Foaming and Structural Studies on the Acidic Subunit of Amaranth 11S Globulin Modified with Antihypertensive Peptides as a Function of pH and Ionic Strength
Abstract
:1. Introduction
2. Results
2.1. Extraction and Purification of AAC and Their Modified Polypeptides
2.2. Spectroscopic Characterization: Circular Dichroism (CD)
2.3. Intrinsic Emission Fluorescence Spectroscopy (IF)
2.4. Protein Solubility
2.5. Foaming Properties
3. Discussion
3.1. Extraction and Purification of AAC and Their Modified Polypeptides
3.2. Spectroscopic Characterization: Circular Dichroism (CD)
3.3. Intrinsic Emission Fluorescence Spectroscopy (IF)
3.4. Protein Solubility
3.5. Foaming Properties
4. Materials and Methods
4.1. Expression and Extraction of AAC and Their Modified Polypeptides
4.2. Purification of AAC and Their Modified Polypeptides
4.3. Concentration and Detection Assays
4.4. Circular Dichroism Analysis
4.5. Intrinsic Emission Fluorescence Spectroscopy (IF)
4.6. Protein Solubility
4.7. Foaming Properties
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorinstein, S.; Pawelzik, E.; Delgado-Licon, E.; Haruenkit, R.; Weisz, M.; Trakhtenberg, S. Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. J. Sci. Food Agric. 2002, 82, 886–891. [Google Scholar] [CrossRef]
- Tumer, N.E.; Thanh, V.H.; Nielsen, N.C. Purification and characterization of mRNA from soybean seeds. Identification of glycinin and beta-conglycinin precursors. J. Biol. Chem. 1981, 256, 8756–8760. [Google Scholar] [CrossRef]
- Dickinson, C.D.; Hussein, E.H.; Nielsen, N.C. Role of posttranslational cleavage in glycinin assembly. Plant Cell. 1989, 1, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventureira, J.L.; Martínez, E.N.; Añón, M.C. Effect of acid treatment on structural and foaming properties of soy amaranth protein mixtures. Food Hydrocoll. 2012, 29, 272–279. [Google Scholar] [CrossRef]
- Bolontrade, A.J.; Scilingo, A.A.; Añón, M.C. Amaranth proteins foaming properties: Adsorption kinetics and foam formation—Part 1. Colloids Surf B Biointerfaces 2013, 105, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Marcone, M.F.; Kakuda, Y. A comparative study of the functional properties of amaranth and soybean globulin isolates. Food Nahr. 1999, 43, 368–373. [Google Scholar] [CrossRef]
- Tömösközi, S.; Gyenge, L.; Pelcéder, Á.; Varga, J.; Abonyi, T.; Lásztity, R. Functional properties of protein preparations from amaranth seeds in model system. Eur. Food Res. Technol. 2008, 226, 1343–1348. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Rana, J.C.; Kaur, A. Relationship between physicochemical and functional properties of amaranth (Amaranthus hypochondriacus) protein isolates. Int. J. Food Sci. 2014, 49, 541–550. [Google Scholar] [CrossRef]
- Tandang-Silvas, M.R.G.; Tecson-Mendoza, E.M.; Mikami, B.; Utsumi, S.; Maruyama, N. Molecular design of seed storage proteins for enhanced food physicochemical properties. Annu. Rev. Food Sci. Technol. 2011, 2, 59–73. [Google Scholar] [CrossRef]
- Kim, C.S.; Kamiya, S.; Sato, T.; Utsumi, S.; Kito, M. Improvement of nutritional value and functional properties of soybean glycinin by protein engineering. Protein Eng. Des. Sel. 1990, 3, 725–731. [Google Scholar] [CrossRef]
- Carrazco-Peña, L.; Osuna-Castro, J.A.; De León-Rodríguez, A.; Maruyama, N.; Toro-Vazquez, J.F.; Morales-Rueda, J.A.; Barba de la Rosa, A.P. Modification of solubility and heat-induced gelation of amaranth 11S globulin by protein engineering. J. Agric. Food Chem. 2013, 61, 3509–3516. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Hernández, E.; Morales-Camacho, J.I.; Fernández-Velasco, D.A.; Benítez-Cardoza, C.G.; Rosas-Cárdenas, F.D.F.; Luna-Suárez, S. The insertion of bioactive peptides at the C-terminal end of an 11S globulin changes the structural stability and improves the antihypertensive activity. Electron. J. Biotechnol. 2019, 37, 18–24. [Google Scholar] [CrossRef]
