The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor
Abstract
:1. Introduction
2. The “Less Than the Sum of the Van der Waals Radii” Criterion
3. Directionality and Bonding Characterization
4. Computational Details
5. Arsenic in Crystals
5.1. Arsenic Trihalides and Related Structures
5.2. The As···X (X = Halogen) Arsenic Bonds
5.2.1. The Crystal Structure of AsF3
5.2.2. The Crystal Structure of AsCl3
5.2.3. The Crystal Structure of AsBr3
5.2.4. The Crystal Structure of AsI3
5.3. The As···S Arsenic Bonds
5.4. The As···N, As···N(π) and As···C(π) Arsenic Bonds
5.5. Other As-Centered Arsenic Bonds (As···O, As···X, As···N and As···As)
5.6. As···Se and As···Te Arsenic Bonds with Tellurium and Selenium As Electron Density Donors
5.7. The Crystals of Arsenic
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Azevedo Santos, L.; Hamlin, T.A.; Ramalho, T.C.; Bickelhaupt, F.M. The pnictogen bond: A quantitative molecular orbital picture. Phys. Chem. Chem. Phys. 2021, 23, 13842–13852. [Google Scholar] [CrossRef] [PubMed]
- Brammer, L. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: Origins, current status and discussion. Faraday Discuss. 2017, 203, 485–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmudov, K.T.; Gurbanov, A.V.; Aliyeva, V.A.; Resnati, G.; Pombeiro, A.J.L. Pnictogen bonding in coordination chemistry. Coord. Chem. Rev. 2020, 418, 213381. [Google Scholar] [CrossRef]
- Moaven, S.; Andrews, M.C.; Polaske, T.J.; Karl, B.M.; Unruh, D.K.; Bosch, E.; Bowling, N.P.; Cozzolino, A.F. Triple-Pnictogen Bonding as a Tool for Supramolecular Assembly. Inorg. Chem. 2019, 58, 16227–16235. [Google Scholar] [CrossRef]
- Frontera, A.; Bauza, A. On the Importance of Pnictogen and Chalcogen Bonding Interactions in Supramolecular Catalysis. Int. J. Mol. Sci. 2021, 22, 12550. [Google Scholar] [CrossRef]
- Bryce, D.L.; Desiraju, G.R.; Frontera, A.; Legon, A.C.; Nicotra, F.; Rissanen, K. Categorizing Chalcogen, Pnictogen, and Tetrel Bonds, and Other Interactions Involving Groups 14–16 Elements. Chem. Int. 2016, 38, 22–24. [Google Scholar] [CrossRef]
- Gini, A.; Paraja, M.; Galmés, B.; Besnard, C.; Poblador-Bahamonde, A.I.; Sakai, N.; Frontera, A.; Matile, S. Pnictogen-bonding catalysis: Brevetoxin-type polyether cyclizations. Chem. Sci. 2020, 11, 7086–7091. [Google Scholar] [CrossRef]
- Humeniuk, H.V.; Gini, A.; Hao, X.; Coelho, F.; Sakai, N.; Matile, S. Pnictogen-Bonding Catalysis and Transport Combined: Polyether Transporters Made In Situ. JACS Au 2021, 1, 1588–1593. [Google Scholar] [CrossRef]
- Paraja, M.; Gini, A.; Sakai, N.; Matile, S. Pnictogen-Bonding Catalysis: An Interactive Tool to Uncover Unorthodox Mechanisms in Polyether Cascade Cyclizations. Chem. Eur. J. 2020, 26, 15471–15476. [Google Scholar] [CrossRef]
- Benz, S.; Poblador-Bahamonde, A.I.; Low-Ders, N.; Matile, S. Catalysis with Pnictogen, Chalcogen, and Halogen Bonds. Angew. Chem. Int. Ed. 2018, 57, 5408–5412. [Google Scholar] [CrossRef]
- Taylor, M.S. Anion recognition based on halogen, chalcogen, pnictogen and tetrel bonding. Coord. Chem. Rev. 2020, 413, 213270. [Google Scholar] [CrossRef]
- Lee, L.M.; Tsemperouli, M.; Poblador-Bahamonde, A.I.; Benz, S.; Sakai, N.; Sugihara, K.; Matile, S. Anion Transport with Pnictogen Bonds in Direct Comparison with Chalcogen and Halogen Bonds. J. Am. Chem. Soc. 2019, 141, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Mahmudov, K.T.; Gurbanov, A.V.; Guseinov, F.I.; Guedes da Silva, M.F.C. Noncovalent interactions in metal complex catalysis. Coord. Chem. Rev. 2019, 387, 32–46. [Google Scholar] [CrossRef]
- Park, G.; Gabbaï, F.P. Redox-controlled chalcogen and pnictogen bonding: The case of a sulfonium/stibonium dication as a preanionophore for chloride anion transport. Chem. Sci. 2020, 11, 10107–10112. [Google Scholar] [CrossRef]
- Scilabra, P.; Terraneo, G.; Daolio, A.; Baggioli, A.; Famulari, A.; Leroy, C.; Bryce, D.L.; Resnati, G. 4,4′-Dipyridyl Dioxide·SbF3 Cocrystal: Pnictogen Bond Prevails over Halogen and Hydrogen Bonds in Driving Self-Assembly. Cryst. Growth Des. 2020, 20, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Sci. Rep. 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Varadwaj, A.; Varadwaj, P.R.; Marques, H.M.; Yamashita, K. Halogen in Materials Design: Revealing the Nature of Hydrogen Bonding and Other Non-Covalent Interactions in the Polymorphic Transformations of Methylammonium Lead Tribromide Perovskite. Mater. Chem. Today 2018, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Scilabra, P.; Terraneo, G.; Resnati, G. Fluorinated elements of Group 15 as pnictogen bond donor sites. J. Fluor. Chem. 2017, 203, 62–74. [Google Scholar] [CrossRef]
- Kumar, V.; Scilabra, P.; Politzer, P.; Terraneo, G.; Daolio, A.; Fernandez-Palacio, F.; Murray, J.S.; Resnati, G. Tetrel and Pnictogen Bonds Complement Hydrogen and Halogen Bonds in Framing the Interactional Landscape of Barbituric Acids. Cryst. Growth Des. 2021, 21, 642–652. [Google Scholar] [CrossRef]
- Gomila, R.M.; Frontera, A. Charge assisted halogen and pnictogen bonds: Insights from the Cambridge Structural Database and DFT calculations. CrystEngComm 2020, 22, 7162–7169. [Google Scholar] [CrossRef]
- Fanfrlík, J.; Zierkiewicz, W.; Švec, P.; Růžičková, Z.; Řezáč, J.; Michalczyk, M.; Růžička, A.; Michalska, D.; Hobza, P. Pnictogen bonding in pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. J. Mol. Model. 2017, 23, 328. [Google Scholar] [CrossRef] [PubMed]
- Trubenstein, H.J.; Moaven, S.; Vega, M.; Unruh, D.K.; Cozzolino, A.F. Pnictogen bonding with alkoxide cages: Which pnictogen is best? New J. Chem. 2019, 43, 14305–14312. [Google Scholar] [CrossRef]
- Lindquist-Kleissler, B.; Wenger, J.S.; Johnstone, T.C. Analysis of Oxygen–Pnictogen Bonding with Full Bond Path Topological Analysis of the Electron Density. Inorg. Chem. 2021, 60, 1846–1856. [Google Scholar] [CrossRef] [PubMed]
- Mokrai, R.; Barrett, J.; Apperley, D.C.; Batsanov, A.S.; Benkő, Z.; Heift, D. Weak Pnictogen Bond with Bismuth: Experimental Evidence Based on Bi−P Through-Space Coupling. Chem. Eur. J. 2019, 25, 4017–4024. [Google Scholar] [CrossRef] [Green Version]
- Alkorta, I.; Elguero, J.; Frontera, A. Not Only Hydrogen Bonds: Other Noncovalent Interactions. Crystals 2020, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, S.J.; Alkorta, I.; Elguero, J. Complexes between Dihydrogen and Amine, Phosphine, and Arsine Derivatives. Hydrogen Bond versus Pnictogen Interaction. J. Phys. Chem. A 2013, 117, 3243–3251. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, S.J. Pnicogen and tetrel bonds—Tetrahedral Lewis acid centres. Struct. Chem. 2019, 30, 1141–1152. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Grabowski, S.J. Pnicogen and hydrogen bonds: Complexes between PH3X+ and PH2X systems. Phys. Chem. Chem. Phys. 2015, 17, 3261–3272. [Google Scholar] [CrossRef] [Green Version]
