Quantum Dot Nanobead-Based Fluorescence-Linked Immunosorbent Assay for Detection of Glycinin in Soybeans and Soy Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Working Principle of QBS-FLISA
2.2. Identification of QB and QB-pAbs Probes
2.3. Optimization of Sample Pretreatment
2.4. Assay Validation of QBs-FLISA
2.5. Comparison of QBs-FLISA and Common ELISA
2.6. Analysis of Real Samples
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Preparation and Purification of Glycinin
3.3. Production of Polyclonal Antibodies
3.4. Synthesis of QB-pAbs Probes
3.5. Fabrication of QBs-FLISA
3.6. Procedures of Common ELISA
3.7. Sample Pretreatment
3.8. Method Validation
3.9. Analysis of Glycinin in Real Soybean Seeds and Soy Products
3.10. The Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hancock, J.D.; Cao, H.; Kim, I.H.; Li, D.F. Effects of processing technologies and genetic modifications on nutritional value of full-fat soybeans in pigs. Asian-Australas. J. Anim. Sci. 2000, 13, 356–375. [Google Scholar] [CrossRef]
- Li, D.F. Soybean Anti-Nutrition Factors; Science and Technology of China Press: Beijing, China, 2003; pp. 138–154. [Google Scholar]
- Mujoo, R.; Trinh, D.T.; Ng, P.K.W. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chem. 2003, 82, 265–273. [Google Scholar] [CrossRef]
- Lei, M.G.; Reeck, G.R. Two-dimensional electrophoretic analysis of the proteins of isolated soybean protein bodies and of the glycosylation of soybean proteins. J. Agric. Food Chem. 1987, 35, 296–300. [Google Scholar] [CrossRef]
- Walker-Smith, J.A. Food sensitive enteropathies. Clin. Gastroenterol. 1986, 15, 55. [Google Scholar] [CrossRef]
- Lalles, J.P. Nutritional and antinutritional aspects of soyabean and field pea proteins used in veal calf production: A review. Livest. Prod. Sci. 1993, 34, 181–202. [Google Scholar] [CrossRef]
- Ouedraogo, C.L.; Lalles, J.P.; Toullec, R.; Grongnet, J.F. Roasted fullfat soybean as an ingredient of milk replacers for goat kids. Small Rumin. Res. 1998, 28, 53–59. [Google Scholar] [CrossRef]
- Jiang, D.; Ding, H.; Zhang, J.; Shen, J.; Zhao, Y. Effects of fermented soybean meal on nutrition substance and anti-nutrition factors. Chin. J. Vet. Sci. 2011, 31, 579–582. [Google Scholar] [CrossRef]
- Clemente, A. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 2000, 11, 254–262. [Google Scholar] [CrossRef]
- Thanh, V.H.; Shibasaki, K. Major proteins of soybean seeds. A straightforward fractionation and their characterization. J. Agric. Food Chem. 1976, 24, 1117. [Google Scholar] [CrossRef] [PubMed]
- Saio, K.; Watanabe, T. Differences in functional properties of 7S and 11S soybean protein. J. Texture Stud. 1978, 9, 135–157. [Google Scholar] [CrossRef]
- Hu, S.D.; Liu, H.; Qiao, S.Y.; He, P.L.; Ma, X.; Lu, W.Q. Development of Immunoaffinity Chromatographic Method for Isolating Glycinin (11S) from Soybean Proteins. J. Agric. Food Chem. 2013, 61, 4406–4410. [Google Scholar] [CrossRef] [PubMed]
- Tsumura, K.; Saito, T.; Tsuge, K.; Ashida, H.; Kugimiya, W.; Inouye, K. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT-Food Sci. Technol. 2005, 38, 255–261. [Google Scholar] [CrossRef]
- Saito, T.; Kohno, M.; Tsumura, K.; Kugimiya, W.; Kito, M. Novel method using phytase for separating soybean beta-conglycinin and glycinin. Biosci. Biotechnol. Biochem. 2001, 65, 884–887. [Google Scholar] [CrossRef]