- Morales-Camacho, J.I.; Espinosa-Hernández, E.; Fernández-Velasco, D.A.; Benítez-Cardoza, C.G.; Luna-Suárez, S. Insertion of antihypertensive peptides in acidic subunit from amaranth 11S induces contrasting effects in stability. Appl. Microbiol. Biotechnol. 2018, 102, 9595–9606. [Google Scholar] [CrossRef] [PubMed]
- Morales-Camacho, J.I.; Paredes-Lopez, O.; Espinosa-Hernández, E.; Fernández Velasco, D.A.; Luna-Suárez, S. Expression, purification and thermal stability evaluation of an engineered amaranth protein expressed in Escherichia coli. Electron. J. Biotechnol. 2016, 22, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Mune, M.A.M.; Sogi, D.S. Emulsifying and foaming properties of protein concentrates prepared from cowpea and Bambara bean using different drying methods. Int. J. Food Prop. 2016, 19, 371–384. [Google Scholar] [CrossRef]
- Liu, C.M.; Peng, Q.; Zhong, J.Z.; Liu, W.; Zhong, Y.J.; Wang, F. Molecular and functional properties of protein fractions and isolate from cashew nut (Anacardium occidentale L.). Molecules 2018, 23, 393. [Google Scholar] [CrossRef] [Green Version]
- Dodero, V.I.; Quirolo, Z.B.; Sequeira, M.A. Biomolecular studies by circular dichroism. Front. Biosci. 2011, 16, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.J.; Sheng, X.R.; Pan, X.M. The effects of NaCl concentration and pH on the stability of hyperthermophilic protein Ssh10b. BMC Biochem. 2007, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Sreerama, N.; Woody, R.W. Structural composition of betaI- and betaII-proteins. Protein Sci. 2003, 12, 384–388. [Google Scholar] [CrossRef]
- Feng, J.; Berton-Carabin, C.C.; Ataç Mogol, B.; Schroën, K.; Fogliano, V. Glycation of soy proteins leads to a range of fractions with various supramolecular assemblies and surface activities. Food Chem. 2021, 14, 343. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, J.; Xiong, Y.L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. J. Agric. Food Chem. 2009, 57, 7576–7583. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Geng, R.; Zhao, J.; Chen, Q.; Kong, B. Structural and gel textural properties of soy protein isolate when subjected to extreme acid pH-shifting and mild heating processes. J. Agric. Food Chem. 2015, 63, 4853–4861. [Google Scholar] [CrossRef] [PubMed]
- Prak, K.; Naka, M.; Tandang-Silvas, M.R.G.; Kriston-Vizi, J.; Maruyama, N.; Utsumi, S. Polypeptide modification: An improved proglycinin design to stabilise oil-in-water emulsions. Protein Eng. Des. Sel. 2015, 28, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandang, M.R.G.; Atsuta, N.; Maruyama, N.; Adachi, M.; Utsumi, S. Evaluation of the solubility and emulsifying property of soybean proglycinin and rapeseed procruciferin in relation to structure modified by protein engineering. J. Agric. Food Chem. 2005, 53, 8736–8744. [Google Scholar] [CrossRef]
- Damodaran, S. Structure function relationship of food proteins. In Protein Functionality in Food Systems; Hettiarachchy, N.S., Ziegler, G.R., Eds.; Publisher: New York, NY, USA, 1994; p. 1e37. [Google Scholar]
- Narsimhan, G.; Xiang, N. Role of proteins on formation, drainage, and stability of liquid food foams. Annu. Rev. Food Sci. Technol. 2018, 9, 45–63. [Google Scholar] [CrossRef]
- Martin, S.R.; Schilstra, M.J. Circular Dichroism and Its Application to the Study of Biomolecules. Methods Cell Biol. 2008, 84, 263–293. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, P.; Kalaydzhiev, H.; Dessev, T.T.; Silva, C.L.V.; Rustad, T.; Chalova, V.I. Foaming properties of acid-soluble protein-rich ingredient obtained from industrial rapeseed meal. J. Food Sci. Technol. 2018, 55, 3792–3798. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Luna-Suárez, S.; Medina-Godoy, S.; Cruz-Hernández, A.; Paredes-López, O. Expression and characterization of the acidic subunit from 11S amaranth seed protein. Biotechnol. J. 2008, 3, 209–219. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004, 32, W668–W673. [Google Scholar] [CrossRef] [Green Version]
