Comparative Study of Sample Carriers for the Identification of Volatile Compounds in Biological Fluids Using Raman Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Identification of the Characteristic Peaks of Ethanol and Urine
2.2. Method of Droplet on a Gold-Coated Glass Microscope Slide
2.2.1. Focus Optimization
2.2.2. LoD Determination
2.2.3. Kinetic Study of Ethanol Evaporation
2.3. Method of Cuvette
2.3.1. Focus Optimization
2.3.2. LoD Determination
2.3.3. Kinetic Study of Ethanol Evaporation
2.4. Method of a Gold-Coated Glass Slide with Cavity
2.4.1. Gold-Coated Glass Slide with Cavity
2.4.2. Cavity Covering: Microscope Cover Slip
2.4.3. Cavity Covering: Transparent Membrane
2.4.4. Focus Optimization
2.4.5. LoD Determination
2.4.6. Kinetic Study of Ethanol Evaporation
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. Raman Spectroscopy
4.2.1. Raman Spectra Acquisition Using the Method of Droplet
4.2.2. Raman Spectra Acquisition Using the Method of Cuvette
4.2.3. Raman Spectra Acquisition Using the Method of Gold-Coated Glass Slide with Cavity
4.2.4. Repeatability of the Method of Gold-Coated Glass Slide with Cavity
4.2.5. Determination of the LoD
4.2.6. Study of the Kinetics of Ethanol Evaporation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Dasgupta, A. Alcohol a double-edged sword: Health benefits with moderate consumption but a health hazard with excess alcohol intake. In Alcohol, Drugs, Genes and the Clinical Laboratory; Dasgupta, A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–21. [Google Scholar]
- Biasotti, A.A.; Valentine, T.E. Blood alcohol concentration determined from urine samples as a practical equivalent or alternative to blood and breath alcohol tests. J. Forensic Sci. 1985, 30, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Caplan, Y.H.; Levine, B. The Analysis of Ethanol in Serum, Blood, and Urine: A Comparison of the TDx REA Ethanol Assay with Gas Chromatography. J. Anal. Toxicol. 1986, 10, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.W.; Holmgren, P. Urine/blood ratios of ethanol in deaths attributed to acute alcohol poisoning and chronic alcoholism. Forensic Sci. Int. 2003, 135, 206–212. [Google Scholar] [CrossRef]
- Jones, A.W.; Kugelberg, F.C. Relationship between blood and urine alcohol concentrations in apprehended drivers who claimed consumption of alcohol after driving with and without supporting evidence. Forensic Sci. Int. 2010, 194, 97–102. [Google Scholar] [CrossRef]
- Berger, A. How Does it Work? Alcohol breath testing. BMJ 2002, 325, 1403. [Google Scholar] [CrossRef]
- Ashdown, H.F.; Fleming, S.; Spencer, E.A.; Thompson, M.J.; Stevens, R.J. Diagnostic accuracy study of three alcohol breathalysers marketed for sale to the public. BMJ Open 2014, 4, e005811. [Google Scholar] [CrossRef] [Green Version]
- Labianca, D.A. Uncertainty in the Results of Breath-Alcohol Analyses. J. Chem. Educ. 1999, 76, 508–510. [Google Scholar] [CrossRef]
- Mihretu, L.D.; Gebru, A.G.; Mekonnen, K.N.; Asgedom, A.G.; Desta, Y.H. Determination of ethanol in blood using headspace gas chromatography with flameionization detector (HS-GC-FID): Validation of a method. Cogent Chem. 2020, 6, 1760187. [Google Scholar] [CrossRef]
- Macchia, T.; Mancinelli, R.; Gentili, S.; Lugaresi, E.C.; Raponi, A.; Taggi, F. Ethanol in biological fluids: Headspace GC measurement. J. Anal. Toxicol. 1995, 19, 241–246. [Google Scholar] [CrossRef]
- Dorubeţ, D.; Moldoveanu, S.; Mircea, C.; Butnaru, E.; Astărăstoae, V. Development and validation of a quantitative determination method of blood ethanol by gas chromatography with headspace (GC-HS). Rom. J. Legal Med. 2009, 4, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Sutter, K. Determination of Ethanol in Blood: Analytical Aspects, Quality Control, and Theoretical Calculations for Forensic Applications. Chimia 2002, 56, 59–62. [Google Scholar] [CrossRef]
