Chemical Constituents from the Flowers of Carthamus tinctorius L. and Their Lung Protective Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Characterization
2.2. Biological Activity
3. Experimental
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Computational Analysis
3.5. Evaluation of the Protective Activities toward BEAS-2B Cells
3.5.1. MTT Assay
3.5.2. Cellular Immunofluorescence Assay
3.5.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jinous, A.; Nastaran, K. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin. J. Integr. Med. 2013, 19, 153–159. [Google Scholar]
- Zhang, L.L.; Tian, K.; Tang, Z.H.; Chen, X.J.; Bian, Z.X.; Wang, Y.T.; Lu, J.J. Phytochemistry and pharmacology of Carthamus tinctorius L. Am. J. Chin. Med. 2016, 44, 197–226. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.L.; Zhang, H.M. Herbalogical study of Carthamus tinctorius. Chin. Med. Mat. 1996, 19, 202–203. [Google Scholar]
- Li, X.R.; Liu, J.; Peng, C.; Zhou, Q.M.; Liu, F.; Guo, L.; Xiong, L. Polyacetylene glucosides from the florets of Carthamus tinctorius and their anti-inflammatory activity. Phytochemistry 2021, 187, 112770. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.L.; Ju, D.T.; Velmurugan, B.K.; Ban, B.; Dung, T.D.; Hsieh, D.J.Y.; Viswanadha, V.P.; Cecilia, H.D.; Lin, Y.M.; Huang, C.Y. Carthamus tinctorius L. extract activates insulin-like growth factor-I receptor signaling to inhibit FAS-death receptor pathway and suppress lipopolysaccharides-induced H9c2 cardiomyoblast cell apoptosis. Environ. Toxicol. 2019, 34, 1320–1328. [Google Scholar] [CrossRef]
- Chen, X.M.; Wang, Y.F.; Wang, Y.F.; Zhang, L.J.; Zhang, L.J.; Gao, Y.J. Hydroxysafflor yellow A of Carthamus Tinctorius L., represses the malignant development of esophageal cancer cells via regulating NF-κB signaling pathway. Cell Biochem. Biophys. 2020, 78, 511–520. [Google Scholar] [CrossRef]
- Choi, E.M.; Kim, G.H.; Lee, Y.S. Carthamus tinctorius flower extract prevents H2O2-induced dysfunction and oxidative damage in osteoblastic MC3T3-E1 cells. Phytother. Res. 2010, 24, 1037–1041. [Google Scholar] [CrossRef]
- Wu, S.C.; Yue, Y.; Tian, H.; Li, Z.K.; Li, X.F.; He, W.; Ding, H. Carthamus red from Carthamus tinctorius L. exerts antioxidant and hepatoprotective effect against CCl4-induced liver damage in rats via the Nrf2 pathway. J. Ethnopharmacol. 2013, 148, 570–578. [Google Scholar] [CrossRef]
- Xue, X.Y.; Deng, Y.; Wang, J.; Zhou, M.T.; Liao, L.; Wang, C.; Peng, C.; Li, Y.X. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L. with good effect of alleviating atherosclerosis. Phytomedicine 2021, 91, 153694. [Google Scholar] [CrossRef]
- Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Investig. 2012, 122, 2731–2740. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Bai, C.X.; Wang, X.D. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev. Respir. Med. 2010, 4, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Guo, Y.; Wen, P.S.; Zhao, Z.Z.; Xie, J.; Yang, K.; Yang, Q.; Wang, J.F.; Deng, X.M. Three ingredients of Safflower alleviate acute lung injury and inhibit NET release induced by lipopolysaccharide. Mediat. Inflamm. 2020, 2020, 2720369. [Google Scholar] [CrossRef] [PubMed]
- Funari, C.S.; Funari, T.G.; Rinaldo, D.; Assunta, N.; Michela, F.; Anna, C.; Sonia, P.; Cosimo, P.; Maria, C.M.Y.; Giselda, D.; et al. Interconverting flavanone glucosides and other phenolic compoundsin Lippia salviaefolia Cham. ethanol extracts. Phytochemistry 2011, 72, 2052–2061. [Google Scholar] [CrossRef]
- Ito, H.; Kobayashi, E.; Li, S.H.; Hatano, T.; Sugita, D.; Kubo, N.; Shimura, S.; Itoh, Y.; Yoshida, T. Megastigmane glycosides and an acylated triterpenoid from Eriobotrya japonica. J. Nat. Prod. 2001, 64, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.G.; Zhang, Y.L.; Zeng, M.N.; Qi, M.; Ren, Y.J.; Liu, Y.L.; Zhao, X.; Zheng, X.K.; Feng, W.S. Renoprotective mono- and triterpenoids from the fruit of Gardenia jasminoides. J. Nat. Prod. 2020, 83, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Celso, A.; Ignacio, P.V.; Víctor, G.M.; Nuria, D.P.; Jesús, M.; Gloria, C.; Thomas, M.; Bastien, C.; Fernando, R.; Francisca, V.; et al. Non-geminal Aliphatic Dihalogenation Pattern in Dichlorinated Diaporthins from Hamigera fusca NRRL 35721. J. Nat. Prod. 2018, 81, 1488–1492. [Google Scholar]
- Li, Y.Z.; Zhang, J.L.; Liu, M.D. Chemical constituents of Peperomia cavaleriei. Chem. Nat. Compd. 2018, 54, 175–177. [Google Scholar] [CrossRef]
- Lee, S.J.; Jang, H.J.; Kim, Y.; Oh, H.M.; Lee, S.; Jung, K.; Kim, Y.H.; Lee, W.S.; Lee, S.W.; Rho, M.C. Inhibitory effects of IL-6-induced STAT3 activation of bioactive compounds derived from Salvia plebeian R.Br. Process. Biochem. 2016, 50, 2222–2229. [Google Scholar] [CrossRef]
- Tazawa, S.; Warashina, T.; Noro, T. Studies on the constituents of Brazilian propolis. II. Chem. Pharm. Bull. 1999, 47, 1388–1792. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.Z.; Zhou, Q.; Cao, X.C.; Meng, Y.J.; Jiang, G.W.; Xu, P. Two new flavonol derivatives from the whole plants of Centella asiatica and their cytotoxic activities. Phytochem. Lett. 2022, 47, 34–37. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.Y.; Li, R.T.; Yu, F.; Zhong, J.D. A new prenylated 3-benzoxepin derivative with anti-influenza a virus activity from Elsholtzia penduliflora. Nat. Prod. Res. 2022, 36, 719–725. [Google Scholar] [CrossRef]
- Lam, S.H.; Li, Y.C.; Kuo, P.C.; Hwang, T.L.; Yang, M.L.; Wang, C.C.; Tzen, J.T.C. Chemical constituents of Vigna luteola and their anti-inflammatory bioactivity. Molecules 2021, 24, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, T.O.; Seo, W.Y.; Lee, J.H.; Min, B.S.; Kim, J.A. Terpenoids from Citrus unshiu peels and their effects on NO production. Nat. Prod. Sci. 2020, 26, 176–181. [Google Scholar]