- Alkorta, I.; Legon, A.C. An Ab Initio Investigation of the Geometries and Binding Strengths of Tetrel-, Pnictogen-, and Chalcogen-Bonded Complexes of CO2, N2O, and CS2 with Simple Lewis Bases: Some Generalizations. Molecules 2018, 23, 2250. [Google Scholar] [CrossRef] [Green Version]
- Politzer, P.; Murray, J.S.; Janjić, G.V.; Zarić, S.D. σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: A survey of crystal structures. Crystals 2014, 4, 12–31. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, D.; Kraka, E.; Cremer, D. Strength of the Pnicogen Bond in Complexes Involving Group Va Elements N, P, and As. J. Phys. Chem. A 2015, 119, 1642–1656. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Yan, T.; Li, Q.; Scheiner, S. Violation of Electrostatic Rules: Shifting the Balance between Pnicogen Bonds and Lone Pair−π Interactions Tuned by Substituents. J. Phys. Chem. A 2019, 123, 7288–7295. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Mo, Y. Electron Transfer in Pnicogen Bonds. J. Phys. Chem. A 2014, 118, 8911–8921. [Google Scholar] [CrossRef]
- Wysokiński, R.; Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. How Many Pnicogen Bonds can be Formed to a Central Atom Simultaneously? J. Phys. Chem. A 2020, 124, 2046–2056. [Google Scholar] [CrossRef]
- Scheiner, S. Coordination of a Central Atom by Multiple Intramolecular Pnicogen Bonds. Inorg. Chem. 2020, 59, 9315–9324. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, A.; Martínez-García, H.; Melchor, S.; Dobado, J.A. Chemical Bonding to N, P, and As in Ylides and Their Boron Analogues. J. Phys. Chem. A 2004, 108, 9188–9195. [Google Scholar] [CrossRef]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M. Halogen Bonding: A Halogen-Centered Noncovalent Interaction Yet to Be Understood. Inorganics 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Politzer, P.; Murray, J.S. σ-Hole Interactions: Perspectives and Misconceptions. Crystals 2017, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, W. The σ-hole⋯σ-hole stacking interaction: An unrecognized type of noncovalent interaction. J. Chem. Phys. 2020, 153, 214302. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Telb, E.M.Z. σ-Hole and Lone-Pair Hole Interactions in Chalcogen-Containing Complexes: A Comparative Study. ACS Omega 2020, 5, 21631–21640. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Khan, I.; Ibrar, A.; Simpson, J.; Chopra, D. Complex electronic interplay of σ-hole and π-hole interactions in crystals of halogen substituted 1,3,4-oxadiazol-2(3H)-thiones. CrystEngComm 2017, 19, 3485–3498. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Jin, W.J. σ-Hole Bond vs π-Hole Bond: A Comparison Based on Halogen Bond. Chem. Rev. 2016, 116, 5072–5104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, W. The Bifurcated σ-Hole···σ-Hole Stacking Interactions. Molecules 2022, 27, 1252. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, F. Anti-Electrostatic Pi-Hole Bonding: How Covalency Conquers Coulombics. Molecules 2022, 27, 377. [Google Scholar] [CrossRef]
- Wysokiński, R.; Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. Ability of Lewis Acids with Shallow σ-Holes to Engage in Chalcogen Bonds in Different Environments. Molecules 2021, 26, 6394. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. A–X⋯σ Interactions—Halogen Bonds with σ-Electrons as the Lewis Base Centre. Molecules 2021, 26, 5175. [Google Scholar] [CrossRef] [PubMed]
- Sarr, S.; Pilmé, J.; Montavon, G.; Le Questel, J.-Y.; Galland, N. Astatine Facing Janus: Halogen Bonding vs. Charge-Shift Bonding. Molecules 2021, 26, 4568. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R.; Jin, B.-Y. Fluorines in tetrafluoromethane as halogen bond donors: Revisiting address the nature of the fluorine’s σ-hole. Int. J. Quantum Chem. 2015, 115, 453–470. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R.; Marques, H.M.; Yamashita, K. Comment on “Extended Halogen Bonding between Fully Fluorinated Aromatic Molecules: Kawai et al., ACS Nano, 2015, 9, 2574”. arXiv 2018, arXiv:1802.09995. [Google Scholar]
- Franconetti, A.; Frontera, A.; Mooibroek, T.J. Intramolecular π–hole interactions with nitro aromatics. CrystEngComm 2019, 21, 5410–5417. [Google Scholar] [CrossRef]
- Mooibroek, T.J. Coordinated nitrate anions can be directional π-hole donors in the solid state: A CSD study. CrystEngComm 2017, 19, 4485–4488. [Google Scholar] [CrossRef]
- Báuza, A.; Frontera, A.; Mooibroek, T.J. π-Hole Interactions Involving Nitro Compounds: Directionality of Nitrate Esters. Cryst. Growth Des. 2016, 16, 5520–5524. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Del Bene, J.E. Pnicogen Bonded Complexes of PO2X (X = F, Cl) with Nitrogen Bases. J. Phys. Chem. A 2013, 117, 10497–10503. [Google Scholar] [CrossRef]
- Sachar, H.S.; Chava, B.S.; Pial, T.H.; Das, S. Hydrogen Bonding and Its Effect on the Orientational Dynamics of Water Molecules inside Polyelectrolyte Brush-Induced Soft and Active Nanoconfinement. Macromolecules 2021, 54, 2011–2021. [Google Scholar] [CrossRef]
- Boraei, A.T.A.; Haukka, M.; Sarhan, A.A.M.; Soliman, S.M.; Barakat, A. Intramolecular Hydrogen Bond, Hirshfeld Analysis, AIM; DFT Studies of Pyran-2,4-dione Derivatives. Crystals 2021, 11, 896. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Varadwaj, A.; Varadwaj, P.R.; Jin, B.-Y. Can an entirely negative fluorine in a molecule, viz. perfluorobenzene, interact attractively with the entirely negative site (s) on another molecule (s)? Like liking like! RSC Adv. 2016, 6, 19098–19110. [Google Scholar] [CrossRef]
- Varadwaj, A.; Marques, H.M.; Varadwaj, P.R. Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions? Molecules 2019, 24, 379. [Google Scholar] [CrossRef] [Green Version]
- Bauzá, A.; Frontera, A. Halogen and Chalcogen Bond Energies Evaluated Using Electron Density Properties. ChemPhysChem 2020, 21, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, A.; Marques, H.M.; Varadwaj, P.R. Nature of halogen-centered intermolecular interactions in crystal growth and design: Fluorine-centered interactions in dimers in crystalline hexafluoropropylene as a prototype. J. Comp. Chem. 2019, 40, 1836–1860. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, A.; Varadwaj, P.R.; Marques, H.M.; Yamashita, K. Revealing Factors Influencing the Fluorine-Centered Non-Covalent Interactions in Some Fluorine-substituted Molecular Complexes: Insights from First-Principles Studies. ChemPhysChem 2018, 19, 1486–1499. [Google Scholar] [CrossRef] [PubMed]
