Cardioprotective Effect of Rumex vesicarius Linn. Leaf Extract against Catecholamine-Induced Cardiotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extract Preparation
2.3. Animals
2.4. Chemicals
2.5. Preliminary Phytochemical Investigation
2.6. HPLC Analysis
2.7. Acute Oral Toxicity Dose Test
2.8. Determination of DPPH Assay
2.9. Nitric Radical Scavenging Assay
2.10. Acute Myocardial Infarction Study
Screening of Cardiac Weight to Body Weight Ratio
2.11. Histopathology
2.12. Vasorelaxant Activity
2.13. Calcium Channel Blocking Activity
2.14. Adrenaline Caused Platelet Adhesion
2.15. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.2. HPLC Analysis
3.3. DPPH Assay
3.4. Nitric Oxide Radical Scavenging Assay
3.5. Evaluation of Myocardial Infarction
Effect on Heart to Body Weight Ratio
3.6. Histopathology
3.7. Vasodilator Activity
3.8. Calcium Channel Blocking Activity
3.9. Antiplatelet Aggregatory Effect
3.10. Acute Oral Toxicity Dose Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khan, I.A.; Hussain, M.; Syed, S.K.; Saadullah, M.; Alqahtani, A.M.; Alqahtani, T.; Aldahish, A.A.; Asiri, S.; Zeng, L.-H. Pharmacological justification for the medicinal use of Plumeria rubra Linn. in cardiovascular disorders. Molecules 2022, 27, 251. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A. Pharmacotherapeutic modifications in cardiopulmonary patients during COVID-19 outbreak. J. Coll. Phy. Surg. Pak. 2020, 30, 15–17. [Google Scholar]
- Ashraf, N.; Rashid, A.; Naz, U.; Ashraf, M.M.; Khaliq, S.; Khan, I.A.; Nazir, A.; Sarwar, A.; Asif, A. Detection of antibiotics residues in protein containing diets (meat and eggs) of human through different methods. J. Univ. Med. Coll. 2018, 9, 1–11. [Google Scholar]
- Quiñones, M.; Miguel, M.; Aleixandre, G. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 2013, 68, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Hussain, M.; Munawar, S.H.; Iqbal, M.O.; Arshad, S.; Manzoor, A.; Shah, M.A.; Abbas, K.; Shakeel, W.; Syed, S.K. Jasminum sambac: A Potential candidate for drug development to cure cardiovascular ailments. Molecules 2021, 26, 5664. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, A.; Khan, I.A.; Sadiq, M.; Iqbal, M.O.; Munawar, S.H. Evaluation of cardioprotective potential of hydroalcoholic leaf extract of Citrullus colocynthis against doxorubicin induced oxidative stress in rats. Pak. J. Zool. 2022, 25, 1–8. [Google Scholar] [CrossRef]
- Amin, M.M.; El-Gazayerly, O.N.; Gawad, N.A.; Halim, S.M. Effect of formulation variables on design, in vitro evaluation of valsartan SNEDDS and estimation of its antioxidant effect in adrenaline-induced acute myocardial infarction in rats. Pharmaceut. Dev. Technol. 2016, 21, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Fathiazad, F.; Matlobi, S.; Khorrami, N. Phytochemical screening and evaluation of cardioprotective activity of ethanolic extract of Ocimum basilicum L. (basil) against isoproterenol induced myocardial infarction in rats. DARU J. Pharma. Sci. 2012, 20, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [Green Version]
- Shaito, A.; Thuan, D.T.B.; Nguyen, T.H.D.; Hasan, H.; Halabi, S.; Abdelhady, S.; Nasrallah, G.K.; Pintus, G. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front. Pharmacol. 2020, 11, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Khare, C.P. Encyclopedia of Indian Medicinal Plants, Rational Western Therapy. In Ayurvedic and other Traditional Usage, Botany; Springer: Berlin/Heidelberg, Germany, 2004; pp. 314–315. [Google Scholar]
- Ahirrao, Y.A.; Patil, D.A. Ethnomedicinal claims against stomach complaints in Buldhana District (Maharashtra, India). Life Sci. Leaflet 2012, 1, 16–25. [Google Scholar]
- Hariprasad, P.S.; Ramakrishnan, A. Chromatographic fingerprint analysis of Rumex vesicarius L. by HPTLC Technique. Asian Pac. J. Trop. Biomed. 2012, 3, S57–S63. [Google Scholar] [CrossRef]