- Ren, J.; Qin, J.J.; Cheng, X.R.; Yan, K.S.; Jin, H.Z.; Zhang, W.D. Five new sesquiterpene lactones from Inula hupehensis. Arch. Pharm. Res. 2013, 36, 1319–1325. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Li, J.; Liu, Q.; Xun, M. A new flavonoid glycoside from Ligularia fischeri. Chem. Nat. Compd. 2019, 55, 638–641. [Google Scholar] [CrossRef]
- Yu, J.G.; Chen, R.Y.; Yao, Z.X.; Zhai, Y.F.; Yang, S.L.; Ma, J.L. Study on chemical constituents of Ganoderma capense. Acta Pharmaceutica Sinica 1990, 8, 612–616. [Google Scholar]
- Yang, B.; Dong, J.D.; Zhou, X.F.; Yang, X.W.; Lee, K.J.; Wang, L.S.; Si Zhang, S.; Liu, Y.H. Proline-containing dipeptides from a marine sponge of acallyspongia species. Helve. Chim. Acta 2009, 92, 1112–1117. [Google Scholar] [CrossRef]
- Li, T.; Wang, G.C.; Huang, X.J.; Ye, W.C. Whitmanoside A, a new α-pyrone glycoside from the Leech Whitmania pigra. Heterocycles 2013, 87, 1537–1543. [Google Scholar]
- He, T.; Zhao, Y.C.; Li, P.Y.; Weng, Z.Y.; Chang, Y.L.; Chen, X.Y.; Bai, S.J.; Liu, Z.Z.; She, G.M. Chemical constituents from anti-inflammatory and analgesic active fraction of Gaultheria leucocarpa var. yunnanensis. Chin. Tradit. Herbal. Drugs 2017, 48, 3469–3474. [Google Scholar]
- Wang, C.Y.; Han, L.; Kang, K.; Shao, C.L.; Wei, Y.X.; Zheng, C.J.; Guan, H.S. Secondary metabolites from green algae Ulva pertusa. chemistry of natural compounds. Chem. Nat. Compd. 2010, 46, 828–830. [Google Scholar] [CrossRef]
- Jens, H.; Bernd, S.; Neil, J.O.; Klaus, H. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc. Natl. Acad. Sci. USA 2001, 98, 753–758. [Google Scholar]
- Fan, X.L.; Liu, Y.L.; Cao, Y.G.; Ren, Y.J.; Wang, M.N.; Chen, X.; He, C.; Zheng, X.K.; Feng, W.S. Chemical constituents of the fresh roots of Huaizhong NO.1 Rehmannia glutinosa. Acta Pharm. Sin. 2021, 56, 3097–3103. [Google Scholar]
- Pham, T.H.; Tran, V.L.; Tran, V.S.; Tran, T.P.T. Chemical constituents of spinifex littoreus collected from the coast of Quang Nam province Vietnam. Chem. Nat. Compd. 2019, 55, 141–143. [Google Scholar]
- Huang, P.J.; Hao, M.M.; Gao, Q.; Ruan, J.Y.; Yang, S.C.; Liu, M.Y.; Chen, Q.; Zhang, Y.; Wang, T. Constituents of Morus alba var. multicaulis leaf improve lipid metabolism by activating the AMPK signaling pathway in HepG2 cells. J. Nat. Med. 2022, 76, 200–209. [Google Scholar] [CrossRef]
- Tian, X.R.; Tang, H.F.; Li, Y.S.; Lin, H.W.; Zhang, X.Y.; Feng, J.T.; Zhang, X. Studies on the chemical constituents from marine bryozoan Cryptosula pallasiana. Rec. Nat. Prod. 2015, 9, 628–632. [Google Scholar]
- Nidhal, N.; Zhou, X.M.; Chen, G.Y.; Zhang, B.; Han, C.R.; S, X.P. Chemical constituents of Leucas zeylanica and their chemotaxonomic significance. Biochem. Syst. Ecology 2020, 89, 104006. [Google Scholar] [CrossRef]