- Otero-de-la-Roza, A.; Johnson, E.R.; DiLabio, G.A. Halogen Bonding from Dispersion-Corrected Density-Functional Theory: The Role of Delocalization Error. J. Chem. Theory Comput. 2014, 10, 5436–5447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauzá, A.; Frontera, A. Electrostatically enhanced F⋯F interactions through hydrogen bonding, halogen bonding and metal coordination: An ab initio study. Phys. Chem. Chem. Phys. 2016, 18, 20381–20388. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, S.J. Hydrogen and halogen bonds are ruled by the same mechanisms. Phys. Chem. Chem. Phys. 2013, 15, 7249–7259. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. The Phosphorous Bond, or the Phosphorous-Centered Pnictogen Bond: The Covalently Bound Phosphorous Atom in Molecular Entities and Crystals as a Pnictogen Bond Donor. Molecules 2022, 27, 1487. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. The Nitrogen Bond, or The Nitrogen-centered Pnictogen Bond: The Covalently Bound Nitrogen Atom in Molecular Entities and Crystals as a Pnictogen Bond Donor. Compounds 2022, 2, 7. [Google Scholar] [CrossRef]
- Lim, J.Y.C.; Beer, P.D. Sigma-Hole Interactions in Anion Recognition. Chem 2018, 4, 731–783. [Google Scholar] [CrossRef]
- Hirai, M.; Cho, J.; Gabbaï, F.P. Promoting the Hydrosilylation of Benzaldehyde by Using a Dicationic Antimony-Based Lewis Acid: Evidence for the Double Electrophilic Activation of the Carbonyl Substrate. Chem. Eur. J. 2016, 22, 6537–6541. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Shing Ho, P.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Bryce, D.L.; Desiraju, R.G.; Frontera, A.; Legon, A.C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P.; et al. Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure Appl. Chem. 2019, 91, 1889–1892. [Google Scholar] [CrossRef]
- International Chemistryl Structure Database (ICSD). Available online: https://icsd.products.fiz-karlsruhe.de/en (accessed on 25 January 2022).
- Belsky, A.; Hellenbrandt, M.; Karen, V.L.; Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Crystallogr. Sect. B 2002, 58, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Cambridge Structural Database, 5.43 ed.; Cambridge Crystallographic Data Centre (CCDC): Cambridge, UK, 2021.
- Politzer, P.; Murray, J.S. The use and misuse of van der Waals radii. Struct. Chem. 2021, 32, 623–629. [Google Scholar] [CrossRef]
- Schiemenz, G.P. The sum of van der Waals radii—A pitfall in the search for bonding. Z. Naturforsch. B 2007, 62, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Dean, P.A.W. Facets of van der Waals Radii That Are Not Commonly Included in Undergraduate Textbooks. J. Chem. Ed. 2014, 91, 154–157. [Google Scholar] [CrossRef]
- Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J.-C.; Contreras-García, J.; Hénon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 2017, 19, 17928–17936. [Google Scholar] [CrossRef]
- Lefebvre, C.; Khartabil, H.; Boisson, J.-C.; Contreras-García, J.; Piquemal, J.-P.; Hénon, E. The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations. ChemPhysChem 2018, 19, 724–735. [Google Scholar] [CrossRef]
- Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.S.; Politzer, P. Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions. Croat. Chem. Acta 2009, 82, 267–275. [Google Scholar]
- Rahim, Z.; Barman, B.N. The van der Waals criterion for hydrogen bonding. Acta Crystallogr. B 1978, 34, 761–764. [Google Scholar] [CrossRef]
- Chernyshov, I.Y.; Ananyev, I.V.; Pidko, E.A. Revisiting van der Waals Radii: From Comprehensive Structural Analysis to Knowledge-Based Classification of Interatomic Contacts. ChemPhysChem 2020, 21, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Batsanov, S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001, 37, 871–885. [Google Scholar] [CrossRef]
- Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A 2009, 113, 5806–5812. [Google Scholar] [CrossRef] [Green Version]
- Dance, I. Distance criteria for crystal packing analysis of supramolecular motifs. New J. Chem. 2003, 27, 22–27. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Moussa, N.A.M. Unconventional Type III Halogen···Halogen Interactions: A Quantum Mechanical Elucidation of σ-Hole···σ-Hole and Di-σ-Hole Interactions. ACS Omega 2020, 5, 21824–21835. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Rev. C.01; Gaussian, Inc.: Wallinford, CT, USA, 2016. [Google Scholar]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Head-Gordon, M.; Pople, J.A. A direct MP2 gradient method. Chem. Phys. Lett. 1990, 166, 275–280. [Google Scholar] [CrossRef]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keith, T.A. AIMAll, V. 19.10.12; TK Gristmill Software: Overland Park, KS, USA, 2019; Available online: http://aim.tkgristmill.com (accessed on 25 March 2022).
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W.; Henneker, W.H.; Cade, P.E. Molecular Charge Distributions and Chemical Binding. J. Chem. Phys. 1967, 46, 3341–3363. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Preston, H.J.T. Determination of the charge distribution of methane by a method of density constraints. Theor. Chim. Acta 1970, 17, 384–395. [Google Scholar] [CrossRef]
- Kahn, S.D.; Pau, C.F.; Hehre, W.J. Models for chemical reactivity: Mapping of intermolecular potentials onto electron density surfaces. Int. J. Quant. Chem. 1988, 34, 575–591. [Google Scholar] [CrossRef]
- Varadwaj, P.R. Does Oxygen Feature Chalcogen Bonding? Molecules 2019, 24, 3166. [Google Scholar] [CrossRef] [Green Version]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M. Very strong chalcogen bonding: Is oxygen in molecule capable of forming it? A First Princiles Perspective. Authorea 2020. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. Chalcogen Bonding in the Molecular Dimers of WCh2 (Ch = S, Se, Te): On the Basic Understanding of the Local Interfacial and Interlayer Bonding Environment in 2D Layered Tungsten Dichalcogenides. Int. J. Mol. Sci. 2022, 23, 1263. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Marques, H.M.; Varadwaj, A.; Yamashita, K. Chalcogen···Chalcogen Bonding in Molybdenum Disulfide, Molybdenum Diselenide and Molybdenum Ditelluride Dimers as Prototypes for a Basic Understanding of the Local Interfacial Chemical Bonding Environment in 2D Layered Transition Metal Dichalcogenides. Inorganics 2022, 10, 11. [Google Scholar] [CrossRef]
- Domingo, L.R.; Acharjee, N.; Mohammad-Salim, H.A. Understanding the Reactivity of Trimethylsilyldiazoalkanes Participating in [3 + 2] Cycloaddition Reactions towards Diethylfumarate with a Molecular Electron Density Theory Perspective. Organics 2020, 1, 2. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Independent gradient model based on Hirshfeld partition (IGMH): A new method for visual study of interactions in chemical systems. ChemRxiv. 2021. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/61aa3e9763557cde10956907 (accessed on 25 March 2022).