- Elbakry, A.A.; Eman, A. Evaluation of antibacterial and antioxidant activities of different plant parts of Rumex vesicarius. (Polygonaceae). Int. J. Pharm. Pharm. Sci. 2001, 3, 109–118. [Google Scholar]
- Dymoke, W. A History of the Principal Drugs of the Vegetable Origin, 2nd ed.; Pharmacographia Indica; Hamdard Publications Karachi: Karachi, Pakistan, 1972; p. 2114. [Google Scholar]
- Khan, I.A.; Aziz, A.; Manzoor, Z.; Munawar, S.H.; Sarwar, H.S.; Afzal, A. Study on antipyretic activity of Rumex vesicarius leaves extract in albino rabbits. Vet. World 2014, 71, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Aziz, A.; Manzoor, Z.; Munawar, S.H.; Sarwar, H.S. Antiemetic activity of methanolic leaf extract of Rumex vesicarius Linn. Int. J. Pharmal. Res. Allied Sci. 2013, 4, 33–37. [Google Scholar]
- Khan, I.A.; Janbaz, K.H.; Saqib, F. Antidiarrheal activity of methanolic leaf extract of Rumex vesicarius. Bangladesh J. Pharmacol. 2016, 11, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Aziz, A.; Manzoor, Z.; Munawar, S.H.; Sarwar, S. Tracheorelaxant effect of aqueous-methanol leaf extract of Rumex vesicarius L. in rabbits. Sci. Res. Assays 2015, 10, 150–155. [Google Scholar]
- Khan, I.A.; Aziz, A.; Manzoor, Z.; Munawar, S.H.; Sarwar, S. Evaluation of wound healing potential of Rumex vesicarius L. leaf extract and fractions in rabbit. Afr. J. Tradit. Comp. altern. Med. 2015, 12, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Aziz, A.; Manzoor, Z.; Munawar, S.H. Dermatological evaluation of counter irritant effect of methanol leaf extract of Rumex vesicarius Linn. in rabbits. JPMA 2016, 66, 49–54. [Google Scholar]
- Khan, I.A.; Lodhi, A.H.; Munawar, S.H.; Manzoor, A.; Manzoor, Z.; Raza, M.A.; Iqbal, O. Assessment of ameliorative effect of Aab-e-Shifa polyherbal formulation in experimentally-induced wound in rabbits. Trop. J. Pharm. Res. 2020, 19, 2357–2362. [Google Scholar]
- National Institute of Health. Guide for the Care and Use of Laboratory Animals; No. 85-23; NIH Publication: Bethesda, MD, USA, 1985. [Google Scholar]
- Trease, G.E.; Evans, W.C. Trease and Evans’ Pharmacognosy, 16th ed.; Saunders Elsevier: Edinburgh, Australia, 2009. [Google Scholar]
- OECD Guidelines for the Testing of Chemicals (No 423) “Acute Oral Toxicity-Acute Toxic Class Method” (Adopted on 17 December 2011); Organization for Economic Co-Operation and Development: Paris, France, 2001.
- Salma, A.; El-Marasy, S.A.; Awdan, E.; Hassan, H.; Heba, M.I. Cardioprotective effect of thymol against adrenaline-induced myocardial injury in rats. Heliyon 2020, 7, 35–39. [Google Scholar]
- Tukappa, N.K.; Londonkar, R.L.; Nayaka, H.B.; Kumar, C.S. Cytotoxicity and hepatoprotective attributes of methanolic extract of Rumex vesicarius L. Biol. Res. 2015, 48, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.A.; Lodhi, A.H.; Munawar, S.H.; Manzoor, A.; Manzoor, Z.; Raza, M.A. Formulation and evaluation of rutin-allicin gel against diabetic foot ulcer. Lat. Am. J. Pharm. 2020, 39, 725–729. [Google Scholar]
- Isik, B.S.; Altay, F.; Capanoglu, E. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chem. 2018, 265, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, S.M.; Aleem, A.; Saqib, F.; Ormenisan, A.N.; Elena Neculau, A.; Anastasiu, C.V. The Potential involvement of an ATP-dependent potassium channel-opening mechanism in the smooth muscle relaxant properties of Tamarix dioica Roxb. Biomolecules 2019, 9, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilani, A.H.; Janbaz, K.H.; Zaman, H.; Lateef, A.; Suria, A. Possible presence of calcium channel blocker(s) in Rubia cordifolia: An indigenous medicinal plant. JPMA 1994, 44, 84–89. [Google Scholar]
- Singh, S.; Malm, C.J.; Ramström, S.; Hesse, C.; Jeppsson, A. Adrenaline enhances in vitro platelet activation and aggregation inblood samples from ticagrelor-treated patients. Res. Pract. Thromb. Haemost. 2018, 2, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawa, N.S.; Juriyati, J.A.; Yusof, A.; Yusof, K. Roles of rutin in cardiac remodeling. J. Funct. Foods 2020, 64, 606–619. [Google Scholar]
