Immuno-Imaging (PET/SPECT)–Quo Vadis?
Abstract
:1. Introduction
- Target selection: a tracer has to address a target found either in activated immune cells, that can target cancer cells, or in cancer cells that are prone to immune therapy (serving as a tool for pre-treatment stratification). Ideally, the agent should distinguish the desired cytotoxic immune reaction from adverse immune reactions.
- Developability: non-human biologics (such as murine antibodies) might show promising preclinical results in animal studies but could lead to immunogenic reactions in First in Human (FiH) studies. In addition, clearance of tracers in humans can be different from animals.
- Translatability: expensive agents and tracers that require exotic nuclides disqualify themselves from wide application in clinical practice and shift the work-load to specialized centers. Tracers with a slow target enrichment that require more than one patient appointment complicate the patients’ experience due to the necessity of additional late acquisition studies and require the development of dedicated acquisition protocols. Additionally, examinations of those immune cells which would need to be extracted from patients’ blood and re-infused after labeling would be too elaborate.
- Diagnostic quality: the examination needs to support decision making (in clinical practice or clinical development). Needless to say, techniques that offer a higher spatial resolution (such as PET) are likely to be superior. Of course, high sensitivity and high specificity would be the major criteria for diagnostic quality, but to anticipate the outcome, none of the tracers has reached the development stage to allow benchmarking.
2. Data Set-Inclusion and Exclusion Criteria
3. Analysis
4. Discussion and Further Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AB | antibody |
[18F]F-AraG | 2′-deoxy-2′-[18F]fluoro-9-β-D-arabinofuranosylguanine |
CD | cluster of differentiation |
([18F]F-)CFA | 2-chloro-2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosyl-adenine |
CRO | contract research organization |
CT | computed tomography |
CTLA-4 | cytotoxic T lymphocyte associated antigen 4 |
dGK | deoxyguanosine kinase |
DOTA | 2,2′,2′,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid |
Df | desferrioxamine |
DFO | desferrioxamine |
([18F]F-)FAC | 1-(2′-deoxy-2′-[18F]fluoro-β-D-arabinofuranosyl)-cytosine |
([18F]F-)FLT | 3′-deoxy-3’-[18F]fluorothymidine |
FACS | fluorescence-activated cell sorting |
([18F]F-)FDG | fluorodeoxyglucose |
FiH | first in human |
HTS | high-throughput screening |
IDO | indoleamine-2,3-dioxygenase |
IHC | immunohistochemistry |
IL | interleukin |
mAb | monoclonal antibody |
MRI | magnetic resonance imaging |
NOTA | 1,4,7-triazacyclononane-triacetic acid |
NSCLC | non-small cell lung cancer |
PD | pharmacodynamic |
PD-1 | programmed cell death protein 1 |
PD-L1 | programmed cell death ligand 1 |
PERCIST | positron emission tomography (PET) response criteria in solid tumors |
PK | pharmacokinetic |
RECIST | response evaluation criteria in solid tumors |
SPECT | single photon emission computed tomography |
References
- Chiang, A.C.; Herbst, R.S. Frontline immunotherapy for NSCLC—The tale of the tail. Nat. Rev. Clin. Oncol. 2020, 17, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef] [Green Version]
- Onitilo, A.A.; Wittig, J.A. Principles of Immunotherapy in Melanoma. Surg. Clin. N. Am. 2020, 100, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, A.; Agarwal, A.; Stockler, M.R.; Menzies, A.M.; Howard, K.; Morton, R.L. Preferences for Immunotherapy in Melanoma: A Systematic Review. Ann. Surg. Oncol. 2020, 27, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Deleuze, A.; Saout, J.; Dugay, F.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; Bensalah, K.; Crouzet, L.; Laguerre, B.; Belaud-Rotureau, M.A.; et al. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int. J. Mol. Sci. 2020, 21, 2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Velasco, M.A.; Uemura, H. Prostate cancer immunotherapy: Where are we and where are we going? Curr. Opin. Urol. 2018, 28, 15–24. [Google Scholar] [CrossRef]
- Cha, H.R.; Lee, J.H.; Ponnazhagan, S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res. 2020, 80, 1615–1623. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, V.P.; Beatty, G.L.; Dougan, S.K. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019, 156, 2056–2072. [Google Scholar] [CrossRef]