- Manavalan, P.; Johnson, W.C. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 1987, 167, 76–85. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Lakemond, C.M.; de Jongh, H.H.; Hessing, M.; Gruppen, H.; Voragen, A.G. Soy glycinin: Influence of pH and ionic strength on solubility and molecular structure at ambient temperatures. J. Agric. Food Chem. 2000, 48, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Gruener, L.; Ismond, M.A.H. Effects of acetylation and succinylation on the physicochemical properties of the canola 12S globulin. Part I Food Chem. 1997, 60, 357–363. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
Low Ionic Strength (2.9 g/L NaCl) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a λ max (nm) | b SCM (nm) | ||||||||||
Protein | pH 8 | pH 7 | pH 6 | pH 5 | pH 4 | pH 8 | pH 7 | pH 6 | pH 5 | pH 4 | |
AAC | 341 | 339 | 339 | 347 | 350 | 347.3 | 347.4 | 347.2 | 349.8 | 351 | |
AACM.1 | 337.5 | 340.5 | 343 | 347 | 348.5 | 346.6 | 347.6 | 348 | 350 | 350.6 | |
AACM.2 | 340 | 340.5 | 338.5 | 344.5 | 345.7 | 346.7 | 347.5 | 346.5 | 350 | 350.1 | |
AACM.3 | 341 | 342 | 341.6 | 341 | 344.7 | 347.8 | 347.9 | 346.4 | 346.9 | 348.9 | |
AACM.3.4 | 341 | 341 | 340.5 | 344.5 | 344.5 | 347.5 | 347.6 | 346.5 | 347.9 | 348.7 | |
AACM.4 | 340.5 | 340 | 339.5 | 347.5 | 348 | 346.8 | 346.7 | 346.6 | 349.8 | 350.7 | |
High ionic strength (17.6 g/L NaCl) | |||||||||||
λ max (nm) | SCM (nm) | ||||||||||
Protein | pH 8 | pH 7 | pH 6 | pH 5 | pH 4 | pH 8 | pH 7 | pH 6 | pH 5 | pH 4 | |
AAC | 339 | 341 | 339.5 | 341.5 | 342.7 | 346.1 | 346.8 | 346.4 | 347.1 | 349.9 | |
AACM.1 | 337 | 338.5 | 339 | 340.7 | 341.5 | 342.9 | 345.2 | 345.7 | 346 | 346.4 | |
AACM.2 | 340.5 | 340 | 342.7 | 343.2 | 344 | 346.1 | 346.3 | 347 | 348.1 | 348.7 | |
AACM.3 | 340 | 341 | 340 | 341 | 341.2 | 346.2 | 346.2 | 346.5 | 347.5 | 347.7 | |
AACM.3.4 | 340.5 | 340 | 340 | 341 | 341.4 | 346.7 | 346.7 | 347.4 | 347.5 | 348 | |
AACM.4 | 339 | 341 | 341.5 | 342 | 342.7 | 344.2 | 344.5 | 347.2 | 347.6 | 347.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Farrera, D.; Morales-Camacho, J.I.; Espinosa-Hernández, E.; Benítez-Cardoza, C.G.; Jara-Romero, G.J.; Luna-Suárez, S. Foaming and Structural Studies on the Acidic Subunit of Amaranth 11S Globulin Modified with Antihypertensive Peptides as a Function of pH and Ionic Strength. Molecules 2022, 27, 3538. https://doi.org/10.3390/molecules27113538
Aguilar-Farrera D, Morales-Camacho JI, Espinosa-Hernández E, Benítez-Cardoza CG, Jara-Romero GJ, Luna-Suárez S. Foaming and Structural Studies on the Acidic Subunit of Amaranth 11S Globulin Modified with Antihypertensive Peptides as a Function of pH and Ionic Strength. Molecules. 2022; 27(11):3538. https://doi.org/10.3390/molecules27113538
Chicago/Turabian StyleAguilar-Farrera, Dafnis, Jocksan I. Morales-Camacho, Edgar Espinosa-Hernández, Claudia G. Benítez-Cardoza, G. Janet Jara-Romero, and Silvia Luna-Suárez. 2022. "Foaming and Structural Studies on the Acidic Subunit of Amaranth 11S Globulin Modified with Antihypertensive Peptides as a Function of pH and Ionic Strength" Molecules 27, no. 11: 3538. https://doi.org/10.3390/molecules27113538
APA StyleAguilar-Farrera, D., Morales-Camacho, J. I., Espinosa-Hernández, E., Benítez-Cardoza, C. G., Jara-Romero, G. J., & Luna-Suárez, S. (2022). Foaming and Structural Studies on the Acidic Subunit of Amaranth 11S Globulin Modified with Antihypertensive Peptides as a Function of pH and Ionic Strength. Molecules, 27(11), 3538. https://doi.org/10.3390/molecules27113538