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView, V. 5, 5.0.9; Semichem, Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Guha Mazumder, D.N. Chronic arsenic toxicity & human health. Ind. J. Med. Res. 2008, 128, 436–447. [Google Scholar]
- Argos, M.; Kalra, T.; Rathouz, P.J.; Chen, Y.; Pierce, B.; Parvez, F.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Hasan, R.; et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 2010, 373, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Farzan, S.F.; Karagas, M.R.; Chen, Y. In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol. Appl. Pharmacol. 2013, 272, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Quansah, R.; Armah, F.A.; Essumang, D.K.; Luginaah, I.; Clarke, E.; Marfoh, K.; Cobbina, S.J.; Nketiah-Amponsah, E.; Namujju, P.B.; Obiri, S.; et al. Association of Arsenic with Adverse Pregnancy Outcomes/Infant Mortality: A Systematic Review and Meta-Analysis. Environ. Health Perspec. 2015, 123, 412–421. [Google Scholar] [CrossRef]
- Costa, M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol. Appl. Pharmacol. 2019, 375, 1–4. [Google Scholar] [CrossRef]
- Kuivenhoven, M.; Mason, K. Arsenic Toxicity; StatPearls [Internet]: Treasure Island, FL, USA, 2021. [Google Scholar]
- Carron, G. The crystal structure and powder data for arsenic telluride. Acta Crystallogr. 1963, 16, 338–343. [Google Scholar] [CrossRef]
- Lee, J.; Jhon, Y.I.; Lee, K.; Jhon, Y.M.; Lee, J.H. Nonlinear optical properties of arsenic telluride and its use in ultrafast fiber lasers. Sci. Rep. 2020, 10, 15305. [Google Scholar] [CrossRef]
- Popescu, M. Non-Crystalline Chalcogenides; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Frantz, J.; Myers, J.; Bekele, R.; Clabeau, A.; Nguyen, V.; McClain, C.; Litchinitser, N.; Sanghera, J. Arsenic Selenide Dielectric Metasurfaces; SPIE: Bellingham, WA, USA, 2019; Volume 10914. [Google Scholar]
- Sato, T.; Imai, M. Characteristics of Nitrogen-Doped GaAsP Light-Emitting Diodes. Jpn. J. Appl. Phys. 2002, 41, 5995–5998. [Google Scholar] [CrossRef]
- Gallium Arsenide IC Applications Handbook; Fisher, D.; Bahl, I. (Eds.) Academic Press: San Diego, CA, USA, 1995; Volume 1. [Google Scholar]
- Yin, J.; Migas, D.B.; Panahandeh-Fard, M.; Chen, S.; Wang, Z.; Lova, P.; Soci, C. Charge Redistribution at GaAs/P3HT Heterointerfaces with Different Surface Polarity. J. Phys. Chem. Lett. 2013, 4, 3303–3309. [Google Scholar] [CrossRef]
- Hall, R.N.; Fenner, G.E.; Kingsley, J.D.; Soltys, T.J.; Carlson, R.O. Coherent Light Emission From GaAs Junctions. Phys. Rev. Lett. 1962, 9, 366–368. [Google Scholar] [CrossRef]
- Okamoto, N.; Kurebayashi, H.; Trypiniotis, T.; Farrer, I.; Ritchie, D.A.; Saitoh, E.; Sinova, J.; Mašek, J.; Jungwirth, T.; Barnes, C.H.W. Electric control of the spin Hall effect by intervalley transitions. Nat. Mater. 2014, 13, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.P.; Monzyk, B.F. Oxidative Dissolution of Gallium Arsenide and Separation of Gallium from Arsenic. U.S. Patent 4,759,917, 26 July 1988. [Google Scholar]
- Durose, K. High efficiency for As-doped cells. Nat. Energy 2019, 4, 825–826. [Google Scholar] [CrossRef]
- Bader, R.F. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Zampella, G.; Neupane, K.P.; De Gioia, L.; Pecoraro, V.L. The Importance of Stereochemically Active Lone Pairs For Influencing PbII and AsIII Protein Binding. Chem. Eur. J. 2012, 18, 2040–2050. [Google Scholar] [CrossRef] [Green Version]
- Cangelosi, V.M.; Zakharov, L.N.; Crossland, J.L.; Franklin, B.C.; Johnson, D.W. A Surprising “Folded-In” Conformation of a Self-Assembled Arsenic-Thiolate Macrocycle. Cryst. Growth Des. 2010, 10, 1471–1473. [Google Scholar] [CrossRef]
- Choudhary, S.; Ranjan, P.; Chakraborty, T. Atomic polarizability: A periodic descriptor. J. Chem. Res. 2020, 44, 227–234. [Google Scholar] [CrossRef]
- Galy, J.; Enjalbert, R. Crystal chemistry of the VA element trihalides: Lone pair, stereochemistry, and structural relationships. J. Solid State Chem. 1982, 44, 1–23. [Google Scholar] [CrossRef]
- Politzer, P.; Lane, P.; Conch, M.C.; Ma, Y.; Murray, J.S. An overview of halogen bonding. J. Mol. Model. 2007, 13, 305–311. [Google Scholar] [CrossRef]
- Friedemann, R.; Seppelt, K. Volatile Methylplatinum Complexes—Formation and Reactions in Anhydrous HF. Eur. J. Inorg. Chem. 2013, 2013, 1197–1206. [Google Scholar] [CrossRef]
- Galy, J.; Enjalbert, R.; Lecante, P.; Burian, A. AsCl3: From the Crystalline to the Liquid State. XRD (176 < T (K) < 250) and WAXS (295 K) Studies. Inorg. Chem. 2002, 41, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Cazzoli, G.; Forti, P.; Lunelli, B. Molecular structure and harmonic force field of AsCl3 by microwave spectroscopy. J. Mol. Spec. 1978, 69, 71–78. [Google Scholar] [CrossRef]
- Dominikowska, J.; Rybarczyk-Pirek, A.J.; Fonseca Guerra, C. Lack of Cooperativity in the Triangular X3 Halogen-Bonded Synthon? Cryst. Growth Des. 2021, 21, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Parthasarathy, R. The nature of halogen...halogen interactions: Are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J. Am. Chem. Soc. 1989, 111, 8725–8726. [Google Scholar] [CrossRef]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef]
- Bui, T.T.T.; Dahaoui, S.; Lecomte, C.; Desiraju, G.R.; Espinosa, E. The Nature of Halogen⋯Halogen Interactions: A Model Derived from Experimental Charge-Density Analysis. Angew. Chem. Int. Ed. 2009, 48, 3838–3841. [Google Scholar] [CrossRef]
- Reddy, C.M.; Kirchner, M.T.; Gundakaram, R.C.; Padmanabhan, K.A.; Desiraju, G.R. Isostructurality, Polymorphism and Mechanical Properties of Some Hexahalogenated Benzenes: The Nature of Halogen⋯Halogen Interactions. Chem. Eur. J. 2006, 12, 2222–2234. [Google Scholar] [CrossRef]