- Schizas, D.; Charalampakis, N.; Kole, C.; Economopoulou, P.; Koustas, E.; Gkotsis, E.; Ziogas, D.; Psyrri, A.; Karamouzis, M.V. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat. Rev. 2020, 86, 102016. [Google Scholar] [CrossRef]
- Rhea, L.P.; Mendez-Marti, S.; Kim, D.; Aragon-Ching, J.B. Role of immunotherapy in bladder cancer. Cancer Treat. Res. Commun. 2021, 26, 100296. [Google Scholar] [CrossRef]
- Minnie, S.A.; Hill, G.R. Immunotherapy of multiple myeloma. J. Clin. Investig. 2020, 130, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Hudecek, M.; Einsele, H. What is the future of immunotherapy in multiple myeloma? Blood 2020, 136, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bewersdorf, J.P.; Stahl, M.; Zeidan, A.M. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Rev. 2019, 34, 67–83. [Google Scholar] [CrossRef]
- Vago, L.; Gojo, I. Immune escape and immunotherapy of acute myeloid leukemia. J. Clin. Investig. 2020, 130, 1552–1564. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Caligaris-Cappio, F.; Maloney, D.G. Immunotherapy in lymphoma. Hematol Oncol 2017, 35 (Suppl. 1), 88–91. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.C.; Yeh, L.R.; Kuo, Y.T.; Chen, J.H. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark Res. 2021, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.E.; Bambury, R.M.; Van Allen, E.M.; Drabkin, H.A.; Lara, P.N., Jr.; Harzstark, A.L.; Wagle, N.; Figlin, R.A.; Smith, G.W.; Garraway, L.A.; et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Investig. New Drugs 2014, 32, 178–187. [Google Scholar] [CrossRef]
- Berger, A.K.; Lucke, S.; Abel, U.; Haag, G.M.; Grullich, C.; Stange, A.; Dietrich, M.; Apostolidis, L.; Freitag, A.; Trierweiler, C.; et al. Early metabolic response in sequential FDG-PET/CT under cetuximab is a predictive marker for clinical response in first-line metastatic colorectal cancer patients: Results of the phase II REMOTUX trial. Br. J. Cancer 2018, 119, 170–175. [Google Scholar] [CrossRef]
- Dimitrakopoulou-Strauss, A. Monitoring of patients with metastatic melanoma treated with immune checkpoint inhibitors using PET-CT. Cancer Immunol. Immunother. 2019, 68, 813–822. [Google Scholar] [CrossRef]
- Filippi, L.; Nervi, C.; Proietti, I.; Pirisino, R.; Potenza, C.; Martelli, O.; Equitani, F.; Bagni, O. Molecular imaging in immuno-oncology: Current status and translational perspectives. Expert Rev. Mol. Diagn. 2020, 20, 1199–1211. [Google Scholar] [CrossRef]
- Niemeijer, A.L.; Hoekstra, O.S.; Smit, E.F.; de Langen, A.J. Imaging Responses to Immunotherapy with Novel PET Tracers. J. Nucl. Med. 2020, 61, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Frega, S.; Dal Maso, A.; Pasello, G.; Cuppari, L.; Bonanno, L.; Conte, P.; Evangelista, L. Novel Nuclear Medicine Imaging Applications in Immuno-Oncology. Cancers 2020, 12, 1303. [Google Scholar] [CrossRef] [PubMed]
- Borm, F.J.; Smit, J.; Oprea-Lager, D.E.; Wondergem, M.; Haanen, J.; Smit, E.F.; de Langen, A.J. Response Prediction and Evaluation Using PET in Patients with Solid Tumors Treated with Immunotherapy. Cancers 2021, 13, 3083. [Google Scholar] [CrossRef]
- Bauckneht, M.; Piva, R.; Sambuceti, G.; Grossi, F.; Morbelli, S. Evaluation of response to immune checkpoint inhibitors: Is there a role for positron emission tomography? World J. Radiol. 2017, 9, 27–33. [Google Scholar] [CrossRef]
- Dimitrakopoulou-Strauss, A. PET-based molecular imaging in personalized oncology: Potential of the assessment of therapeutic outcome. Future Oncol. 2015, 11, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, E.L.; Giesen, D.; Pot-de Jong, L.; Jorritsma-Smit, A.; De Vries, E.G.E.; Lub-de Hooge, M.N. (89)Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs. J. Immunother. Cancer 2020, 8, 938. [Google Scholar] [CrossRef]
- Du, Y.; Jin, Y.; Sun, W.; Fang, J.; Zheng, J.; Tian, J. Advances in molecular imaging of immune checkpoint targets in malignancies: Current and future prospect. Eur. Radiol. 2019, 29, 4294–4302. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Gao, Z.; Wang, L.; Li, J.; Yu, J.; Han, S.; Meng, X. Application and Prospects of Molecular Imaging in Immunotherapy. Cancer Manag. Res. 2020, 12, 9389–9403. [Google Scholar] [CrossRef]
- Pharaon, R.; Koczywas, M.A.; Salgia, S.; Mohanty, A.; Massarelli, E. Biomarkers in immunotherapy: Literature review and future directions. J. Thorac. Dis. 2020, 12, 5119–5127. [Google Scholar] [CrossRef]
- Mayer, A.T.; Gambhir, S.S. The Immunoimaging Toolbox. J. Nucl. Med. 2018, 59, 1174–1182. [Google Scholar] [CrossRef]
