Leptin in Human Milk—One of the Key Regulators of Nutritional Programming
Abstract
:1. Introduction
2. Materials and Methods
3. Leptin—Characteristics of the Hormone
4. Molecular Effect of Leptin
5. Leptin in Human Milk
6. The Effect of Leptin on Nutritional Programming in Infants and Toddlers
7. Changes in the LEP Gene Sequence and the Risk of Obesity
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Andreas, N.J.; Kampmann, B.; Le-Doare Mehring, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Fields, D.A.; Schneider, C.R.; Pavela, G. A Narrative Review of the Associations Between Six Bioactive Components in Breast Milk and Infant Adiposity. Obesity 2016, 24, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockrell Skinner, A.; Ravanbakht, S.N.; Skelton, J.A.; Perrin, E.M.; Armstrong, S.C. Prevalence of Obesity and Severe Obesity in US Children, 1999–2016. Pediatrics 2018, 141, e20173459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dev, D.A.; McBride, B.A.; Fiese, B.H.; Jones, B.L.; Cho, H. Risk Factors for Overweight/Obesity in Preschool Children: An Ecological Approach. Child. Obes. 2013, 9, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miralles, O.; Sa´nchez, J.; Palou, A.; Pico, C.A. Physiological Role of Breast Milk Leptin in Body Weight Control in Developing Infants. Obesity 2006, 14, 1371–1377. [Google Scholar] [CrossRef]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The association between breastfeeding and childhood obesity: A meta-analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef] [Green Version]
- Gillman, M.W. Commentary: Breastfeeding and obesity–the 2011 Scorecard. Int. J. Epidemiol. 2011, 40, 681–684. [Google Scholar] [CrossRef]
- Casazza, K.; Fernandez, J.R.; Allison, D.B. Modest protective effects of breast-feeding on obesity. Nutr. Today 2012, 47, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Logan, C.A.; Siziba, L.P.; Koenig, W.; Carr, P.; Brenner, H.; Rothenbacher, D.; Genuneit, J. Leptin in Human Milk and Child Body Mass Index: Results of the Ulm Birth Cohort Studies. Nutrients 2019, 11, 1883. [Google Scholar] [CrossRef] [Green Version]
- Myers, M.G.; Cowley, M.A.; Münzberg, H. Mechanisms of Leptin Action and Leptin Resistance. Annu. Rev. Physiol. 2008, 70, 537–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gioldasi, S.; Karvela, A.; Rojas-Gil, A.P.; Rodi, M.; de Lastic, A.L.; Thomas, I.; Spiliotis, B.E.; Mouzaki, A. Metabolic Association between Leptin and the Corticotropin Releasing Hormone. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Baldock, P.A.; Cornish, J. Effects of Leptin on the Skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef] [PubMed]
- Nikanorova, A.A.; Barashkov, N.A.; Nakhodkin, S.S.; Pshennikova, V.G.; Solovyev, A.V.; Romanov, G.P.; Kuzmina, S.S.; Sazonov, N.N.; Burtseva, T.E.; Odland, J.Ø.; et al. The Role of Leptin Levels in Adaptation to Cold Climates. Int. J. Environ. Res. Public Health 2020, 17, 1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzoros, C.S.; Magkos, F.; Brinkoetter, M.; Sienkiewicz, E.; Dardeno, T.A.; Sang-Young, K.; Hamnvik, O.P.R.; Koniaris, A. Leptin in human physiology and pathophysiology. Am. J. Physiol. -Endocrinol. Metab. 2011, 301, 567–584. [Google Scholar] [CrossRef]