- Kawai, S.; Sadeghi, A.; Xu, F.; Peng, L.; Orita, A.; Otera, J.; Goedecker, S.; Meyer, E. Extended halogen bonding between fully fluorinated aromatic molecules. ACS Nano 2015, 9, 2574–2583. [Google Scholar] [CrossRef]
- Broder, C.K.; Howard, J.A.K.; Keen, D.A.; Wilson, C.C.; Allen, F.H.; Jetti, R.K.R.; Nangia, A.; Desiraju, G.R. Halogen trimer synthons in crystal engineering: Low-temperature X-ray and neutron diffraction study of the 1:1 complex of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine with tribromobenzene. Acta Crystallogr. B 2000, 56, 1080–1084. [Google Scholar] [CrossRef]
- Dütsch, L.; Riesinger, C.; Balázs, G.; Seidl, M.; Scheer, M. Structural diversity of mixed polypnictogen complexes: Dicationic E2E′2 (E ≠ E′ = P, As, Sb, Bi) chains, cycles and cages stabilized by transition metals. Chem. Sci. 2021, 12, 14531–14539. [Google Scholar] [CrossRef]
- Singh, A.K.; Swaminathan, S. The crystal and molecular structure of arsenic tribromide at −10 °C. Curr. Sci. 1964, 33, 429–430. [Google Scholar]
- Singh, A.K.; Swaminathan, S. Refinement of the crystal structure of arsenic tribromide. Zeit. Krist. 1967, 124, 375–377. [Google Scholar] [CrossRef] [Green Version]
- Trotter, J. The crystal structure of arsenic tribromide. Zeit. Krist. 1965, 122, 230–236. [Google Scholar] [CrossRef]
- van de Leemput, P.J.H.A.M.; Cras, J.A.; Willemse, J. Preparation, structure and properties of complexes with the bis(di-n-butyldithiocarbamato)arsenic(III) or antimony(III) cation. Recl. Des Trav. Chim. Des Pays-Bas 1977, 96, 288–292. [Google Scholar] [CrossRef]
- Silaghi-Dumitrescu, L.; Attia, A.A.A.; Silaghi-Dumitrescu, R.; Blake, A.J.; Sowerby, D.B. Supramolecular architecture of [AsPh2Br2]2[(Br3)−…(Br2)…(Br3)−] obtained by bromination of (AsPh2)2S. Inorg. Chim. Acta 2018, 475, 120–126. [Google Scholar] [CrossRef]
- Schwarz, W.; Guder, H.J.; Prewo, R.; Hausen, H.D. Die Kristallstruktur von Tetramethylarsonium-dibromodime thy lindat [(CH3)4AS][(CH3)2InBr2]. Z. Naturforsch. 1976, 31, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Adachi, H.; Imoto, H.; Watase, S.; Matsukawa, K.; Naka, K. As-stereogenic C2-symmetric organoarsines: Synthesis and enantioselective self-assembly into a dinuclear triple-stranded helicate with copper iodide. Dalton Trans. 2015, 44, 15372–15376. [Google Scholar] [CrossRef]
- Dewan, J.C.; Henrick, K.; White, A.H.; Wild, S.B. Crystal structures of o-phenylenediarsine oxychloride (a redetermination) and o-phenylenediarsine oxybromide. Austr. J. Chem. 1975, 28, 15–19. [Google Scholar] [CrossRef]
- Trotter, J. The crystal structure of arsenic triiodide, AsI3. Zeit. Krist. 1965, 121, 81–86. [Google Scholar] [CrossRef]
- Enjalbert, R.; Galy, J. Refinement of the structure of arsenic triiodide. Acta Crystallogr. B 1980, 36, 914–916. [Google Scholar] [CrossRef] [Green Version]
- Donahue, C.M.; Black, I.K.; Pecnik, S.L.; Savage, T.R.; Scott, B.L.; Daly, S.R. Synthesis, characterization and structural comparisons of phosphonium and arsenic dithiocarbamates with alkyl and phenyl substituents. Polyhedron 2014, 75, 110–117. [Google Scholar] [CrossRef]
- Megges, K.; Avtomonov, E.V.; Becker, R.; Lorberth, J. Syntheses and Structures of Cyclopentadienyl Arsenic (III) Compounds Part IIIa: Tetraisopropylcyclopentadienyl Arsenic (III) Dibromide and Tetraisopropyl- cyclopentadienyl Arsenic (III) Diiodide (TipCpAsBr2, TipCpAsI2). Zeit. Naturforsch. B 1998, 53, 371–377. [Google Scholar] [CrossRef]
- Bujak, M.; Stammler, H.-G.; Vishnevskiy, Y.V.; Mitzel, N.W. Very close I⋯As and I⋯Sb interactions in trimethylpnictogen-pentafluoroiodobenzene cocrystals. CrystEngComm 2022, 24, 70–76. [Google Scholar] [CrossRef]
- Bricklebank, N.; Godfrey, S.M.; Lane, H.P.; McAuliffe, C.A.; Pritchard, R.G.; Moreno, J.-M. Synthesis and structural characterisation of R3AsX2 compounds (R = Me, Ph, p-FC6H4 or p-MeOC6H4; X2= Br2, I2 or IBr); dependency of structure on R, X and the solvent of preparation. J. Chem. Soc., Dalton Trans. 1995, 3873–3879. [Google Scholar] [CrossRef]
- Hsueh, H.C.; Chen, R.K.; Vass, H.; Clark, S.J.; Ackland, G.J.; Poon, W.C.K.; Crain, J. Compression mechanisms in quasimolecular XI3 solids. Phys. Rev. B 1998, 58, 14812–14822. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.-L.; Lu, K.; Yang, X.; Yan, C.-X.; Wang, R.; Ye, W.; Zhou, P.-P.; Yang, Z. Computational investigations of intermolecular interactions between electron-accepting bromo- and iodo-pentafluorobenzene and electron-donating furan and thiophene. New J. Chem. 2018, 42, 20101–20112. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Jin, B.-Y. Hexahalogenated and their mixed benzene derivatives as prototypes for the understanding of halogen···halogen intramolecular interactions: New insights from combined DFT, QTAIM-, and RDG-based NCI analyses. J. Comput. Chem. 2015, 36, 2328–2343. [Google Scholar] [CrossRef]
- Tanaka, S.; Imoto, H.; Yumura, T.; Naka, K. Arsenic Halogenation of 9-Arsafluorene and Utilization for As–C Bond Formation Reaction. Organometallics 2017, 36, 1684–1687. [Google Scholar] [CrossRef]
- Yamanaka, K.; Okimi, H.; Suzuki, H.; Tajima, Y.; Sonoki, H.; Osawa, M.; Saito, T.; Hase, H.; Miyatake, Y.; Okada, S.; et al. Photochemical reaction of dimethylarsinous iodide in aerated methanol: A contribution to arsenic radical chemistry. J. Photochem. Photobiol. A 2008, 195, 175–182. [Google Scholar] [CrossRef]
- Assenmacher, W.; Jansen, M. Kristallstruktur und Phasenumwandlungen von As(CH3)4I. Z. Anorg. Allg. Chem. 1995, 621, 138–143. [Google Scholar] [CrossRef]
- Lenardão, E.J.; Santi, C.; Sancineto, L. Nonbonded Interaction: The Chalcogen Bond. In New Frontiers in Organoselenium Compounds; Springer International Publishing: Cham, Switzerland, 2018; pp. 157–183. [Google Scholar] [CrossRef]
