Efficient Synthesis of 2-Aminopyridine Derivatives: Antibacterial Activity Assessment and Molecular Docking Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Procedures
2.2. Antimicrobial Assay
2.3. Molecular Docking Studies
2.4. ADMET and Drug-Likeness Prediction
3. Materials and Methods
3.1. General Synthesis of Enaminones 1a–c
- 3-(Dimethylamino)−1-phenylprop-2-en−1-one 1a
- 3-(Dimethylamino)−1-(4-methoxyphenyl)prop-2-en−1-one 1b
- 3-(Dimethylamino)−1-p-tolylprop-2-en−1-one 1c
3.2. General Synthesis of 3-Cyano-2aminopyridones 2a–l
- 2-Phenethylamino-4-phenyl-nicotinonitrile 2a
- 2-(Benzylamino)-4-phenylpyridine-3-carbonitrile 2b
- 2-(cyclohexylamino)-4-phenylnicotinonitrile 2c
- 2-(Butylamino)-4-phenylnicotinonitrile 2d
- 4-(4-Methoxy-phenyl)-2-phenethylamino-nicotinonitrile 2e
- 2-(Benzylamine)-4-(4-methoxyphenyl)nicotinonitrile 2f
- 2-Cyclohexylamino-4-(4-methoxy-phenyl)-nicotinonitrile 2g
- 2-(Butylamino)-4-(4-methoxyphenyl)nicotinonitrile 2h
- 2-Phenethylamino-4-p-tolyl-nicotinonitrile 2i
- 2-(Benzylamine)-4-p-tolylnicotinonitrile 2j
- 2-(Cyclohexylamino)-4-p-tolylnicotinonitrile 2k
- 2-Butylamino-4-p-tolyl-nicotinonitrile 2l
3.3. Antimicrobial Assay
- Microorganism Target and Growth Conditions
- Disc-Diffusion Assay
- Minimum Inhibitory Concentration (MIC)
3.4. Ligand and Target Preparations
- Docking Protocol
- Protein-Ligand Pose and Affinity Predictions
- (1)
- The low energy score of the complex indicates that the complex is stable;
- (2)
- (3)
- The high number of interactions means that the stability of the complex is increased;
- (4)
- (5)
- ADME-T Prediction and Physicochemical properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Comins, D.L. Synthesis of MAPA Reagents and 2-Alkyl(aryl)aminopyridines from 2-Bromopyridine Using the Goldberg Reaction. Molecules 2022, 27, 1833. [Google Scholar] [CrossRef] [PubMed]
- El-Zemity, S.R. Antimicrobial activity of some 2-amino-5-substituted pyridine derivatives. Arch. Phytopathol. Pflanzenschutz 2011, 44, 381–389. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, C.; Yao, Y.; Wei, L.; Feng, Z.; Deng, L.; Song, Y. 3-(Piperidin-4-ylmethoxy) pyridine-containing compounds are potent inhibitors of lysine-specific demethylase. J. Med. Chem. 2016, 5, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, R.A.; Neelakanta, R.N.; Rajendra, P.Y. Anti-inflammatory, Analgesic and antimicrobial activity studies Novel 4,6-disubstituted-2-amino-3-cyanopyridines. J. Med. Chem. 2017, 18, 7835–7849. [Google Scholar]
- Huard, K.; Ahn, K.; Amor, P. Discovery of fragment-derived small molecules for invivo inhibition of ketohexokinase (KHK). J. Med. Chem. 2017, 60, 7835–7849. [Google Scholar] [CrossRef]
- Kang, S.; Li, H.; Tang, W.; Martásek, P.; Roman, L.J.; Poulos, T.L.; Silverman, R.B. 2-Aminopyridines with a Truncated Side Chain to Improve Human Neuronal Nitric Oxide Synthase Inhibitory Potency and Selectivity. J. Med. Chem. 2015, 58, 5548–5560. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Facts about Antibiotic Resistance and Antibiotic Prescribing: Attitudes, Behaviors, Trends, and Cost. Available online: http://www.cdc.gov/getsmart/community/about/fast-facts.html (accessed on 21 April 2022).