- Warchoł, M.; Krauss, H.; Wojciechowska, M.; Opala, T.; Pięta, B.; Żukiewicz-Sobczak, W.; Kupsz, J.; Grochowalska, A. The Role of Ghrelin, Leptin and Insulin in Foetal Development. Ann. Agric. Environ. Med. 2014, 21, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abarca-Gómez, L.; Abdeen, Z.A.; Abu-Rmeileh, N.M.; Hamid, Z.A. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Badillo-Suárez, P.A.; Rodríguez-Cruz, M.; Nieves-Morales, X. Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity. J. Mammary Gland. Biol. Neoplasia 2017, 60, 49–74. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting Adult Obesity from Childhood Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Couce, M.E.; Burguera, B.; Parisi, E.J.; Jensen, M.D.; Lloyd, R.V. Localization pf leptine receptro in the human brain. Neuroendocrinology 1997, 66, 145–150. [Google Scholar] [CrossRef]
- Lanigan, J.; Barber, S.; Singhal, A. Prevention of Obesity in Preschool Children. Proc. Nutr. Soc. 2010, 69, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lausten-Thomsen, U.; Lund, M.A.V.; Frithioff-Bøjsøe, C.; Hedley, P.L.; Pedersen, O.; Hansen, T.; Christiansen, M.; Holm, J.C. Reference Values for Leptin/Adiponectin Ratio in Healthy Children and Adolescents. Clin. Chim. Acta 2019, 493, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhshi, A.; Ghayour-Mobarhan, M.; Rooki, H.; Vakili, R.; Hashemy, S.I.; Mirhafez, S.R.; Shakeri, M.T.; Kashanifar, R.; Pourbafarani, R.; Mirzaei, H.; et al. Comparative Measurement of Ghrelin, Leptin, Adiponectin, EGF and IGF-1 in Breast Milk of Mothers with Overweight/Obese and Normal-Weight Infants. Eur. J. Clin. Nutr. 2015, 69, 614–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, D.A.; Demerath, E.W. Relationship of Insulin, Glucose, Leptin, IL-6 and TNF-α in Human Breast-Milk with Infant Growth and Body Composition. Pediatr. Obes. 2012, 7, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Ihle, I.N.; Kerr, I.M. Jaks and Stats in signalling by the cytokine receptor superfamily. Trends Genet. 1995, 11, 69–74. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, J.A.; Gojobori, T.; Isenovic, R.E. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Landman, R.E.; Puder, J.J.; Xiao, E.; Freda, P.U.; Ferin, M.; Wardlaw, S.L. Endotoxin Stimulates Leptin in the Human and Nonhuman Primate. J. Clin. Endocrinol. Metab. 2003, 88, 1285–1291. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Dreyer, M.; Pellegrinelli, N.; Chicheportiche, R.; Meier, C.A. Leptin Directly Induces the Secretion of Interleukin 1 Receptor Antagonist in Human Monocytes. J. Clin. Endocrinol. Meabolism 2001, 86, 783–791. [Google Scholar] [CrossRef]
- Alleva, D.G.; Johnson, E.B.; Boehme, S.A.; Conlon, P.J.; Crowe, D.P. Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-gamma: Counter-regulatory activity by IFN-gamma. J. Leukoc. Biol. 2002, 71, 677–685. [Google Scholar] [CrossRef]
- Marousez, L.; Tran, L.; Micours, E.; De Lamballerie, M.; Gottrand, F.; Pierrat, V.; Eberle, D.; Ley, D.; Lesage, J. Metabolic hormones in human breast milk are preserved by high hydrostatic pressure processing but reduced by Holder pasteurization. Food Chem. 2022, 377, 131957. [Google Scholar] [CrossRef]
- Bronský, J.; Karpisek, M.; Bronská, E.; Pechová, M.; Jancíková, B.; Kotolová, H.; Stejskal, D.; Prusa, R.; Nevoral, J. Adiponectin, adipocyte fatty acid binding protein, and epidermal fatty acid binding protein: Proteins newly identified in human breast milk. Clin. Chem. 2006, 52, 1763–1770. [Google Scholar] [CrossRef]