- Guo, S.-P.; Sun, Z.-D.; Chi, Y.; Xue, H.-G. Adduct-Type IR Nonlinear-Optical Crystal SbI3·(S8)3 with a Large Second-Harmonic Generation and a High Laser-Induced Damage Threshold. Inorg. Chem. 2018, 57, 11282–11288. [Google Scholar] [CrossRef] [PubMed]
- von Döllen, A.; Strasdeit, H. Models for the Inhibition of Dithiol-Containing Enzymes by Organoarsenic Compounds: Synthetic Routes and the Structure of [PhAs(HlipS2)] (HlipS22− = Reduced Lipoic Acid). Eur. J. Inorg. Chem. 1998, 1998, 61–66. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Tang, C.; Shen, Y.; Lu, J.; Zhang, Y.; Jia, D. Thioarsenate anions acting as ligands: Solvothermal syntheses, crystal structures and characterizations of transition metal complexes of thioarsenate and polyethyleneamine ligands. Inorg. Chim. Acta 2016, 444, 36–42. [Google Scholar] [CrossRef]
- Yue, C.-Y.; Lei, X.-W.; Tian, Y.-W.; Xu, J.; Bai, Y.-Q.; Wang, F.; Zhou, P.-F.; Liu, X.-F.; Yi, F.-Y. Unsaturated Mn complex decorated hybrid thioarsenates: Syntheses, crystal structures and physical properties. J. Solid State Chem. 2016, 235, 183–192. [Google Scholar] [CrossRef]
- Häusler, T.; Sheldrick, W.S. Synthesis and Structure of Tetraethylcyclotetraarsathiane and its Complexes [Ag(cyclo-(C2H5AsS)4)2]CF3SO3 and [cyclo-(C2H5AsS)4)·SbBr3. Z. Naturforsch. 1994, 49, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Kromm, A.; Sheldrick, W.S. Manganese(II) Complexes with Bridging Selenidoarsenate(III) Anions [AsSe2(Se2)]3− and [(AsSe2)2(μ-Se2)]4−. Z. Anorg. Allg. Chem. 2009, 635, 205–207. [Google Scholar] [CrossRef]
- Kato, T.; Imoto, H.; Tanaka, S.; Ishidoshiro, M.; Naka, K. Facile synthesis and properties of dithieno[3,2-b:2′,3′-d]arsoles. Dalton Trans. 2016, 45, 11338–11345. [Google Scholar] [CrossRef]
- Kniep, R.; Reski, H.D. The Molecular and crystal structure of a 1:1-adduct of AsI3, prepared from 1,3,5,7-(tetramethyl)-2,4,6, 8,9,10-(hexathia)adamantane. Inorg. Chim. Acta 1982, 64, L83–L84. [Google Scholar] [CrossRef]
- Cox, M.J.; Tiekink, E.R.T. The crystal and molecular structures of A(S2COCH2CH2CMe3)3, A = As(III), Sb(III) and Bi(III). Zeit. Krist. 1998, 213, 487–492. [Google Scholar] [CrossRef]
- Tran, T.T.P.; Ould, D.M.C.; Wilkins, L.C.; Wright, D.S.; Melen, R.L.; Rawson, J.M. Supramolecular aggregation in dithia-arsoles: Chlorides, cations and N-centred paddlewheels. CrystEngComm 2017, 19, 4696–4699. [Google Scholar] [CrossRef]
- Green, J.P.; Cha, H.; Shahid, M.; Creamer, A.; Durrant, J.R.; Heeney, M. Dithieno[3,2-b:2′,3′-d]arsole-containing conjugated polymers in organic photovoltaic devices. Dalton Trans. 2019, 48, 6676–6679. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, H.P.S.; Kori, K.; Shaik, N.M.; Mathur, S.; Huch, V. Dialkyldithiocarbamate derivatives of toluene-3,4-dithiolato arsenic(III) and -bismuth(III): Synthetic, spectral and single crystal X-ray structural studies. Polyhedron 2005, 24, 89–95. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R.; Yamashita, K. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like! J. Comput. Chem. 2018, 39, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.-D.; Li, F. Wuji Huaxue Xuebao. Chin. J. Inorg. Chem. 2007, 23, 451. [Google Scholar]
- Gieren, A.; Betz, H.; Hübner, T.; Lamm, V.; Herberhold, M.; Guldner, K. Organylarsino-substituierte Schwefeldiimide: Die Kristallstrukturanalysen von 3, 7-Di-t-butyl-3H, 7H,-1λ4, 5λ4, 2, 4, 6, 8, 3, 7-dithiatetrazadiarsocin und Bis(diphenylarsino)schwefeldiimid. Z. Anorg. Allg. Chem. 1984, 513, 160–174. [Google Scholar] [CrossRef]
- Allen, D.W.; Coppola, J.C.; Kennard, O.; Mann, F.G.; Motherwell, W.D.S.; Watson, D.G. Preparation, reactions, and structure of 5,10-epoxy-, 5,10-epithio-, 5,10-episeleno-, and 5,10-epitelluro-5,10-dihydroarsanthren. J. Chem. Soc. C 1970, 810–815. [Google Scholar] [CrossRef]
- DeGraffenreid, A.J.; Feng, Y.; Wycoff, D.E.; Morrow, R.; Phipps, M.D.; Cutler, C.S.; Ketring, A.R.; Barnes, C.L.; Jurisson, S.S. Dithiol Aryl Arsenic Compounds as Potential Diagnostic and Therapeutic Radiopharmaceuticals. Inorg. Chem. 2016, 55, 8091–8098. [Google Scholar] [CrossRef]
- Andrews, P.C.; Raston, C.L.; Tolhurst, V.-A.; Skelton, B.W.; White, A.H. [2 + 2] Cycloaddition derivatives of stiba(III)alkene (Sb=C) and arsa(III)imine (As=N) intermediates. Chem. Commun. 1998, 575–576. [Google Scholar] [CrossRef]
- Raston, C.L.; Skelton, B.W.; Tolhurst, V.-A.; White, A.H. Geminal arsa(III)amide and trisubstituted antimony and bismuth amides from the sterically hindered, N-functionalised amido ligand [{2-(6-Me)C5H3N}NSiMe3]−. J. Chem. Soc. Dalton Trans. 2000, 1279–1285. [Google Scholar] [CrossRef]
- Burford, N.; Parks, T.M.; Bakshi, P.K.; Cameron, T.S. The First Cycloaddition Reactions of Dimeric Arsenium Cations. Angew. Chem. Int. Ed. Engl. 1994, 33, 1267–1268. [Google Scholar] [CrossRef]
- Grindstaff, W.K.; Cordes, A.W.; Fair, C.K.; Perry, R.W.; Handy, L.B. Molecular structure of 10-phenoxarsine sulfide, an organoarsenical with planar phenoxarsine moieties. Inorg. Chem. 1972, 11, 1852–1855. [Google Scholar] [CrossRef]
- Nizamov, I.; Sorokina, T.Y.; Matseevskii, A.; Krivolapov, D.; Gubaidullin, A.; Litvinov, I.; Abalonin, B.; Batyeva, E.; Alfonsov, V. Synthesis, molecular and crystal structure, and properties of 10-propylthio-5,10-dihydrophenarsazine. Heteroat. Chem. 2000, 11, 287–291. [Google Scholar] [CrossRef]
- Mlateček, M.; Dostál, L.; Růžičková, Z.; Honzíček, J.; Holubová, J.; Erben, M. The first scorpionate ligand based on diazaphosphole. Dalton Trans. 2015, 44, 20242–20253. [Google Scholar] [CrossRef] [PubMed]
- Dietzel, P.D.C.; Kremer, R.K.; Jansen, M. Superoxide Compounds of the Large Pseudo-Alkali-Metal Ions Tetramethylammonium, -Phosphonium, and -Arsonium. Chem. Asian J. 2007, 2, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.K.; Wilson, P.S.; Nancekivell, A. A re-investigation of arsenoacetic acid, (AsCH2COOH)n. J. Organomet. Chem. 2013, 745–746, 80–85. [Google Scholar] [CrossRef]