- Kibou, Z.; Cheikh, N.; Choukchou-Braham, N.; Mostefa-Kara, B.; Benabdellah, M.; Villemin, D.A. New Route for the synthesis of 2-Aminopyridines. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2011, 2, 121–126. [Google Scholar]
- Kibou, Z.; Cheikh, N.; Villemin, D.; Choukchou-Braham, N. A rapid synthesis of highly functionalized 2-pyridones and 2-aminopyridines via a microwave-assisted multicomponent reaction. J. Mater. Environ. Sci. 2016, 7, 3061–3067. [Google Scholar]
- Kibou, Z.; Villemin, D.; Lohier, J.F.; Cheikh, N.; Bar, N.; Choukchou-Braham, N. Easy solventless synthesis of new mono and bis amino-5H-chromeno [3,4-c] pyridin-5-one derivatives. Tetrahedron 2016, 72, 1653–1661. [Google Scholar] [CrossRef]
- Belhadj, F.; Kibou, Z.; Cheikh, N.; Choukchou-Braham, N.; Villemin, D. Convenient access to new 4-substitutedaminopyrido[2,3-d]pyrimidine derivatives. Tetrahedron Lett. 2015, 56, 5999–6002. [Google Scholar] [CrossRef]
- Nouali, F.; Kibou, Z.; Boukoussa, B.; Choukchou-Braham, N.; Bengueddach, A.; Villemin, D.; Hamachi, R. Efficient multicomponent synthesis of 2-aminopyridines catalyzed by basic mesoporous materials. Res. Chem. Intermed. 2020, 46, 3179–3191. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, L.; Calvo, J. El problemacreciente de la resistenciaantibióticaenbacilos gram negativos: Situaciónactual. Enferm. Infecc. Microbiol. Clin. 2010, 28, 25–31. [Google Scholar] [PubMed]
- Chikhalia, K.H.; Patel, M.J. Design, synthesis and evaluation of some 1,3,5-triazine urea and thiourea derivatives as antimicrobial agents. J. Enzyme Inhib. Med. Chem. 2009, 24, 960–966. [Google Scholar] [CrossRef]
- Kuperkar, K.; Modi, J.; Patel, K. Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical Gemini surfactants. J. Surfactants Deterg. 2012, 15, 107–115. [Google Scholar] [CrossRef]
- Imberty, A.; Hardman, K.D.; Carver, J.P.; Perez, S. Molecular modeling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1991, 1, 631–642. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Elshaier, Y.A.; Barakat, A.; Al-Qahtany, B.M.; Al-Majid, A.M.; Al-Agamy, M.H. Synthesis of pyrazole-thiobarbituric acid derivatives: Antimicrobial activity and docking studies. Molecules 2016, 21, 1337. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Paneth, A.; Trojanowski, D.; Paneth, P.; Zakrzewska-Czerwińska, J.; Stączek, P. Thiosemicarbazide Derivatives Decrease the ATPase Activity of Staphylococcus aureus Topoisomerase IV, Inhibit Mycobacterial Growth, and Affect Replication in Mycobacterium smegmatis. Int. J. Mol. Sci. 2021, 22, 3881. [Google Scholar] [CrossRef]
- Rahman, M.; Browne, J.J.; Van Crugten, J.; Hasan, M.; Liu, L.; Barkla, B.J. In silico, molecular docking and in vitro antimicrobial activity of the major rapeseed seed storage proteins. Front. Pharmacol. 2020, 11, 1340. [Google Scholar] [CrossRef]
- Pham, E.C.; Le Thi, T.V.; Phan, L.T.; Nguyen, H.G.T.; Le, K.N.; Truong, T.N. Design, synthesis, antimicrobial evaluations and in silico studies of novel pyrazol-5 (4H)-one and 1H-pyrazol-5-ol derivatives. Arab. J. Chem. 2022, 15, 103682. [Google Scholar] [CrossRef]
- Singh, D.; Bhattacharya, A.; Rai, A.; Dhaked, H.P.S.; Awasthi, D.; Ojima, I.; Panda, D. SB-RA-2001 inhibits bacterial proliferation by targeting FtsZ assembly. Biochemistry 2014, 53, 2979–2992. [Google Scholar] [CrossRef]
- Matsui, T.; Han, X.; Yu, J.; Yao, M.; Tanaka, I. Structural change in FtsZ induced by intermolecular interactions between bound GTP and the T7 loop. J. Biol. Chem. 2014, 289, 3501–3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, L.L.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 2018, 10, 148–157. [Google Scholar] [CrossRef]
- Rashid, M. Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorg. Chem. 2020, 96, 103576. [Google Scholar] [CrossRef]
- Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov. 2020, 15, 1473–1487. [Google Scholar] [CrossRef]
- CLSI M02-A10; Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard; CLSI-Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009.