- Wierstra, P.; Sandker, G.; Aarntzen, E.; Gotthardt, M.; Adema, G.; Bussink, J.; Raave, R.; Heskamp, S. Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharm. Chem. 2019, 4, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, J.; Capitao, M.; Mougin-Degraef, M.; Guerard, F.; Faivre-Chauvet, A.; Rbah-Vidal, L.; Gaschet, J.; Guilloux, Y.; Kraeber-Bodere, F.; Cherel, M.; et al. Cell Tracking in Cancer Immunotherapy. Front. Med. 2020, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Sonanini, D.; Maurer, A.; Daldrup-Link, H.E. The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics 2019, 9, 7730–7748. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Goel, S.; Lan, X.; Cai, W. ImmunoPET of CD38 with a radiolabeled nanobody: Promising for clinical translation. Eur J. Nucl. Med. Mol. Imaging 2021, 48, 2683–2686. [Google Scholar] [CrossRef] [PubMed]
- Ronald, J.A.; Kim, B.S.; Gowrishankar, G.; Namavari, M.; Alam, I.S.; D’Souza, A.; Nishikii, H.; Chuang, H.Y.; Ilovich, O.; Lin, C.F.; et al. A PET Imaging Strategy to Visualize Activated T Cells in Acute Graft-versus-Host Disease Elicited by Allogenic Hematopoietic Cell Transplant. Cancer Res. 2017, 77, 2893–2902. [Google Scholar] [CrossRef] [Green Version]
- Niemeijer, A.N.; Leung, D.; Huisman, M.C.; Bahce, I.; Hoekstra, O.S.; van Dongen, G.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun. 2018, 9, 4664. [Google Scholar] [CrossRef]
- Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schroder, C.P.; Hiltermann, T.J.N.; van der Wekken, A.J.; et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018, 24, 1852–1858. [Google Scholar] [CrossRef]
- Xing, Y.; Chand, G.; Liu, C.; Cook, G.J.R.; O’Doherty, J.; Zhao, L.; Wong, N.C.L.; Meszaros, L.K.; Ting, H.H.; Zhao, J. Early Phase I Study of a (99m)Tc-Labeled Anti-Programmed Death Ligand-1 (PD-L1) Single-Domain Antibody in SPECT/CT Assessment of PD-L1 Expression in Non-Small Cell Lung Cancer. J. Nucl. Med. 2019, 60, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Glaudemans, A.W.; Bonanno, E.; Galli, F.; Zeebregts, C.J.; de Vries, E.F.; Koole, M.; Luurtsema, G.; Boersma, H.H.; Taurino, M.; Slart, R.H.; et al. In vivo and in vitro evidence that (9)(9)mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Pandit-Taskar, N.; Postow, M.A.; Hellmann, M.D.; Harding, J.J.; Barker, C.A.; O’Donoghue, J.A.; Ziolkowska, M.; Ruan, S.; Lyashchenko, S.K.; Tsai, F.; et al. First-in-Humans Imaging with (89)Zr-Df-IAB22M2C Anti-CD8 Minibody in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting. J. Nucl. Med. 2020, 61, 512–519. [Google Scholar] [CrossRef]
- Adams, J.L.; Smothers, J.; Srinivasan, R.; Hoos, A. Big opportunities for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 2015, 14, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Huck, B.R.; Kotzner, L.; Urbahns, K. Small Molecules Drive Big Improvements in Immuno-Oncology Therapies. Angew. Chem. 2018, 57, 4412–4428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Van Valkenburgh, J.; Hong, X.; Conti, P.S.; Zhang, X.; Chen, K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019, 9, 7849–7871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Zhang, Y.P. Maximizing the commercial value of personalized therapeutics and companion diagnostics. Nat. Biotechnol. 2013, 31, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Clement, M.; Pearson, J.A.; Gras, S.; van den Berg, H.A.; Lissina, A.; Llewellyn-Lacey, S.; Willis, M.D.; Dockree, T.; McLaren, J.E.; Ekeruche-Makinde, J.; et al. Targeted suppression of autoreactive CD8(+) T-cell activation using blocking anti-CD8 antibodies. Sci. Rep. 2016, 6, 35332. [Google Scholar] [CrossRef]
- O’Connor, J.P.; Aboagye, E.O.; Adams, J.E.; Aerts, H.J.; Barrington, S.F.; Beer, A.J.; Boellaard, R.; Bohndiek, S.E.; Brady, M.; Brown, G.; et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 2017, 14, 169–186. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kramer, C.S.; Dimitrakopoulou-Strauss, A. Immuno-Imaging (PET/SPECT)–Quo Vadis? Molecules 2022, 27, 3354. https://doi.org/10.3390/molecules27103354
Kramer CS, Dimitrakopoulou-Strauss A. Immuno-Imaging (PET/SPECT)–Quo Vadis? Molecules. 2022; 27(10):3354. https://doi.org/10.3390/molecules27103354
Chicago/Turabian StyleKramer, Carsten S., and Antonia Dimitrakopoulou-Strauss. 2022. "Immuno-Imaging (PET/SPECT)–Quo Vadis?" Molecules 27, no. 10: 3354. https://doi.org/10.3390/molecules27103354
APA StyleKramer, C. S., & Dimitrakopoulou-Strauss, A. (2022). Immuno-Imaging (PET/SPECT)–Quo Vadis? Molecules, 27(10), 3354. https://doi.org/10.3390/molecules27103354