- Chan, D.; Goruk, S.; Becker, A.B.; Subbarao, P.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.; Sears, M.R.; Field, C.J.; Azad, M.B. Adiponectin, Leptin and Insulin in Breast Milk: Associations with Maternal Characteristics and Infant Body Composition in the First Year of Life. Int. J. Obes. 2018, 42, 36–43. [Google Scholar] [CrossRef]
- Dadres, G.S.; Whitaker, K.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R.; Kharbanda, E.O.; McGovern, P.M.; Schoenfuss, T.C.; et al. Relationship of Maternal Weight Status Before, During, and After Pregnancy with Breast Milk Hormone Concentrations. Obesity 2019, 27, 621–628. [Google Scholar] [CrossRef]
- Karatas, Z.; Durmus Aydogdu, S.; Dinleyici, E.C.; Colak, O.; Dogruel, N. Breastmilk Ghrelin, Leptin, and Fat Levels Changing Foremilk to Hindmilk: Is That Important for Self-Control of Feeding? Eur. J. Pediatr. 2011, 170, 1273–1280. [Google Scholar] [CrossRef]
- Brunner, S.; Schmid, D.; Zang, K.; Much, D.; Knoeferl, B.; Kratzsch, J.; Amann-Gassner, U.; Bader, B.L.; Hauner, H. Breast Milk Leptin and Adiponectin in Relation to Infant Body Composition up to 2 Years. Pediatr. Obes. 2015, 10, 67–73. [Google Scholar] [CrossRef]
- Savino, F.; Costamagna, M.; Prino, A.; Oggero, R.; Silvestro, L. Leptin levels in breast-fed and formula-fed infants. Acta Paediatr. 2002, 91, 897–902. [Google Scholar] [CrossRef]
- Savino, F.; Sardo, A.; Rossi, L.; Benetti, S.; Savino, A.; Silvestro, L. Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values. Nutrients 2016, 8, 383. [Google Scholar] [CrossRef]
- Schister, S.; Hechler, S.; Gebauer, C.; Kiess, W.; Kratzsch, J. Leptin in Maternal Serum and Breast Milk: Association with Infants’ Body Weight Gain in a Longitudinal Study Over 6 Months of Lactation. Pediatr. Res. 2011, 70, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Schueler, J.; Alexander, B.; Hart, A.M.; Austin, K.; Larson-Meyer, D.E. Presence and Dynamics of Leptin, GLP-1, and PYY in Human Breast Milk at Early Postpartum. Obesity 2013, 21, 1451–1458. [Google Scholar] [CrossRef]
- Uysal, F.K.; Önal, E.E.; Aral, Y.Z.; Adam, B.; Dilmen, U.; Ardiçolu, Y. Breast Milk Leptin: Its Relationship to Maternal and Infant Adiposity. Clin. Nutr. 2002, 21, 157–160. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Havel, P.J. Serum leptin concentrations in infants: Effects of diet, sex, and adiposity. Am. J. Clin. Nutr. 2000, 72, 484–489. [Google Scholar] [CrossRef]
- Galante, L.; Pundir, S.; Lagström, H.; Rautava, S.; Reynolds, C.M.; Milan, A.M.; Cameron-Smith, D.; Vickers, M.H. Growth Factor Concentrations in Human Milk Are Associated with Infant Weight and BMI From Birth to 5 Years. Front. Nutr. 2020, 7, 110. [Google Scholar] [CrossRef]
- Houseknecht, K.L.; McGuire, M.K.; Portocarrero, C.P.; McGuire, M.A.; Beerman, K. Leptin Is Present in Human Milk and Is Related to Maternal Plasma Leptin Concentration and Adiposity. Biochem. Biophys. Res. Commun. 1997, 240, 742–747. [Google Scholar] [CrossRef]
- Andreas, N.J.; Hyde, M.J.; Gale, C.; Parkinson, J.R.C.; Jeffries, S.; Hilmes, E.; Modi, N. Effect of maternal body mass index on hormones in breast milk: A systematic review. PLoS ONE 2014, 9, e115043. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Frasquet-Darrieux, M.; Gaud, M.A.; Christin, P.; Boquien, C.Y.; Millet, C.; Herviou, M.; Darmaun, D.; Robins, R.J.; Ingrand, P.; et al. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum. PLoS ONE 2016, 11, e0168568. [Google Scholar] [CrossRef]
