | 50% (8) | 0.6990 |
Neuropathy | 41.1% (30) | 37.3% (22) | 31.3% (5) | 0.7410 |
Glycated hemoglobin (%) | 8.5 ± 2.0 | 8.5 ± 1.8 | 8.2 ± 2.1 | 0.5623 |
Total cholesterol (mg/dL) | 167.2 ± 51.4 | 155.6 ± 41.9 | 168.9 ± 54.2 | 0.2917 |
LDL (mg/dL) | 94.0 ± 43.2 | 79.9 ± 30.9 | 90.7 ± 38.1 | 0.0958 |
HDL (mg/dL) | 46.2 ± 23.9 | 39.3 ± 10.6 | 43.1 ± 14.6 | 0.1329 |
Triglycerides (mg/dL) | 157.2 ± 95.6 | 157.6 ± 106.8 | 160.1 ± 67.2 | 0.7014 |
Ferritin (ng/mL) | 164.3 ± 174.6 | 159.6 ± 154.2 | 208.1 ± 203.7 | 0.3577 |
GGT (U/L) | 42.8 ± 42.3 | 38.0 ± 30.5 | 71.1 ± 57.2 | 0.0336 1 |
AST (U/L) | 19.2 ± 6.9 | 19.3 ± 4.9 | 32.8 ± 24.7 | 0.0039 1 |
ALT (U/L) | 21.5 ± 14.1 | 20.8 ± 7.8 | 36.6 ± 40.4 | 0.1083 |
Elevated AST levels (>35 U/L) | 5.5% (4) | 1.7% (1) | 25.0% (4) | 0.0079 1 |
Elevated ALT levels (>35 U/L) | 12.3% (9) | 10.2% (6) | 31.3% (5) | 0.0838 |
Creatinine (mg/dL) | 1.2 ± 0.6 | 1.2 ± 1.1 | 1.3 ± 0.9 | 0.3364 |
Albumin (g/dL) | 4.1 ± 0.9 | 4.0 ± 0.4 | 3.9 ± 0.7 | 0.5519 |
Platelets (×109/L) | 247.9 ± 68.3 | 251.4 ± 68.4 | 197.8 ± 74.8 | 0.1000 |
Transient elastography (kPa) | 6.0 ± 2.5 (n = 62) | 6.8 ± 4.0 (n = 50) | 14.2 ± 18.9 (n = 13) | 0.0154 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mana, M.F.; Parisi, M.C.R.; Correa-Giannella, M.L.; Neto, A.M.; Yamanaka, A.; Cunha-Silva, M.; Cavaleiro, A.M.; dos Santos, C.R.; Pavan, C.R.; Sevá-Pereira, T.; et al. Non-Alcoholic Fatty Liver Disease in Long-Term Type 2 Diabetes: Role of rs738409 PNPLA3 and rs499765 FGF21 Polymorphisms and Serum Biomarkers. Molecules 2022, 27, 3193. https://doi.org/10.3390/molecules27103193
Mana MF, Parisi MCR, Correa-Giannella ML, Neto AM, Yamanaka A, Cunha-Silva M, Cavaleiro AM, dos Santos CR, Pavan CR, Sevá-Pereira T, et al. Non-Alcoholic Fatty Liver Disease in Long-Term Type 2 Diabetes: Role of rs738409 PNPLA3 and rs499765 FGF21 Polymorphisms and Serum Biomarkers. Molecules. 2022; 27(10):3193. https://doi.org/10.3390/molecules27103193
Chicago/Turabian StyleMana, Mauy Frujuello, Maria Cândida R. Parisi, Maria Lucia Correa-Giannella, Arnaldo Moura Neto, Ademar Yamanaka, Marlone Cunha-Silva, Ana Mercedes Cavaleiro, Cristina Rodrigues dos Santos, Célia Regina Pavan, Tiago Sevá-Pereira, and et al. 2022. "Non-Alcoholic Fatty Liver Disease in Long-Term Type 2 Diabetes: Role of rs738409 PNPLA3 and rs499765 FGF21 Polymorphisms and Serum Biomarkers" Molecules 27, no. 10: 3193. https://doi.org/10.3390/molecules27103193
APA StyleMana, M. F., Parisi, M. C. R., Correa-Giannella, M. L., Neto, A. M., Yamanaka, A., Cunha-Silva, M., Cavaleiro, A. M., dos Santos, C. R., Pavan, C. R., Sevá-Pereira, T., Dertkigil, S. S. J., & Mazo, D. F. (2022). Non-Alcoholic Fatty Liver Disease in Long-Term Type 2 Diabetes: Role of rs738409 PNPLA3 and rs499765 FGF21 Polymorphisms and Serum Biomarkers. Molecules, 27(10), 3193. https://doi.org/10.3390/molecules27103193