- Stewart, J.J.P. Optimization of parameters for semi-empirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [Green Version]
- HyperChem. Molecular Modelling System; Version 8; Hypercube Inc.: Gainesville, FL, USA, 2009. [Google Scholar]
- Lu, J.; Patel, S.; Sharma, N.; Soisson, S.M.; Kishi, R.; Takei, M.; Fukuda, Y.; Lumb, K.J.; Singh, S.B. Structures of Kibdelomycin Bound to Staphylococcus aureus Gyrb and Pare Showed a Novel UShaped Binding Mode. ACS Chem. Biol. 2014, 9, 2023–2031. [Google Scholar] [CrossRef]
- Raymond, A.; Lovell, S.; Lorimer, D. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer. BMC Biotechnol. 2009, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Clément, G.; Slenzka, K. Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space; Springer: New York, NY, USA, 2006. [Google Scholar]
- Didierjean, C.; Tête-Favier, F. Introduction to Protein Science. Architecture, Function, and Genomics; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Molecular Operating Environment (MOE); 2014.09; Chemical Computing Group Inc.: Montreal, QC, Canada, 2015.
- Daoud, I.; Melkemi, N.; Salah, T.; Ghalem, S. Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Comput. Biol. Chem. 2018, 74, 304–326. [Google Scholar] [CrossRef] [PubMed]
- Chenafa, H.; Mesli, F.; Daoud, I.; Achiri, R.; Ghalem, S.; Neghra, A. In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation, and pharmacophore modeling. J. Biomol. Struct. Dyn. 2021, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Belkadi, A.; Kenouche, S.; Melkemi, N.; Daoud, I.; Djebaili, R. K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents. Struct. Chem. 2021, 32, 2235–2249. [Google Scholar] [CrossRef]
- Janiak, C. A critical account of n-n stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 21, 3885–3896. [Google Scholar] [CrossRef]
- Burley, A.S.K.; Petsko, G.A. Aromatic-Aromatic Interaction: A Mechanism of Protein Structure Stabilization. Science 1985, 229, 23–28. [Google Scholar] [CrossRef]
- Piovesan, D.; Minervini, G.; Tosatto, S.C.E. The RING 2.0 web server for high-quality residue interaction networks. Nucleic Acids Res. 2016, 44, W367–W374. [Google Scholar] [CrossRef] [PubMed]
- Bajda, M.; Więckowska, A.; Hebda, M.; Guzior, N.; Sotriffer, C.A.; Malawska, B. Structure-based search for new inhibitors of cholinesterases. Int. J. Mol. Sci. 2013, 14, 5608–5632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, W.; Wang, D.; Shen, Z.; Li, S.; Li, H. Multi-body interactions in molecular docking program devised with key water molecules in protein binding sites. Molecules 2018, 23, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasution, M.A.F.; Toepak, E.P.; Alkaff, A.H.; Tambunan, U.S.F. Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus Nucleocapsid (EBOV NP): A computational approach to discover new drug for combating Ebola. BMC Bioinform. 2018, 19, 419. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