- Gridneva, Z.; Kugananthan, S.; Hepworth, A.R.; Tie, W.J.; Lai, C.T.; Ward, L.C.; Hartmann, P.E.; Geddes, D.T. Effect of Human Milk Appetite Hormones, Macronutrients, and Infant Characteristics on Gastric Emptying and Breastfeeding Patterns of Term Fully Breastfed Infants. Nutrients 2016, 9, 15. [Google Scholar] [CrossRef]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; van Goudoever, J.B. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients 2019, 11, 1169. [Google Scholar] [CrossRef] [Green Version]
- Cripps, R.L.; Archer, Z.A.; Mercer, J.G.; Ozanne, S.E. Early life programming of energy balance. Biochem. Soc. Trans. 2007, 35, 1203–1204. [Google Scholar] [CrossRef]
- Watchmaker, B.; Boyd, B.; Dugas, L.R. Newborn feeding recommendations and practices increase the risk of development of overweight and obesity. BMC Pediatr. 2020, 20, 104. [Google Scholar] [CrossRef] [Green Version]
- Fallani, M.; Amarri, S.; Uusijarvi, A.; Adam, R.; Khanna, S.; Aguilera, M.; Gil, A.; Vieites, J.M.; Norin, E.; Young, D.; et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 2011, 157, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, F.; O’Sullivan, A.; Smilowitz, J.T.; Freeman, S.L. Lactation and Intestinal Microbiota: How Early Diet Shapes the Infant Gut. J. Mammary Gland. Biol. Neoplasia 2015, 20, 149–158. [Google Scholar] [CrossRef]
- Rito, A.I.; Buoncristiano, M.; Spinelli, A.; Salanave, B.; Kunešová, M.; Hejgaard, T.; García Solano, M.; Fijałkowska, A.; Sturua, L.; Hyska, J.; et al. Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative—COSI 2015/2017. Obes. Facts. 2019, 12, 226–243. [Google Scholar] [CrossRef] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Vaz, J.; Maia, M.; Neves, P.; Santos, T.; Vidaletti, L.; Victora, C. Monitoring breastfeeding indicators in high-income countries: Levels, trends and challenges. Matern. Child Nutr. 2021, 17, e13137. [Google Scholar] [CrossRef]
- Harder, T.; Bergmann, R.; Kallischnigg, G.; Plagemann, A. Duration of breastfeeding and risk of overweight: A meta-analysis. Am. J. Epidemiol. 2005, 162, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Locke, R. Preventing obesity: The breast milk-leptin connection. Acta Paediatr. 2002, 91, 891–894. [Google Scholar] [CrossRef]
- Cammisotto, P.; Bendayan, M. A review on gastric leptin: The exocrine secretion of a gastric hormone. Anat. Cell Biol. 2012, 45, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Picó, C.; Palou, M.; Pomar, C.A.; Rodríguez, A.M.; Palou, A. Leptin as a key regulator of the adipose organ. Rev. Endocr. Metab. Disord. 2022, 23, 13–30. [Google Scholar] [CrossRef]
- Oliver, P.; Picó, C.; De Matteis, R.; Cinti, S.; Palou, A. Perinatal expression of leptin in rat stomach. Dev. Dyn. 2002, 223, 148–154. [Google Scholar] [CrossRef]
- Sánchez, J.; Oliver, P.; Miralles, O.; Ceresi, E.; Picó, C.; Palou, A. Leptin orally supplied to neonate rats is directly uptaken by the immature stomach and may regulate short-term feeding. Endocrinology 2005, 146, 2575–2582. [Google Scholar] [CrossRef]
- Garver, W.S.; Newman, S.B.; Gonzales-Pacheco, D.M.; Castillo, J.J.; Jelinek, D.; Heidenreich, R.A.; Orlando, R.A. The genetics of childhood obesity and interaction with dietary macronutrients. Genes Nutr. 2013, 8, 271–287. [Google Scholar] [CrossRef] [Green Version]