- Boswell, H.A.; Dorman, F.L. Uncertainty of Blood Alcohol Concentration (BAC) Results as Related to Instrumental Conditions: Optimization and Robustness of BAC Analysis Headspace Parameters. Chromatography 2015, 2, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis, 6th ed.; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2007. [Google Scholar]
- Khandasammy, S.R.; Fikiet, M.A.; Mistek, E.; Ahmed, Y.; Halámková, L.; Bueno, J.; Lednev, I.K. Bloodstains, paintings, and drugs: Raman spectroscopy applications in forensic science. Forensic Chem. 2018, 8, 111–133. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, K.S. The Negative Absorption of Radiation. Nature 1928, 122, 12–13. [Google Scholar] [CrossRef]
- Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem. Soc. Rev. 2016, 45, 1803–1818. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Gajjar, K.B.; Theophilou, G.; Martin, F.L.; Martin-Hirsch, P.L. Vibrational spectroscopy of biofluids for disease screening or diagnosis: Translation from the laboratory to a clinical setting. J. Biophotonics 2014, 7, 153–165. [Google Scholar] [CrossRef]
- Buckley, K.; Matousek, P. Non-invasive analysis of turbid samples using deep Raman spectroscopy. Analyst 2011, 136, 3039–3050. [Google Scholar] [CrossRef]
- Orkoula, M.; Kontoyannis, C.G.; Markopoulou, C.K.; Koundourellis, J.E. Quantitative analysis of liquid formulations using FT-Raman spectroscopy and HPLC The case of diphenhydramine hydrochloride in Benadryl®. J. Pharm. Biomed. Anal. 2006, 41, 1406–1411. [Google Scholar] [CrossRef]
- Jentzsch, P.V.; Ciobotă, V. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour Fragr. J. 2014, 29, 287–295. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Genis, H.E.; Guven, B.; Tamer, U.; Alper, N. A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 1171–1176. [Google Scholar] [CrossRef]
- Açikgöz, G.; Hamamci, B.; Yildiz, A. Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy. Toxicol. Res. 2018, 34, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikoliunaite, L.; Rodriguez, R.D.; Sheremet, E.; Kolchuzhin, V.; Mehner, J.; Ramanavicius, A.; Zahn, D.R.T. The substrate matters in the Raman spectroscopy analysis of cells. Sci. Rep. 2015, 5, 13150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikirzhytskaya, A.; Sikirzhytski, V.; McLaughlin, G.; Lednev, I.K. Forensic Identification of Blood in the Presence of Contaminations Using Raman Microspectroscopy Coupled with Advanced Statistics: Effect of Sand, Dust, and Soil. J. Forensic. Sci. 2013, 58, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Muro, C.K.; Doty, K.C.; Fernandes, L.S.; Lednev, I.K. Forensic body fluid identification and differentiation by Raman spectroscopy. Forensic Chem. 2016, 1, 31–38. [Google Scholar] [CrossRef]
- Sikirzhytski, V.; Sikirzhytskaya, A.; Lednev, I.K. Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: Semen and blood mixtures. Forensic Sci. Int. 2012, 222, 259–265. [Google Scholar] [CrossRef]
- Sikirzhytskaya, A.; Sikirzhytski, V.; Lednev, I.K. Determining Gender by Raman Spectroscopy of a Bloodstain. Anal. Chem. 2017, 89, 1486–1492. [Google Scholar] [CrossRef]
- Sikirzhytski, V.; Sikirzhytskaya, A.; Lednev, I.K. Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification. Anal. Chim. Acta 2012, 718, 78–83. [Google Scholar] [CrossRef]
- Sikirzhytski, V.; Sikirzhytskaya, A.; Lednev, I.K. Multidimensional Raman Spectroscopic Signatures as a Tool for Forensic Identification of Body Fluid Traces: A Review. Appl. Spectrosc. 2011, 65, 1223–1232. [Google Scholar] [CrossRef]
- Boyd, S.; Bertino, M.F.; Seashols, S.J. Raman spectroscopy of blood samples for forensic applications. Forensic Sci. Int. 2011, 208, 124–128. [Google Scholar] [CrossRef]