Entry | R | Product | Yield (%) |
---|---|---|---|
1 | Ph | 86 | |
2 | 4-OCH3-C6H4- | 70 | |
3 | 4-OCH3-C6H4- | 80 |
Entry | Temperature (°C) | Time(h) | Yield (%) |
---|---|---|---|
1 | 25 | 24 | 0 |
2 | 40 | 24 | 20 |
3 | 60 | 6 | 49 |
4 | 80 | 3 | 75 |
Disc Charge 5 μg (Disc Diameter 6 mm) | Gentamycin 10 µg/Disk | Amph B 0.2 mg/Disk | ||||
---|---|---|---|---|---|---|
Microorganisms | 2a | 2b | 2c | 2d | ||
Bacillus cereus ATCC 10876 | - | - | 11.33 ± 0.57 | - | 22 | - |
Bacillus subtilis ATCC6633 | - | - | 13 ± 0 | - | 20 | - |
Enterococcus faecalis ATCC49452 | - | - | 8.66 ± 0.57 | - | 13 | - |
Staphylococcus aureus ATCC 25923 | - | - | 9.66 ± 0.57 | - | 33 | - |
Micrococcusluteus ATCC 9341 | - | - | 9 ± 1 | - | - | |
Listeria monocytogenes ATCC 15313 | - | - | 12 ± 1 | - | 12 | - |
Acinetobacterbaumanii ATCC19606 | - | - | - | - | 14 | - |
Pseudomonas aeruginosa ATCC27853 | - | - | - | - | 25 | - |
Salmonella typhimurium ATCC13311 | - | - | - | - | 26.5 | - |
Escherichia coli ATCC 25912 | - | - | - | - | 23 | - |
Candida albicans ATCC 10231 | - | - | - | - | - | 30 ± 0.0 |
Candida albicans ATCC 26790 | - | - | - | - | - | 32 ± 0.0 |
Microorganism Compounds | B. cereus ATCC 10876 | B. subtilis ATCC6633 | M. luteus ATCC 9341 | L. monocytogenes ATCC 15313 | S. aureus ATCC 25923 | E. faecalis ATCC49452 |
---|---|---|---|---|---|---|
2c MIC µg·mL−1 | 78 ± 0.000 | 39 ± 0.000 | 78 ± 0.000 | 156 ± 0.000 | 39 ± 0.000 | 78 ± 0.000 |
Gentamicine MIC µg·mL−1 | 0.625 | 5.2 ± 0.000 | 8 ± 0.000 | 2.21 ± 0.000 | 0,19 ± 0.000 | 0.78 ± 0.000 |
S. aureus (PDB ID: 4URM) | |||||||
---|---|---|---|---|---|---|---|
Compounds | Score (kcal/mol) | RMSD (Å) | Bonds between Atoms of Compounds and Active Site Residues | ||||
Atom of Compound | Involved Receptor Atoms | Involved Receptor Residues | Type of Interaction Bond | Distance (Å) | |||
2c | −5.532 | 1.655 | H | OE2 | GLU(A:58) | Conventional H-bond | 2.62 |
O | HG1 | THE(A:173) | ConventionalH-bond | 2.88 | |||
6-ring | HB2 | ASN(A:54) | Pi–Sigma | 2.38 | |||
6-ring | ILE(A:86) | Pi–Alkyl | 4.76 | ||||
C | C | PRO(A:87) | Alkyl | 4.62 | |||
KBD | −6.383 | 2.408 | H | OE1 | GLU(A:58) | ConventionalH-bond | 2.23 |
H | OD2 | ASP(A:81) | ConventionalH-bond | 2.08 | |||
H | OE1 | GLN(A:91) | ConventionalH-bond | 2.57 | |||
5-ring | HB2 | ASN(A:54) | Amide-Pi Stacked | 2.61 | |||
C | C | MET(A:94) | Alkyl | 4.64 | |||
C | C | ILE(A:86) | Alkyl | 4.81 | |||
B. Subtilis (PDB ID: 2RHL) | |||||||
Compounds | Score (kcal/mol) | RMSD (Å) | Bonds between Atoms of Compounds and Active Site Residues | ||||
Atom of Compound | Involved Receptor Atoms | Involved Receptor Residues | Type of Interaction Bond | Distance (Å) | |||