- Ghalandari, H.; Hosseini-Esfahani, F.; Mirmiran, P. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes with Overweight/Obesity and the Related Metabolic Disturbances: A Review. Int. J. Endocrinol. Metab. 2015, 13, e19073. [Google Scholar] [CrossRef] [Green Version]
- Kroll, C.; Farias, D.R.; Kac, G.; de França, P.H.C.; Mastroeni, M.F. Adiponectin and leptin gene variants and their effects on body weight trajectories in children from birth to 6 years of age: The PREDI Study. Br. J. Nutr. 2021, 14, 241–250. [Google Scholar] [CrossRef]
- Dasgupta, S.; Salman, M.; Siddalingaiah, L.B.; Lakshmi, G.L.; Xaviour, D.; Sreenath, J. Genetic variants in leptin: Determinants of obesity and leptin levels in South Indian population. Adipocyte 2014, 20, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Helgeland, Ø.; Vaudel, M.; Juliusson, P.B.; Lingaas Holmen, O.; Juodakis, J.; Bacelis, J.; Jacobsson, B.; Lindekleiv, H.; Hveem, K.; Lie, R.T.; et al. Genome-wide association study reveals dynamic role of genetic variation in infant and early childhood growth. Nat. Commun. 2019, 1, 4448. [Google Scholar] [CrossRef] [Green Version]
- Crovesy, L.; Rosado, E.L. Interaction between genes involved in energy intake regulation and diet in obesity. Nutrition 2019, 67, 110547. [Google Scholar] [CrossRef]
- Eldosouky, M.K.; Abdu Allah, A.M.; AbdElmoneim, A.; Al-Ahmadi, N.S. Correlation between serum leptin and its gene expression to the anthropometric measures in overweight and obese children. Cell. Mol. Biol. 2018, 64, 84–90. [Google Scholar] [CrossRef]
- Hinuy, H.M.; Hirata, M.H.; Forti, N.; Diament, J.; Sampaio, M.F.; Armaganijan, D.; Salazar, L.A.; Hirata, R.D. Leptin G-2548A promoter polymorphism is associated with increased plasma leptin and BMI in Brazilian women. Arq. Bras. Endocrinol. E Metabol. 2008, 52, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Boumaiza, I.; Omezzine, A.; Rejeb, J.; Rebhi, L.; Ouedrani, A.; Rejeb, B.N.; Nabli, N.; Abdelaziz, B.A.; Bouslama, A. Relationship between leptin G2548A and leptin receptor Q223R gene polymorphisms and obesity and metabolic syndrome risk in Tunisian volunteers. Genet. Test. Mol. Biomark. 2012, 16, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Funcke, J.B.; von Schnurbein, J.; Lennerz, B.; Lahr, G.; Debatin, K.M.; Fischer-Posovszky, P.; Wabitsch, M. Monogenic forms of childhood obesity due to mutations in the leptin gene. Mol. Cell. Pediatr. 2014, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- ElSaeed, G.; Mousa, N.; El-Mougy, F.; Hafez, M.; Khodeera, S.; Alhelbawy, M.; Fouda, E.; Elsheikh, S.; ElKaffas, R.; Eldeeb, S.; et al. Monogenic leptin deficiency in early childhood obesity. Pediatr. Obes. 2020, 15, e12574. [Google Scholar] [CrossRef] [PubMed]
- Obermann-Borst, S.A.; Eilers, P.H.; Tobi, E.W.; de Jong, F.H.; Slagboom, P.E.; Heijmans, B.T.; Steegers-Theunissen, R.P. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr. Res. 2013, 74, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, S.; Symons, L.; Vanautgaerden, E.L.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; et al. The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients 2019, 11, 1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwood, W.B.; Bion, V.; Lockett, G.A.; Ziyab, A.H.; Soto-Ramírez, N.; Mukherjee, N.; Kurukulaaratchy, R.J.; Ewart, S.; Zhang, H.; Arshad, S.H.; et al. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clin. Epigenet. 2019, 11, 128. [Google Scholar] [CrossRef]