- Kammrath, B.W.; Glynn, C.L.; Schlagetter, T. The Use of Raman Spectroscopy for the Identification of Forensically Relevant Body Fluid Stains. Spectroscopy 2017, 32, 19–24. [Google Scholar]
- Virkler, K.; Lednev, I.K. Forensic body fluid identification: The Raman spectroscopic signature of saliva. Analyst 2010, 135, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Sikirzhytski, V.; Virkler, K.; Lednev, I.K. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes. Sensors 2010, 10, 2869–2884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnier, F.; Petitjean, F.; Baker, M.J.; Byrne, H.J. Improved protocols for vibrational spectroscopic analysis of body fluids. J. Biophotonics 2014, 7, 167–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parachalil, D.R.; McIntyre, J.; Byrne, H.J. Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: Recent advances. Anal. Bioanal. Chem. 2020, 412, 1993–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spizzirri, P.G.; Fang, J.H.; Rubanov, S.; Gauja, E. Nano-Raman spectroscopy of silicon surfaces. arXiv 2010, arXiv:1002.2692. [Google Scholar]
- Wellner, A.; Paillard, V.; Coffin, H.; Cherkashin, N.; Bonafos, C. Resonant Raman scattering of a single layer of Si nanocrystals on a silicon substrate. J. Appl. Phys. 2004, 96, 2403–2405. [Google Scholar] [CrossRef]
- Zapata, F.; Gregório, I.; García-Ruiz, C. Body Fluids and Spectroscopic Techniques in Forensics: A Perfect Match? J. Forensic Med. 2015, 1, 1–7. [Google Scholar] [CrossRef]
- McLaughlin, G.; Sikirzhytski, V.; Lednev, I.K. Circumventing substrate interference in the Raman spectroscopic identification of blood stains. Forensic Sci. Int. 2013, 231, 157–166. [Google Scholar] [CrossRef]
- Gojani, A.B.; Palásti, D.J.; Paul, A.; Galbács, G.; Gornushkin, I.B. Analysis and Classification of Liquid Samples Using Spatial Heterodyne Raman Spectroscopy. Appl. Spectrosc. 2019, 73, 1409–1419. [Google Scholar] [CrossRef] [Green Version]
- Kalen, F. Development of Raman Spectroscopy for Thermometry in Liquids. Master’s Thesis, Lund University, Lund, Sweden, 2007. [Google Scholar]
- Zhao, Y.; Ji, N.; Yin, L.; Wang, J. A Non-invasive Method for the Determination of Liquid Injectables by Raman Spectroscopy. AAPS PharmSciTech 2015, 16, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Sato-Berrú, R.Y.; Medina-Valtierra, J.; Medina-Gutiérrez, C.; Frausto-Reyes, C. Quantitative NIR Raman analysis in liquid mixtures. Spectrochim. Acta Part A 2004, 60, 2225–2229. [Google Scholar] [CrossRef] [PubMed]
- Izake, E.L. Forensic and homeland security applications of modern portable Raman spectroscopy. Forensic Sci. Int. 2010, 202, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Premasiri, W.R.; Clarke, R.H.; Womble, M.E. Urine Analysis by Laser Raman Spectroscopy. Lasers Surg. Med. 2001, 28, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Keuleers, R.; Desseyn, H.O.; Rousseau, B.; Van Alsenoy, C. Vibrational Analysis of Urea. J. Phys. Chem. A 1999, 103, 4621–4630. [Google Scholar] [CrossRef]
- Burikov, S.; Dolenko, T.; Patsaeva, S.; Starokurov, Y.; Yuzhakov, V. Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems. Mol. Phys. 2010, 108, 2427–2436. [Google Scholar] [CrossRef]
- Parke, S.A.; Birch, G.G. Solution properties of ethanol in water. Food Chem. 1999, 67, 241–246. [Google Scholar] [CrossRef]
- Bozorgmehr, B.; Murray, B.T. Numerical Simulation of Evaporation of Ethanol–Water Mixture Droplets on Isothermal and Heated Substrates. ACS Omega 2021, 6, 12577–12590. [Google Scholar] [CrossRef]
- ICH Q2 (R1) Validation of Analytical Procedures: Text and Methodology. European Medicines Agency. 1995. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 10 March 2022).