- Briggs, D.R.; Mann, R.L. An electrophoretic analysis of soybean protein. Cereal Chem. 1950, 27, 243–257. [Google Scholar]
- Houston, N.L.; Lee, D.-G.; Stevenson, S.E.; Ladics, G.S.; Bannon, G.A.; McClain, S.; Privalle, L.; Stagg, N.; Herouet-Guicheney, C.; MacIntosh, S.C.; et al. Quantitation of Soybean Allergens Using Tandem Mass Spectrometry. J. Proteome Res. 2011, 10, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.C.; Oman, T.J.; Wang, X.J.; Shan, G.M.; Schafer, B.; Herman, R.A.; Tobias, R.; Shippar, J.; Malayappan, B.; Sheng, L.; et al. Development, Validation, and Interlaboratory Evaluation of a Quantitative Multiplexing Method To Assess Levels of Ten Endogenous Allergens in Soybean Seed and Its Application to Field Trials Spanning Three Growing Seasons. J. Agric. Food Chem. 2017, 65, 5531–5544. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Sun, P.; He, P.L.; Han, P.F.; Wang, J.J.; Qiao, S.Y.; Li, D.F. Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean. Food Chem. 2010, 121, 546–551. [Google Scholar] [CrossRef]
- Xiong, S.C.; Zhou, Y.F.; Huang, X.L.; Yu, R.J.; Lai, W.H.; Xiong, Y.H. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies. Anal. Chim. Acta 2017, 972, 94–101. [Google Scholar] [CrossRef]
- Li, S.J.; Sheng, W.; Wen, W.J.; Gu, Y.; Wang, J.P.; Wang, S. Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Microchim. Acta 2018, 185, 238. [Google Scholar] [CrossRef]
- Rong, Z.; Bai, Z.K.; Li, J.N.; Tang, H.; Shen, T.Y.; Wang, Q.; Wang, C.W.; Xiao, R.; Wang, S.Q. Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen. Biosens. Bioelectron. 2019, 145, 111719. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.W.; Zhang, C.; Ying, G.Y.; Liu, C.M.; Luo, J.Y.; Li, Q.; Li, P.; Wang, Y.T.; Yang, M.H. Facile preparation of stable PEG-functionalized quantum dots with glycine-enhanced photoluminescence and their application for screening of aflatoxin B-1 in herbs. Sens. Actuators B 2018, 261, 188–195. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, D.P. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Li, R.X.; Wen, Y.; Yang, L.Q.; Liu, A.G.; Wang, F.L.; He, P.L. Dual quantum dot nanobeads-based fluorescence-linked immunosorbent assay for simultaneous detection of aflatoxin B1 and zearalenone in feedstuffs. Food Chem. 2022, 366, 130527. [Google Scholar] [CrossRef]
- Murphy, P.A.; Resurreccion, A.P. Varietal and environmental differences in soybean glycinin and beta-conglycinin content [Rocket immunoelectrophoresis]. J. Agric. Food Chem. 1984, 32, 911–915. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Jeon, H.H.; Jung, J.Y.; Chun, B.H.; Kim, M.D.; Baek, S.Y.; Moon, J.Y.; Yeo, S.H.; Jeon, C.O. Screening and Characterization of Potential Bacillus Starter Cultures for Fermenting Low-Salt Soybean Paste (Doenjang). J. Microbiol. Biotechnol. 2016, 26, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.T.; Yu, B.; Lu, Y.H.; Wang, J.; Liang, J.B.; Tufarelli, V.; Laudadio, V.; Liao, X.D. Optimization of the Fermentation Conditions to Reduce Anti-Nutritive Factors in Soybean Meal. J. Food Process. Preserv. 2017, 41, e13114. [Google Scholar] [CrossRef]
Coated Glycinin Concentration (μg/mL) | Dilution Ratios of QB-pAbs | ||
---|---|---|---|
10 Times | 20 Times | 40 Times | |
