A Drug–Drug Multicomponent Crystal of Metformin and Dobesilate: Crystal Structure Analysis and Hygroscopicity Property
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Absorption Spectrum Characterization Analysis
2.2. The Single Crystal Structure Analysis
2.3. The Structure-Property Analysis
3. Materials and Methods
3.1. Materials
3.2. Methods of Synthesis
3.3. Methods of Absorption Spectrum Characterization Analysis
3.3.1. Fourier-Transform Infrared (FT-IR)
3.3.2. 1H NMR Spectroscopy Analysis
- 1H NMR (600 MHz, DMSO-d6) δ 9.80 (s, 1H), 8.80 (s, 1H), 7.18 (s, 2H), 6.87 (s, 1H), 6.64–6.50 (m, 6H), 2.92 (s, 6H).
- 1H NMR (600 MHz, DMSO-d6) δ 7.21 (s, 2H), 6.78 (s, 4H), 2.92 (s, 6H).
- 1H NMR (600 MHz, DMSO-d6) δ 9.80 (s, 1H), 8.80 (s, 1H), 6.89 (s, 1H), 6.60 (d, J = 17.7 Hz, 2H).
3.4. Methods of Single Crystal Structure Analysis
3.4.1. Single Crystal X-ray Diffraction (SCXRD)
3.4.2. Powder X-ray Diffraction (PXRD)
3.5. Methods of Structure-Property Analysis
3.5.1. Hirshfeld Surface Analysis
3.5.2. Dynamic Vapor Sorption (DVS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- International Diabetes Federation. IDF Diabetes Atlas. Available online: https://diabetesatlas.org/ (accessed on 4 March 2022).
- Morrish, N.J.; Wang, S.L.; Stevens, L.K.; Fuller, J.H.; Keen, H.; Grp, W.H.O.M.S. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 2001, 44, S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Mohammedi, K.; Woodward, M.; Marre, M.; Colagiuri, S.; Cooper, M.; Harrap, S.; Mancia, G.; Poulter, N.; Williams, B.; Zoungas, S.; et al. Comparative effects of microvascular and macrovascular disease on the risk of major outcomes in patients with type 2 diabetes. Cardiovasc. Diabetol. 2017, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.P. Evolution in the Chinese Diabetes Society Standards of Care for Type 2 Diabetes. Diabetes-Metab. Res. Rev. 2016, 32, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Buch, H.; Vinding, T.; la Cour, M.; Appleyard, M.; Jensen, G.B.; Nielsen, N.V. Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults—The Copenhagen City Eye Study. Ophthalmology 2004, 111, 53–61. [Google Scholar] [CrossRef]
- Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snoek, F.J. Barriers to good glycaemic control: The patient’s perspective. Int. J. Obes. 2000, 24, S12–S20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heintz, E.; Wirehn, A.B.; Peebo, B.B.; Rosenqvist, U.; Levin, L.A. Prevalence and healthcare costs of diabetic retinopathy: A population-based register study in Sweden. Diabetologia 2010, 53, 2147–2154. [Google Scholar] [CrossRef] [Green Version]
- Leite, E.B.; Mota, M.C.; de Abreu, J.R.; Cunha-Vaz, J.G. Effect of calcium dobesilate on the blood-retinal barrier in early diabetic retinopathy. Int. Ophthalmol. 1990, 14, 81–88. [Google Scholar] [CrossRef]
- Ribeiro, M.L.; Seres, A.I.; Carneiro, A.M.; Stur, M.; Zourdani, A.; Caillon, P.; Cunha-Vaz, J.G.; Grp, D.X.-R.S. Effect of calcium dobesilate on progression of early diabetic retinopathy: A randomised double-blind study. Graefes Arch. Clin. Exp. Ophthalmol. 2006, 244, 1591–1600. [Google Scholar] [CrossRef]