- Pohorecky, L.A.; Brick, J. Pharmacology of ethanol. Pharmacol. Ther. 1988, 36, 335–427. [Google Scholar] [CrossRef]
- Algahtani, M.S.N.; Davies, M.C.; Alexander, M.R.; Burley, J.C. Establishing a new method to evaluate the recrystallization of nano-gram quantities of paracetamol printed as a microarray using ink-jet printing. Cryst. Growth Des. 2019, 19, 638–647. [Google Scholar] [CrossRef]
- Tantra, R.; Brown, R.J.C.; Milton, M.J.T.; Gohil, D. A Practical Method to Fabricate Gold Substrates for Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2008, 62, 992–1000. [Google Scholar] [CrossRef]
Sample | Signal-to-Noise Ratio |
---|---|
Urine | 1.00 |
0.25 μL/mL | 2.40 |
0.50 μL/mL | 3.62 |
2.00 μL/mL | 4.99 |
3.50 μL/mL | 8.49 |
5.00 μL/mL | 11.52 |
Sample | Signal-to-Noise Ratio |
---|---|
Urine | 1.00 |
0.25 μL/mL | 2.70 |
0.50 μL/mL | 2.90 |
2.00 μL/mL | 6.72 |
3.50 μL/mL | 10.95 |
5.00 μL/mL | 14.20 |
Sample | Signal-to-Noise Ratio |
---|---|
Urine | 1.00 |
0.30 μL/mL | 1.96 |
0.50 μL/mL | 1.96 |
1.00 μL/mL | 3.17 |
2.00 μL/mL | 6.86 |
3.50 μL/mL | 9.44 |
5.00 μL/mL | 16.79 |
Factor | Method of Droplet | Method of Cuvette | Method of Cavity |
---|---|---|---|
Simplicity | The simplest | Very simple | Very simple |
Required Time of Sample Preparation | A few seconds | Some seconds | Some seconds |
Required Time of Analysis | A few minutes | Some minutes | Some minutes |
Required Volume | <15 μL | 350–1750 μL | 150 μL |
Cost | Low | High | Low |
Cleaning | Easy | Difficult | Easy |
Interference of Carrier’s Material on the Raman Spectrum | No effect | High interference of the glass | Very low interference of the transparent membrane |
LoD | Very Low (0.50 μL/mL ethanol in urine) | High (2.00 μL/mL ethanol in urine) | Low (1.00 μL/mL ethanol in urine) |
Evaporation Rate of Volatile Samples | Very fast | Very slow | Slow |
Measurement | I880/I1003 |
---|---|
1st Measurement | 0.317 |
2nd Measurement | 0.313 |
3rd Measurement | 0.303 |
Average | 0.311 |
Standard Deviation | 0.007 |
Relative Standard Deviation (%) | 2.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papaspyridakou, P.; Lykouras, M.; Kontoyannis, C.; Orkoula, M. Comparative Study of Sample Carriers for the Identification of Volatile Compounds in Biological Fluids Using Raman Spectroscopy. Molecules 2022, 27, 3279. https://doi.org/10.3390/molecules27103279
Papaspyridakou P, Lykouras M, Kontoyannis C, Orkoula M. Comparative Study of Sample Carriers for the Identification of Volatile Compounds in Biological Fluids Using Raman Spectroscopy. Molecules. 2022; 27(10):3279. https://doi.org/10.3390/molecules27103279
Chicago/Turabian StylePapaspyridakou, Panagiota, Michail Lykouras, Christos Kontoyannis, and Malvina Orkoula. 2022. "Comparative Study of Sample Carriers for the Identification of Volatile Compounds in Biological Fluids Using Raman Spectroscopy" Molecules 27, no. 10: 3279. https://doi.org/10.3390/molecules27103279
APA StylePapaspyridakou, P., Lykouras, M., Kontoyannis, C., & Orkoula, M. (2022). Comparative Study of Sample Carriers for the Identification of Volatile Compounds in Biological Fluids Using Raman Spectroscopy. Molecules, 27(10), 3279. https://doi.org/10.3390/molecules27103279