2c | −6.389 | 1.706 | N | H | GLY(A:110) | Conventional H-bond | 2.38 |
N | H | GLY(A:108) | ConventionalH-bond | 3.10 | |||
N | H | THE(A:109) | ConventionalH-bond | 3.10 | |||
C | 6-ring | PHE(A:183) | Pi–Alkyl | 5.18 | |||
6-ring | NH1 | ARG(A:143) | Pi–Cation | 3.96 | |||
GDP | −7.843 | 1.160 | O1B | H | GLY(A:110) | ConventionalH-bond | 1.90 |
O3B | H | GLY(A:108) | ConventionalH-bond | 1.96 | |||
H | OE2 | GLU(A:139) | ConventionalH-bond | 2.17 | |||
O3 | H | ARG(A:143) | ConventionalH-bond | 2.05 | |||
O6 | HD21 | ASN(A:25) | ConventionalH-bond | 2.06 | |||
6-ring | C | ALA(A:186) | Pi–Alkyl | 5.04 |
Entry | TPSA Å2 | n-ROTB | MW g/moL | MLog P | n-ON Acceptors | n-OHNH Donors | Rules | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
WLog P | Lipinski | Veber | Ghose | ||||||||
Range | <140 | <11 | <500 | ≤5 | <10 | <5 | ≤1 | ≤1 | ≤1 | ||
2c | 48.71 | 3 | 277.36 | 2.72 | 2 | 1 | Accepted | Accepted | Accepted | ||
4.17 | |||||||||||
ADME-T | Absorption | Distribution | Metabolism | Excretion | Toxicity | ||||||
Caco2 (10−6 cm/s) | HIA % | CNS (log PS) | BBB (log BB) | CYP1A2 inhibitor | CYP2C19 inhibitor | CYP2D6 substrate | Renal OCT2 substrate | Total Clearance (mL/min/kg) | AMES toxicity | hERG I/II Inhibitors | |
2c | 1.419 | 92.9 | −1.837 | 0.22 | No | Yes | No | Yes | 0.81 | No | No |
Targets PDB | Methods | Microorganisms | Chain | Native Ligand |
---|---|---|---|---|
4URM | X-ray diffraction | S. aureus | A,B,C,D | XAM |
2RHL | X-ray diffraction | B. subtilis | A,B | GDP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibou, Z.; Aissaoui, N.; Daoud, I.; Seijas, J.A.; Vázquez-Tato, M.P.; Klouche Khelil, N.; Choukchou-Braham, N. Efficient Synthesis of 2-Aminopyridine Derivatives: Antibacterial Activity Assessment and Molecular Docking Studies. Molecules 2022, 27, 3439. https://doi.org/10.3390/molecules27113439
Kibou Z, Aissaoui N, Daoud I, Seijas JA, Vázquez-Tato MP, Klouche Khelil N, Choukchou-Braham N. Efficient Synthesis of 2-Aminopyridine Derivatives: Antibacterial Activity Assessment and Molecular Docking Studies. Molecules. 2022; 27(11):3439. https://doi.org/10.3390/molecules27113439
Chicago/Turabian StyleKibou, Zahira, Nadia Aissaoui, Ismail Daoud, Julio A. Seijas, María Pilar Vázquez-Tato, Nihel Klouche Khelil, and Noureddine Choukchou-Braham. 2022. "Efficient Synthesis of 2-Aminopyridine Derivatives: Antibacterial Activity Assessment and Molecular Docking Studies" Molecules 27, no. 11: 3439. https://doi.org/10.3390/molecules27113439
APA StyleKibou, Z., Aissaoui, N., Daoud, I., Seijas, J. A., Vázquez-Tato, M. P., Klouche Khelil, N., & Choukchou-Braham, N. (2022). Efficient Synthesis of 2-Aminopyridine Derivatives: Antibacterial Activity Assessment and Molecular Docking Studies. Molecules, 27(11), 3439. https://doi.org/10.3390/molecules27113439