- Schwendtner, K.; Kolitsch, U. Three new acid M+ arsenates and phosphates with multiply protonated As/PO4 groups. Acta Crystallogr. C 2019, 75, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Mezei, G. Incarceration of one or two phosphate or arsenate species within nanojars, capped nanojars and nanohelicages: Helical chirality from two closely-spaced, head-to-head PO43− or AsO43− ions. Chem. Commun. 2015, 51, 10341–10344. [Google Scholar] [CrossRef]
- Naka, K.; Nakahashi, A.; Arita, M.; Chujo, Y. Stoichiometric Complexation of Palladium(II) with 1,4-Dihydro-1,4-diarsinine as a Rigid Symmetrical Bidentate Ligand. Organometallics 2008, 27, 1034–1036. [Google Scholar] [CrossRef]
- Schwan, K.-C.; Adolf, A.; Thoms, C.; Zabel, M.; Timoshkin, A.Y.; Scheer, M. Selective halogenation at the pnictogen atom in Lewis-acid/base-stabilised phosphanylboranes and arsanylboranes. Dalton Trans. 2008, 5054–5058. [Google Scholar] [CrossRef]
- Kihara, H.; Tanaka, S.; Imoto, H.; Naka, K. Phenyldiquinolinylarsine as a Nitrogen-Arsenic-Nitrogen Pincer Ligand. Eur. J. Inorg. Chem. 2020, 2020, 3662–3665. [Google Scholar] [CrossRef]
- Ehlers, F.; Strumberger, J.M.; Mohr, F. Keto-stabilized Arsenic Ylides and their Coordination to Gold(I). Z. Anorg. Allg. Chem. 2020, 646, 889–894. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, R.; Fujii, T.; Imoto, H.; Naka, K. Dinuclear Gold(I) Chloride Complexes with Diarsine Ligands. Eur. J. Inorg. Chem. 2021, 2021, 217–222. [Google Scholar] [CrossRef]
- Abalonin, B.; Nizamov, I.; Krivolapov, D.; Nizamov, I.n.; Khaibullin, R.; Al’metkina, L.; Batyeva, E.; Litvinov, I. The reaction of triphenlarsine oxide with ethyl lodo-acetate leading to triphenyl (carboethoxy)methylarsonium triiodide. Heteroat. Chem. 2004, 15, 482–485. [Google Scholar] [CrossRef]
- Roesky, H.W.; Noltemeyer, M.; Sheldrick, G.M. Synthesis and Structure of Trifluoroacetyldicyanomethanide. Zeit. Naturforsch. B 1985, 40, 883–885. [Google Scholar] [CrossRef]
- Klapötke, T.M.; Nöth, H.; Schütt, T.; Suter, M. Mixed Chloride/Azide Complexes of Arsenic and Antimony. Eur. J. Inorg. Chem. 2002, 2002, 2511–2517. [Google Scholar] [CrossRef]
- Lindquist, N.R.; Carter, T.G.; Cangelosi, V.M.; Zakharov, L.N.; Johnson, D.W. Three’s company: Co-crystallization of a self-assembled S4 metallacyclophane with two diastereomeric metallacycle intermediates. Chem. Commun. 2010, 46, 3505–3507. [Google Scholar] [CrossRef]
- Fontenot, S.A.; Cangelosi, V.M.; Pitt, M.A.W.; Sather, A.C.; Zakharov, L.N.; Berryman, O.B.; Johnson, D.W. Design, synthesis and characterization of self-assembled As2L3 and Sb2L3 cryptands. Dalton Trans. 2011, 40, 12125–12131. [Google Scholar] [CrossRef]
- Cangelosi, V.M.; Zakharov, L.N.; Fontenot, S.A.; Pitt, M.A.; Johnson, D.W. Host–guest interactions in a series of self-assembled As2L2Cl2 macrocycles. Dalton Trans. 2008, 3447–3453. [Google Scholar] [CrossRef]
- Cangelosi, V.M.; Carter, T.G.; Zakharov, L.N.; Johnson, D.W. Observation of reaction intermediates and kinetic mistakes in a remarkably slow self-assembly reaction. Chem. Commun. 2009, 5606–5608. [Google Scholar] [CrossRef]
- Cangelosi, V.M.; Sather, A.C.; Zakharov, L.N.; Berryman, O.B.; Johnson, D.W. Diastereoselectivity in the Self-Assembly of As2L2Cl2 Macrocycles is Directed by the As−π Interaction. Inorg. Chem. 2007, 46, 9278–9284. [Google Scholar] [CrossRef]
- Bendle, M.; Kuzora, R.; Manners, I.; Rupar, P.; Schulz, A.; Villinger, A. Synthesis and Oligomerization of Cyclodiphosph(V)azene Adducts. Eur. J. Inorg. Chem. 2014, 2014, 1735–1744. [Google Scholar] [CrossRef]
- Chen, X.; Gamer, M.T.; Roesky, P.W. Synthesis and structural characterization of arsinoamides—Early transition metal (Zr and Hf) and main group metal (Al, In, Sn, and Pb) complexes. Dalton Trans. 2019, 48, 15207–15211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, S.; Khasnis, D.V.; Zhang, H.; Small, A.C.; Fan, M.; Lattman, M. Insertion of One and Two Arsenic Atoms into Calix [4]arenes. Inorg. Chem. 1995, 34, 3610–3615. [Google Scholar] [CrossRef]
- Ansari, M.A.; Ibers, J.A.; O’Neal, S.C.; Pennington, W.T.; Kolis, J.W. Solution chemistry of arsenic selenides: Synthesis, spectroscopy and the x-ray structures of [PPh4]2[AsnSe6], n = 2,4. Polyhedron 1992, 11, 1877–1881. [Google Scholar] [CrossRef]
- Rijnberk, H.; Näther, C.; Bensch, W. Electronic and magnetic properties of V5S8. Z. Kristall.-New Cryst. Str. 1998, 213, 588–590. [Google Scholar]
- Blachnik, R.; Fehlker, A. Crystal structure of bis-dipropylammonium hexathiotetraarsenate, [(C3H7)2NH2]2[AS4S6]. Z. Kristall.-New Cryst. Str. 2001, 216, 223–224. [Google Scholar] [CrossRef]
- Yang, D.-D.; Song, Y.; Zhang, B.; Shen, N.-N.; Xu, G.-L.; Xiong, W.-W.; Huang, X.-Y. Exploring the Surfactant–Thermal Synthesis of Crystalline Functional Thioarsenates. Cryst. Growth Des. 2018, 18, 3255–3262. [Google Scholar] [CrossRef]
- Gupta, A.K.; Akkarasamiyo, S.; Orthaber, A. Rich Coordination Chemistry of π-Acceptor Dibenzoarsole Ligands. Inorg. Chem. 2017, 56, 4504–4511. [Google Scholar] [CrossRef]
- Kromm, A.; Sheldrick, W.S. (Terpyridine)manganese(II) Coordination Polymers with Thio- and Selenidoarsenate(III) Ligands: Coligand Influence on the Chalcogenidoarsenate(III) Species and Coordination Mode. Z. Anorg. Allg. Chem. 2008, 634, 2948–2953. [Google Scholar] [CrossRef]
- Kamenar, B.; Bruvo, M.; Butumović, J. Structures involving unshared electron pair. The Crystal Structures of As(OCOCH3)3 and As2O(OCOCH3)4. Z. Anorg. Allg. Chem. 1993, 619, 943–946. [Google Scholar] [CrossRef]
- Power, M.B.; Ziller, J.W.; Barron, A.R. Reactivity of organogallium peroxides: Oxidation of phosphines, phosphites, and triphenylarsine. X-ray crystal structures of (tert-Bu)2Ga(O-tert-Bu)(O=AsPh3), (tert-Bu)2Ga(μ-O-tert-Bu)(μOO-tert-Bu)Ga(tert-Bu)2 and [cyclic] (tert-Bu)2Ga[(O)P(Ph)2CH(O)P(Ph)2]. Organometallics 1993, 12, 4908–4916. [Google Scholar] [CrossRef]