- Simo, R.; Ballarini, S.; Cunha-Vaz, J.; Ji, L.N.; Haller, H.; Zimmet, P.; Wong, T.Y. Non-Traditional Systemic Treatments for Diabetic Retinopathy: An Evidence-Based Review. Curr. Med. Chem. 2015, 22, 2580–2589. [Google Scholar] [CrossRef] [Green Version]
- Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 164, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ryu, C.; Munie, M.; Noorulla, S.; Rana, S.; Edwards, P.; Gao, H.; Qiao, X.X. Association of Metformin Treatment with Reduced Severity of Diabetic Retinopathy in Type 2 Diabetic Patients. J. Diabetes Res. 2018, 2018, 2801450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Q.Y.; Deng, G.; Chen, N.; Bai, Z.S.; Yuan, J.S.; Wu, G.H.; Wang, Y.W.; Wu, S.J. Metformin inhibits development of diabetic retinopathy through inducing alternative splicing of VEGF-A. Am. J. Transl. Res. 2016, 8, 3947–3954. [Google Scholar]
- Yanxia, L. Clinical effect of metformin combined with calcium dobesilate on diabetic retinopathy. China Med. 2017, 12, 1367–1370. [Google Scholar] [CrossRef]
- Umeda, Y.; Fukami, T.; Furuishi, T.; Suzuki, T.; Makimura, M.; Tomono, K. Molecular complex consisting of two typical external medicines: Intermolecular interaction between indomethacin and lidocaine. Chem. Pharm. Bull. 2007, 55, 832–836. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.R.; Yu, Q.H.; Dai, W.J.; Mei, X.F. Drug–Drug co-crystallization presents a new opportunity for the development of stable vitamins. Chem. Commun. 2016, 52, 3572–3575. [Google Scholar] [CrossRef]
- Putra, O.D.; Furuish, T.; Yonemochi, E.; Terada, K.; Uekusa, H. Drug–Drug Multicomponent Crystals as an Effective Technique to Overcome Weaknesses in Parent Drugs. Cryst. Growth Des. 2016, 16, 3577–3581. [Google Scholar] [CrossRef]
- Long, L.Y.; Hu, X.N.; Li, X.L.; Zhou, D.F.; Shi, Y.; Wang, L.G.; Zeng, H.F.; Yu, X.P.; Zhou, W.Y. The Anti-Breast Cancer Effect and Mechanism of Glimepiride-Metformin Adduct. Oncotargets Ther. 2020, 13, 3777–3788. [Google Scholar] [CrossRef]
- Stupp, S.I.; Palmer, L.C. Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chem. Mater. 2014, 26, 507–518. [Google Scholar] [CrossRef]
- Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76. [Google Scholar] [CrossRef]
- Desiraju, G.R. CH center dot center dot center dot O and other weak hydrogen bonds. From crystal engineering to virtual screening. Chem. Commun. 2005, 24, 2995–3001. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.F.; Jiang, L.; Gan, Z.J.; Guan, X.S.; Zhang, L.; Cai, L.H.; Hu, X.N. A Glimepiride-Metformin Multidrug Crystal: Synthesis, Crystal Structure Analysis, and Physicochemical Properties. Molecules 2019, 24, 3786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childs, S.L.; Stahly, G.P.; Park, A. The salt-cocrystal continuum: The influence of crystal structure on ionization state. Mol. Pharm. 2007, 4, 323–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schonherr, D.; Wollatz, U.; Haznar-Garbacz, D.; Hanke, U.; Box, K.J.; Taylor, R.; Ruiz, R.; Beato, S.; Becker, D.; Weitschies, W. Characterisation of selected active agents regarding pK(a) values, solubility concentrations and pH profiles by SiriusT3. Eur. J. Pharm. Biopharm. 2015, 92, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Alberta. Dobesilic Acid. Available online: https://go.drugbank.com/drugs/DB13529 (accessed on 27 April 2022).