- Widyowati, R.; Sulistyowaty, M.I.; Uyen, N.H.; Sugimoto, S.; Yamano, Y.; Otsuka, H.; Matsunami, K. New methyl threonolactones and pyroglutamates of Spilanthes acmella (L.) L. and their bone formation activities. Molecules 2020, 25, 2500. [Google Scholar] [CrossRef]
- Ma, Q.G.; Yao, C.L.; Shi, H.L.; Xu, J.L.; Dai, H.X.; Fei, Z.Y.; Wu, Y.; Lu, T.; Wang, C. Targeted delivery of dexamethasone in acute pneumonia. Biomater. Sci. 2021, 9, 5569–5576. [Google Scholar] [CrossRef]
- Li, C.M.; Wang, X.L.; Kuang, M.Q.; Li, L.L.; Wang, Y.R.; Yang, F.X.; Wang, G.L. UFL1 modulates NLRP3 inflammasome activation and protects against pyroptosis in LPS-stimulated bovine mammary epithelial cells. Mol. Immunol. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Nishat, A.; Naif, A.; Sarah, S.; Heba, S.; Dina S, E.A.; Mohamed A, E.; Sabrin R, M.I.; Gamal A, M. Pulicaria petiolaris effectively attenuates lipopolysaccharide (LPS)-induced acute lung injury in mice. Arch. Biol. Sci. 2018, 70, 699–706. [Google Scholar]
- Chu, C.J.; Ren, H.L.; Xu, N.Y.; Xia, L.; Chen, D.F.; Zhang, J. Eupatorium lindleyanum DC. sesquiterpenes fraction attenuates lipopolysaccharide-induced acute lung injury in mice. J. Ethnopharmacol. 2016, 185, 263–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Chen, Y.; Liu, Q.P.; Shan, Z.F.; Zhao, Y.Y.; Li, M.; Wang, B.Y.; Zheng, X.K.; Feng, W.S. The protective effect and mechanism of catalpol on high glucose-induced podocyte injury. BMC. Comp. Altern. Med. Ther. 2019, 19, 244. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Zeng, M.N.; Zhang, Q.Q.; Zhang, B.B.; Cao, Y.G.; Wu, Y.Y.; Feng, W.S.; Zheng, X.K. Amentoflavone ameliorates memory deficits and abnormal autophagy in Aβ25-35-induced mice by mTOR signaling. Neurochem. Res. 2021, 46, 921–934. [Google Scholar] [CrossRef] [PubMed]
Position | 1 | Position | 2 | ||
---|---|---|---|---|---|
δH | δC | δH | δC | ||
2 | 5.30 (1H, dd, J = 13.2, 3.1) | 80.9 | 1 | 41.9 | |
3 | 3.14 (1H, dd, J = 17.3, 13.2) 2.72 (1H, dd, J = 17.3, 3.1) | 44.5 | 2 | 2.28 (2H, s) | 53.7 |
4 | 199.5 | 3 | 202.0 | ||
5 | 157.0 | 4 | 5.88 (1H, s) | 129.0 | |
6 | 6.36 (1H, s) | 96.1 | 5 | 159.8 | |
7 | 154.7 | 6 | 144.5 | ||
8 | 129.0 | 7 | 5.96 (1H, t, J = 6.8) | 130.3 | |
9 | 150.8 | 8 | 2.62 (1H, m) 2.52 (1H, m) | 38.7 | |
10 | 105.0 | 9 | 3.93 (1H, m) | 76.0 | |
1′ | 131.1 | 10 | 1.23 (3H, d, J = 6.2) | 20.0 | |
2′, 6′ | 7.31 (2H, d, J = 8.4) | 129.1 | 11 | 2.26 (3H, s) | 25.1 |
3′, 5′ | 6.80 (2H, d, J = 8.4) | 116.3 | 12 | 1.18 (3H, s) | 28.4 |
4′ | 159.1 | 13 | 1.17 (3H, s) | 28.3 | |
1″ | 4.93 (1H, d, J = 7.4) | 102.3 | 1′ | 4.32 (1H, d, J = 7.8) | 102.6 |
2″ | 3.51 (1H, m) | 74.6 | 2′ | 3.13 (1H, m) | 75.1 |
3″ | 3.46 (1H, m) | 77.4 | 3′ | 3.32 (1H, m) | 78.1 |
4″ | 3.38 (1H, m) | 71.2 | 4′ | 3.64 (1H, m) | 72.4 |
5″ | 3.43 (1H, m) | 78.4 | 5′ | 3.40 (1H, m) | 77.0 |