20 | 2476 | 1380 | 581 |
5 | 2095 | 1180 | 586 |
2.5 | 1344 | 1078 | 467 |
1 | 619 | 536 | 274 |
0.5 | 452 | 323 | 217 |
0.25 | 215 | 160 | 194 |
0 | 206 | 193 | 63 |
Soybean Products | Spiked Level (mg/g) | Measured Concentration (mg/g) | Recovery (%) | CV (%) |
---|---|---|---|---|
Soybean | 40 | 37.0 | 92.5 | 7.3 |
80 | 77.3 | 96.7 | 2.4 | |
120 | 124.08 | 103.4 | 5.7 | |
Extruded soybean | 40 | 35.92 | 89.8 | 8.1 |
80 | 77.6 | 97.0 | 6.3 | |
120 | 114.48 | 95.4 | 5.6 | |
Fermented soybean meal | 40 | 36.32 | 90.8 | 8.6 |
80 | 84.32 | 105.4 | 4.3 | |
120 | 112.32 | 93.6 | 7.7 | |
Proteolytic soybean meal | 40 | 42.26 | 105.6 | 8.6 |
80 | 76.16 | 95.2 | 6.0 | |
120 | 120.16 | 100.1 | 7.2 |
Method | LOD (μg mL−1) | Linear Range (μg mL−1) | Detection Time (min) |
---|---|---|---|
ELISA | 0.25 | 0.5–32 μg/mL | 135 |
QBs-FLISA | 0.035 | 0.075–5 μg/mL | 45 |
Soybean Products | Glycinin Concentration (mg/g) | Relative Deviation (%) | |
---|---|---|---|
QBS-FLISA | ELISA | ||
Soybean | 46.2 | 45.1 | 1.2 |
Soybean meal | 126.5 | 129.3 | 1.1 |
Extruded soybean | 19.9 | 21.2 | 3.2 |
Fermented soybean meal | 24.3 | 23.7 | 1.2 |
Proteolytic soybean meal | 7.5 | 6.8 | 4.9 |
No. | Soybean Products | Glycinin Concentration (mg/g) | No. | Soybean Products | Glycinin Concentration (mg/g) |
---|---|---|---|---|---|
1 | Soybean seed | 85.4 | 31 | Extruded soybean | 42.52 |
2 | 71.0 | 32 | 70.2 | ||
3 | 82.2 | 33 | 82.1 | ||
4 | 85.7 | 34 | 48.9 | ||
5 | 66.1 | 35 | 50.2 | ||
6 | 67.1 | 36 | 48.8 | ||
7 | 103.8 | 37 | 53.6 | ||
8 | 112.1 | 38 | 23.6 | ||
9 | 108.3 | 39 | 85.4 | ||
10 | 106.2 | 40 | 45.2 | ||
11 | 132.1 | 41 | Fermented soybean meal | 34.1 | |
12 | 88.9 | 42 | 4.3 | ||
13 | 59.7 | 43 | 63.1 | ||
14 | 90.6 | 44 | 9.6 | ||
15 | 78.3 | 45 | 7.3 | ||
16 | 69.4 | 46 | 73.5 | ||
17 | 109.8 | 47 | 86.3 | ||
18 | 113.4 | 48 | 75.9 | ||
19 | 76.4 | 49 | 62.0 | ||
20 | 88.6 | 50 | 35.4 | ||
21 | Soybean meal | 83.1 | 51 | Proteolytic soybean meal | 21.7 |
22 | 92.0 | 52 | 2.9 | ||
23 | 124.8 | 53 | 1.6 | ||
24 | 128.9 | 54 | 17.1 | ||
25 | 73.5 | 55 | 4.3 | ||
26 | 134.02 | 56 | 47.8 | ||
27 | 83.18 | 57 | 12.1 | ||
28 | 86.10 | 58 | 1.2 | ||
29 | 129.34 | 59 | 0.1 | ||
30 | 118.26 | 60 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Liu, A.; Zhang, S.; Li, R.; Qiao, S.; He, P. Quantum Dot Nanobead-Based Fluorescence-Linked Immunosorbent Assay for Detection of Glycinin in Soybeans and Soy Products. Molecules 2022, 27, 3664. https://doi.org/10.3390/molecules27123664
Song Q, Liu A, Zhang S, Li R, Qiao S, He P. Quantum Dot Nanobead-Based Fluorescence-Linked Immunosorbent Assay for Detection of Glycinin in Soybeans and Soy Products. Molecules. 2022; 27(12):3664. https://doi.org/10.3390/molecules27123664
Chicago/Turabian StyleSong, Qinglong, Anguo Liu, Shimin Zhang, Runxian Li, Shiyan Qiao, and Pingli He. 2022. "Quantum Dot Nanobead-Based Fluorescence-Linked Immunosorbent Assay for Detection of Glycinin in Soybeans and Soy Products" Molecules 27, no. 12: 3664. https://doi.org/10.3390/molecules27123664
APA StyleSong, Q., Liu, A., Zhang, S., Li, R., Qiao, S., & He, P. (2022). Quantum Dot Nanobead-Based Fluorescence-Linked Immunosorbent Assay for Detection of Glycinin in Soybeans and Soy Products. Molecules, 27(12), 3664. https://doi.org/10.3390/molecules27123664