- Huang, S.H.; Xu, M.; Wu, H.M.; Wan, C.X.; Wang, H.B.; Wu, Q.Q.; Liao, H.H.; Deng, W.; Tang, Q.Z. Isoquercitrin attenuated cardiac dysfunction via AMPKα-dependent pathways in LPS-treated mice. Mol. Nutr. Food Res. 2018, 62, 303–321. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Bucki, R.; Pastore, J.J.; Giraud, F.; Sulpice, J.C.; Janmey, P.A. Flavonoid inhibition of platelet procoagulant activity and phosphoinositide synthesis. J. Thromb. Haemost. 2003, 1, 1820–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, S.; Nishida, S. Electropharmacological actions of Ginkgo biloba extract on vascular smooth and heart muscles. Clin. Chim. Acta. 2004, 342, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yu, X.; Huangpu, H.; Yao, F. Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1. Biomed. Pharmacother. 2019, 109, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Prince, P.S.; Rajakumar, S.; Dhanasekar, K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol. 2011, 668, 233–240. [Google Scholar] [CrossRef]
- He, Y.; Hu, Z.; Li, A.; Zhu, Z.; Yang, N.; Ying, Z. Recent advances in biotransformation of saponins. Molecules 2019, 24, 2365. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Duan, L.; Chen, H.W.; Liu, Y.M.; Zhang, Y. Network pharmacology-based prediction and verification of the targets and mechanism for Panax notoginseng saponins against coronary heart disease. Evid.-Based Complement. Altern. Med. 2019, 65, 37–52. [Google Scholar] [CrossRef]
- Golaszewska, A.; Misztal, T.; Marcinczyk, N.; Chabielska, E.; Rusak, T. Adrenaline may contribute to prothrombotic condition via augmentation of platelet procoagulant response, enhancement of fibrin formation, and attenuation of fibrinolysis. Front. Physiol. 2021, 12, 657881. [Google Scholar] [CrossRef]
- Manzoor, A.; Khan, I.A.; Lodhi, A.H.; Munawar, S.H.; Manzoor, Z.; Iqbal, O. Evaluation of cardioprotective potential of hydroalcohol peel extract of Citrullus colocynthis Linn. (Cucurbitaceae). Trop. J. Pharm. Res. 2022, 21, 105–110. [Google Scholar]
- Iqbal, M.O.; Ahmed, M.M.; Javaid, U.; Khan, I.A.; Manzoor, M.; Andleeb, S.; Riaz, R.; Munawar, S.H.; Manzoor, Z.; Mumtaz, A. Nephroprotective effects of Alhagi camelorum against cisplatin-induced nephrotoxicity in albino wistar rats. Molecules 2022, 27, 941. [Google Scholar] [CrossRef]
Tests | Observation | Results |
---|---|---|
Alkaloid | No PPT | − |
Phenols | Light purple colour | + |
Tannins | Light purple colour | + |
Coumarins | Yellow fluorescence | + |
Saponins | 1 cm froth | + |
Anthraquinones | Pink colour | + |
Flavonoid | Light yellow colour | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.A.; Hussain, M.; Hussain, N.; Alqahtani, A.M.; Alqahtani, T. Cardioprotective Effect of Rumex vesicarius Linn. Leaf Extract against Catecholamine-Induced Cardiotoxicity. Molecules 2022, 27, 3383. https://doi.org/10.3390/molecules27113383
Khan IA, Hussain M, Hussain N, Alqahtani AM, Alqahtani T. Cardioprotective Effect of Rumex vesicarius Linn. Leaf Extract against Catecholamine-Induced Cardiotoxicity. Molecules. 2022; 27(11):3383. https://doi.org/10.3390/molecules27113383
Chicago/Turabian StyleKhan, Imran Ahmad, Musaddique Hussain, Nadia Hussain, Ali M. Alqahtani, and Taha Alqahtani. 2022. "Cardioprotective Effect of Rumex vesicarius Linn. Leaf Extract against Catecholamine-Induced Cardiotoxicity" Molecules 27, no. 11: 3383. https://doi.org/10.3390/molecules27113383
APA StyleKhan, I. A., Hussain, M., Hussain, N., Alqahtani, A. M., & Alqahtani, T. (2022). Cardioprotective Effect of Rumex vesicarius Linn. Leaf Extract against Catecholamine-Induced Cardiotoxicity. Molecules, 27(11), 3383. https://doi.org/10.3390/molecules27113383