- Daniels, T.E.; Sadovnikoff, A.I.; Ridout, K.K.; Lesseur, C.; Marsit, C.J.; Tyrka, A.R. Associations of maternal diet and placenta leptin methylation. Mol. Cell. Endocrinol. 2020, 505, 110739. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Epigenetic Mechanisms Link Maternal Diets and Gut Microbiome to Obesity in the Offspring. Front. Genet. 2018, 9, 342. [Google Scholar] [CrossRef]
- Kaspar, D.; Hastreiter, S.; Irmler, M.; de Angelis, M.H.; Beckers, J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm Genome 2020, 31, 119–133. [Google Scholar] [CrossRef]
- Briollais, L.; Rustand, D.; Allard, C.; Wu, Y.; Xu, J.; Rajan, S.G.; Hivert, M.-F.; Doyon, M.; Bouchard, L.; McGowan, P.O.; et al. DNA methylation mediates the association between breastfeeding and early-life growth trajectories. Clin. Epigenet. 2021, 13, 231. [Google Scholar] [CrossRef]
Source | Mean Leptin Value in Human Milk or Serum (Range) | Study Group (Abundance) | Method | Age of Fed Children |
---|---|---|---|---|
Bronský J. et al. (2006) [31] Chan D. et al. (2018) [32] Dares G. S. et al. (2019) [33] | 0.50 (±1.37) ng/mL | 56 | ELISA (Biovendor-Laboratory Medicine) | 1st week |
0.349 (0.031–3.968) ng/mL | 430 | ELISA (Meso Scale Discovery) | 4th month | |
|
| ELISA (NO COMPANY) | 1st month 3rd month | |
Fields D. A. et al. (2012) [3] | 0.0918 (±0.0047) ng/mL | 19 | ELISA (NO COMPANY) | 1st month |
Karatas Z. et al. (2011) [34] Khodabakhshi A. et al. (2015) [23] Logan C. A. et al. (2019) [10] Miralles O. et al. (2006) [6] | BF * Foremilk: 0.33 (0.28–0.50) ng/mL Hindmilk: 0.40 (0.15–2.34) ng/mL | 26 | ELISA (DRG Instruments) | 2nd month |
|
| ELISA (Mediagnost) |
| |
|
| ELISA (R&D Systems) |
| |
Milk: 0.156 (±0.039) ng/mL Maternal plasma: 12.8 (±1.7) ng/mL | 28 | ELISA (R&D Systems) | 1st month | |
Brunner S. et al. (2014) [35] Savino et al. (2002) [36] | Median (** IQR)
|
| Milk RIA (Mediagnost); Maternal plasma ELISA (Mediagnost) |
|
Savino et al. (2016) [37] | BF* Milk median (** IQR): 2.34 (5.73) ng/mL | 23 | RIA (Mediagnost) | <6th month |
Schister et al. (2011) [38] | Median (range)
|
| RIA (Mediagnost) |
|
Schueler et al. (2013) [39] | Foremilk: 0.9 (±0.7) ng/mL Hindmilk: 1.0 ± 0.8 ng/mL | 12 | RIA (Millipore) | 2nd month |
Uysal F. K. et al. (2002) [40] |
|
| RIA (Linco Research Inc) | 2nd–4th month |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkiewicz-Darol, E.; Adamczyk, I.; Łubiech, K.; Pilarska, G.; Twarużek, M. Leptin in Human Milk—One of the Key Regulators of Nutritional Programming. Molecules 2022, 27, 3581. https://doi.org/10.3390/molecules27113581
Sinkiewicz-Darol E, Adamczyk I, Łubiech K, Pilarska G, Twarużek M. Leptin in Human Milk—One of the Key Regulators of Nutritional Programming. Molecules. 2022; 27(11):3581. https://doi.org/10.3390/molecules27113581
Chicago/Turabian StyleSinkiewicz-Darol, Elena, Iwona Adamczyk, Katarzyna Łubiech, Gabriela Pilarska, and Magdalena Twarużek. 2022. "Leptin in Human Milk—One of the Key Regulators of Nutritional Programming" Molecules 27, no. 11: 3581. https://doi.org/10.3390/molecules27113581
APA StyleSinkiewicz-Darol, E., Adamczyk, I., Łubiech, K., Pilarska, G., & Twarużek, M. (2022). Leptin in Human Milk—One of the Key Regulators of Nutritional Programming. Molecules, 27(11), 3581. https://doi.org/10.3390/molecules27113581