6″ | 3.86 (1H, d, J = 12.1) 3.67 (1H, m) | 62.3 | 6′ | 3.98 (1H, dd, J = 11.3, 1.3) 3.54 (1H, dd, J = 11.3, 7.0) | 68.8 |
1″ | 4.73 (1H, s) | 102.4 | |||
2″ | 3.19 (1H, m) | 72.0 | |||
3″ | 3.79 (1H, m) | 72.2 | |||
4″ | 3.36 (1H, m) | 74.0 | |||
5″ | 3.62 (1H, m) | 69.9 | |||
6″ | 1.25 (3H, d, J = 6.2) | 18.1 |
Group | Dose | Cell Viability |
---|---|---|
CON | --- | 1.000 ± 0.043 ** |
LPS | 10 μg/mL | 0.879 ± 0.065 |
DEX | 1 μM | 0.959 ± 0.017 ** |
1 | 10 μM | 0.869 ± 0.046 |
2 | 10 μM | 0.937 ± 0.039 * |
3 | 10 μM | 0.963 ± 0.034 ** |
4 | 10 μM | 0.931 ± 0.016 |
5 | 10 μM | 0.843 ± 0.006 |
6 | 10 μM | 0.845 ± 0.022 |
7 | 10 μM | 0.907 ± 0.030 |
8 | 10 μM | 0.949 ± 0.041 ** |
9 | 10 μM | 0.949 ± 0.021 ** |
10 | 10 μM | 1.029 ± 0.062 ** |
11 | 10 μM | 0.964 ± 0.034 ** |
12 | 10 μM | 0.929 ± 0.013 |
13 | 10 μM | 0.909 ± 0.028 |
14 | 10 μM | 0.917 ± 0.012 |
15 | 10 μM | 0.990 ± 0.021 ** |
16 | 10 μM | 1.014 ± 0.036 ** |
17 | 10 μM | 0.957 ± 0.034 ** |
18 | 10 μM | 0.954 ± 0.064 ** |
19 | 10 μM | 0.976 ± 0.054 ** |
20 | 10 μM | 0.912 ± 0.026 |
21 | 10 μM | 0.845 ± 0.022 |
22 | 10 μM | 0.843 ± 0.006 |
23 | 10 μM | 0.882 ± 0.015 |
24 | 10 μM | 0.914 ± 0.009 |
25 | 10 μM | 0.907 ± 0.030 |
Position | 3 | |
---|---|---|
δH | δC | |
1 | 174.4 | |
2 | 2.09 (2H, dd, J = 7.5, 2.8) | 44.2 |
3 | 1.94 (1H, m) | 26.7 |
4 | 0.90 (3H, d, J = 3.5) | 22.7 |
5 | 0.88 (3H, d, J = 3.5) | 22.7 |
1′ | 133.4 | |
2′, 6′ | 6.70 (2H, s) | 104.9 |
3′, 5′ | 149.4 | |
4′ | 136.5 | |
7′ | 4.94 (1H, d, J = 8.2) | 85.2 |
8′ | 2.51 (1H, m) | 51.5 |
9′ | 4.32 (1H, dd, J = 11.5, 4.1) 4.25 (1H, dd, J = 11.5, 5.2) | 64.1 |
2′, 6′-OCH3 | 3.86 (6H, s) | 56.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, M.; Cao, Y.; Zeng, M.; Zhang, Q.; Ren, Y.; Chen, X.; He, C.; Fan, X.; Zheng, X.; et al. Chemical Constituents from the Flowers of Carthamus tinctorius L. and Their Lung Protective Activity. Molecules 2022, 27, 3573. https://doi.org/10.3390/molecules27113573
Liu Y, Wang M, Cao Y, Zeng M, Zhang Q, Ren Y, Chen X, He C, Fan X, Zheng X, et al. Chemical Constituents from the Flowers of Carthamus tinctorius L. and Their Lung Protective Activity. Molecules. 2022; 27(11):3573. https://doi.org/10.3390/molecules27113573
Chicago/Turabian StyleLiu, Yanling, Mengna Wang, Yangang Cao, Mengnan Zeng, Qinqin Zhang, Yingjie Ren, Xu Chen, Chen He, Xiling Fan, Xiaoke Zheng, and et al. 2022. "Chemical Constituents from the Flowers of Carthamus tinctorius L. and Their Lung Protective Activity" Molecules 27, no. 11: 3573. https://doi.org/10.3390/molecules27113573
APA StyleLiu, Y., Wang, M., Cao, Y., Zeng, M., Zhang, Q., Ren, Y., Chen, X., He, C., Fan, X., Zheng, X., & Feng, W. (2022). Chemical Constituents from the Flowers of Carthamus tinctorius L. and Their Lung Protective Activity. Molecules, 27(11), 3573. https://doi.org/10.3390/molecules27113573