- Hitchcock, P.B.; Johnson, J.A.; Nixon, J.F. Synthesis and Structure of the Arsaalkyne Tetramer (AsCtBu)4 and its Fe(CO)4 Derivative. Angew. Chem. Int. Ed. Engl. 1993, 32, 103–104. [Google Scholar] [CrossRef]
- Alcock, N.W.; Ravindran, M.; Willey, G.R. Preparations and Structural Correlations for the Complexes if MIII Halides (M = As, Sb, Bi) with Crown Ethers: Structures of AsCl3.12-Crown-4, AsCl3.15-Crown-5, SbCl3.12-Crown-4, and BiCl3.15-Crown-5 an an Evaluation of Relative Binding Strengths for Crown Ligands. Acta Crystallogr. B 1993, 49, 507–514. [Google Scholar]
- Borgsen, B.; Weller, F.; Dehnicke, K. Über die Kronenetherkomplexe [K(15-Krone-5)2]3[Sb3I12], [TeCl3(15-Krone-5)][TeCl5] und [TeCl3(15-Krone-5)]2[TeCl6]. Z. Anorg. Allg. Chem. 1991, 596, 55–61. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M. DFT-B3LYP, NPA-, and QTAIM-based study of the physical properties of [M(II)(H2O)2(15-crown-5)](M= Mn, Fe, Co, Ni, Cu, Zn) complexes. J. Phys. Chem. A 2011, 115, 5592–5601. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, P.R.; Varadwaj, A.; Peslherbe, G.H.; Marques, H.M. Conformational Analysis of 18-Azacrown-6 and Its Bonding with Late First Transition Series Divalent Metals: Insight from DFT Combined with NPA and QTAIM Analyses. J. Phys. Chem. A 2011, 115, 13180–13190. [Google Scholar] [CrossRef]
- Faggiani, R.; Gillespie, R.J.; Vekris, J.E. X-Ray diffraction study of Te4S4(AsF6)2·SO2; an electron-rich S4N4-type cage. J. Chem. Soc. Chem. Commun. 1988, 902–904. [Google Scholar] [CrossRef]
- Awere, E.G.; Passmore, J.; White, P.S.; Klapötke, T. The preparation, characterization in solution of the 7π radical 1,2,4-triseleno-3,5-diazolylium and the 6π(1,2,4-triseleno-3,5-diazolium)2+ cations, and the X-ray crystal structures of (SeNSeNSe)2(AsF6)2 and SeNSeNSe(AsF6)2 containing the first stable binary selenium–nitrogen species. J. Chem. Soc., Chem. Commun. 1989, 1415–1417. [Google Scholar] [CrossRef]
- Kennard, O.; Wampler, D.L.; Coppola, J.C.; Motherwell, W.D.S.; Mann, F.G.; Watson, D.G.; MacGillavry, C.H.; Stam, C.H.; Benci, P. Crystal and molecular structure of 5,10-epoxy-, 5,10-epithio-, 5,10-episeleno-, and 5,10-epitelluro-5,10-dihydroarsanthren. J. Chem. Soc. C 1971, 1511–1515. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, J.; Chen, J.; Pan, Y.; Zhang, Y.; Jia, D. Novel Polyselenidoarsenate and Selenidoarsenate: Solvothermal Synthesis and Characterization of [Co(phen)3][As2Se2(μ-Se3)(μ-Se5)] and [Co(phen)3]2[As8Se14]. Inorg. Chem. 2011, 50, 2288–2293. [Google Scholar] [CrossRef]
- Chen, R.; Tang, W.; Jiang, W.; Zhang, Y.; Jia, D. Solvent effect on condensation of pyramidal [AsSe3]3–: Solvothermal syntheses of new selenidoarsenates containing transition metal(II) complexes with 1,10-phenanthroline. J. Coord. Chem. 2012, 65, 3316–3328. [Google Scholar] [CrossRef]
- Mercier, H.P.; Angilella, V.E.; Belin, C.H. Arsenic-selenium heteropoylanions—Reaction-mechanisms if their formation—Structural characterization in solution and solid-state. New J. Chem. 1990, 14, 121–128. [Google Scholar]
- Zhao, T.; Zhou, J.; Wang, Q.; Jena, P. Like charges attract? J. Phys. Chem. Lett. 2016, 7, 2689–2695. [Google Scholar] [CrossRef] [PubMed]
- Weis, P.; Hettich, C.; Kratzert, D.; Krossing, I. Homoleptic Silver Complexes of the Cages P4Se3 and As4S3. Eur. J. Inorg. Chem. 2019, 2019, 1657–1668. [Google Scholar] [CrossRef] [Green Version]
- Schiferl, D.; Barrett, C.S. The crystal structure of arsenic at 4.2, 78 and 299 °K. J. Appl. Cryst. 1969, 2, 30–36. [Google Scholar] [CrossRef]
- Smith, P.M.; Leadbetter, A.J.; Apling, A.J. The structures of orthorhombic and vitreous arsenic. Phil. Mag. J. Theor. Exp. Appl. Phys. 1975, 31, 57–64. [Google Scholar] [CrossRef]
- Kamal, C.; Ezawa, M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 2015, 91, 085423. [Google Scholar] [CrossRef] [Green Version]
- Jamdagni, P.; Thakur, A.; Kumar, A.; Ahluwalia, P.K.; Pandey, R. Two dimensional allotropes of arsenene with a wide range of high and anisotropic carrier mobility. Phys. Chem. Chem. Phys. 2018, 20, 29939–29950. [Google Scholar] [CrossRef] [Green Version]
Local Most Extrema on the Surface of Specific Atom/Bond | AsF3 | AsCl3 | AsBr3 | AsI3 | ||||
---|---|---|---|---|---|---|---|---|
MP2(Full) | ωB97XD | MP2(Full) | ωB97XD | MP2(Full) | ωB97XD | MP2(Full) | ωB97XD | |
Vs,min On X (lateral portions) | −15.0 | −15.4 | −6.9 | −7.5 | −6.1 | −6.7 | −4.7 | −5.4 |
Vs,min on As (opposite to the triangular face formed by three X atoms) | 18.1 | 19.4 | 12.8 | 14.8 | 11.5 | 13.7 | 9.4 | 10.1 |
VS,max (on As-X bond extension) | - | - | 7.3 | 7.4 | 11.8 | 12.4 | 17.1 | 19.3 |
VS,max (on X-As bond extension) | 40.3 | 40.7 | 28.7 | 30.3 | 25.0 | 27.0 | 20.4 | 21.9 |
VS,max (on the centroid of the triangular face formed by three X atoms) | 3.9 | 4.1 | 1.0 | 1.1 | 1.1 | 1.4 | 1.6 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varadwaj, A.; Varadwaj, P.R.; Marques, H.M.; Yamashita, K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. Molecules 2022, 27, 3421. https://doi.org/10.3390/molecules27113421
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. Molecules. 2022; 27(11):3421. https://doi.org/10.3390/molecules27113421
Chicago/Turabian StyleVaradwaj, Arpita, Pradeep R. Varadwaj, Helder M. Marques, and Koichi Yamashita. 2022. "The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor" Molecules 27, no. 11: 3421. https://doi.org/10.3390/molecules27113421
APA StyleVaradwaj, A., Varadwaj, P. R., Marques, H. M., & Yamashita, K. (2022). The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. Molecules, 27(11), 3421. https://doi.org/10.3390/molecules27113421