- Harrison, W.T.A.; Swamy, M.T.; Yathirajan, H.S.; Ashok, M.A.; Narayana, B. Diethylammonium 2,5-dihydroxybenzenesulfonate. Acta Crystallogr. Sect. E-Struct. Rep. Online 2007, 63, O4870. [Google Scholar] [CrossRef]
- Childs, S.L.; Chyall, L.J.; Dunlap, J.T.; Coates, D.A.; Stahly, B.C.; Stahly, G.P. A metastable polymorph of metformin hydrochloride: Isolation and characterization using capillary crystallization and thermal microscopy techniques. Cryst. Growth Des. 2004, 4, 441–449. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. Crystengcomm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Hu, Y.F.; Cui, G.L.; Huang, W.C.; Yang, L.; Qi, Q.R. Synthesis, Structural Characterization and Stability Evaluation of Metformin Hydrosulfide. Chin. J. Org. Chem. 2019, 39, 1503–1508. [Google Scholar] [CrossRef]
- Jia, L.; Wu, S.; Gong, J. A tolbutamide–metformin salt based on antidiabetic drug combinations: Synthesis, crystal structure analysis and pharmaceutical properties. Acta Crystallogr. Sect. C Struct. Chem. 2019, 75, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. a-Found. Adv. 2008, 64, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Empirical formula | C10H17N5O5S |
Formula weight | 319.34 |
Temperature/K | 293(2) |
Crystal system | monoclinic |
Space group | C2/c |
a/Å | 10.87589(20) |
b/Å | 10.9043(2) |
c/Å | 24.6427(4) |
α/° | 90 |
β/° | 93.8645(16) |
γ/° | 90 |
Volume/Å3 | 2915.83(9) |
Z | 8 |
ρcalcg/cm3 | 1.455 |
μ/mm–1 | 2.268 |
F(000) | 1344.0 |
Crystal size/mm3 | 0.17 × 0.12 × 0.1 |
Radiation | CuKα (λ = 1.54184) |
2Θ range for data collection/° | 7.19 to 141.83 |
Index ranges | −13 ≤ h ≤ 10, −9 ≤ k ≤ 13, −28 ≤ l ≤ 30 |
Reflections collected | 5408 |
Independent reflections | 2759 [Rint = 0.0233, Rsigma = 0.0329] |
Data/restraints/paraMETers | 2759/1/219 |
Goodness-of-fit on F2 | 1.062 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0424, wR2 = 0.1181 |
Final R indexes [all data] | R1 = 0.0478, wR2 = 0.1250 |
Largest diff. peak/hole/e Å–3 | 0.34/–0.33 |
CCDC deposit number | 2161712 |
D-H···A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/◦ |
---|---|---|---|---|
O4-H4···O1 1 | 0.82 | 1.87 | 2.689(2) | 172.3 |
O5-H5···O2 | 0.82 | 1.93 | 2.665(3) | 148.6 |
N1-H1A···O2 2 | 0.81(3) | 2.32(3) | 3.075(3) | 156(3) |
N1-H1B···O2 3 | 0.83(3) | 2.32(3) | 3.085(2) | 155(2) |
N2-H2A···N3 4 | 0.89(3) | 2.23(3) | 3.123(3) | 174(2) |
N2-H2B···O3 3 | 0.848(17) | 2.149(18) | 2.988(2) | 170(3) |
N4-H4A···O4 5 | 0.82(3) | 2.25(3) | 2.929(3) | 140(3) |
N4-H4B···O3 | 0.85(3) | 2.26(3) | 3.061(3) | 159(3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Hu, X.; Cai, L. A Drug–Drug Multicomponent Crystal of Metformin and Dobesilate: Crystal Structure Analysis and Hygroscopicity Property. Molecules 2022, 27, 3472. https://doi.org/10.3390/molecules27113472
Jiang L, Hu X, Cai L. A Drug–Drug Multicomponent Crystal of Metformin and Dobesilate: Crystal Structure Analysis and Hygroscopicity Property. Molecules. 2022; 27(11):3472. https://doi.org/10.3390/molecules27113472
Chicago/Turabian StyleJiang, Lan, Xiangnan Hu, and Linhong Cai. 2022. "A Drug–Drug Multicomponent Crystal of Metformin and Dobesilate: Crystal Structure Analysis and Hygroscopicity Property" Molecules 27, no. 11: 3472. https://doi.org/10.3390/molecules27113472
APA StyleJiang, L., Hu, X., & Cai, L. (2022). A Drug–Drug Multicomponent Crystal of Metformin and Dobesilate: Crystal Structure Analysis and Hygroscopicity Property. Molecules, 27(11), 3472. https://doi.org/10.3390/molecules27113472