Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins—Natural Photosensitizers of Fagopyrum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Conformational Analysis of Fagopyrins
3.2. Analysis of Geometry of Fagopyrin Structures
3.3. Aromaticity of Fagopyrin
3.4. Analysis of Intramolecular Interactions in Fagopyrin Derivatives
3.5. UV-VIS Spectra of Fagopyrin Conformers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Babu, S.; Yadav, G.S.; Singh, R.; Avasthe, R.K.; Das, A.; Mohapatra, K.P.; Tahashildar, M.; Kumar, K.; Prabha, M.; Thoithoi Devi, M.; et al. Production technology and multifarious uses of buckwheat (Fagopyrum spp.): A review. Indian J. Agron. 2018, 63, 415–427. [Google Scholar]
- Sytar, O.; Brestic, M.; Zivcak, M.; Phan Tran, L.-S. The Contribution of Buckwheat Genetic Resources to Health and Dietary Diversity. Curr. Genom. 2016, 17, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giupponi, L.; Borgonovo, G.; Panseri, S.; Giorgi, A. Multidisciplinary study of a little known landrace of Fagopyrum tataricum Gaertn. of Valtellina (Italian Alps). Genet. Resour. Crop Evol. 2019, 66, 783–796. [Google Scholar] [CrossRef]
- Ožbolt, L.; Kreft, S.; Kreft, I.; Germ, M.; Stibilj, V. Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chem. 2008, 110, 691–696. [Google Scholar] [CrossRef]
- Habtemariam, S. Antioxidant and rutin content analysis of leaves of the common buckwheat (fagopyrum esculentum moench) grown in the United Kingdom: A case study. Antioxidants 2019, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Dziedzic, K.; Górecka, D.; Szwengiel, A.; Sulewska, H.; Kreft, I.; Gujska, E.; Walkowiak, J. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum). Plant Foods Hum. Nutr. 2018, 73, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Kočevar Glavač, N.; Stojilkovski, K.; Kreft, S.; Park, C.H.; Kreft, I. Determination of fagopyrins, rutin, and quercetin in Tartary buckwheat products. LWT—Food Sci. Technol. 2017, 79, 423–427. [Google Scholar] [CrossRef]
- Sytar, O.; Brestic, M.; Rai, M. Possible ways of fagopyrin biosynthesis and production in buckwheat plants. Fitoterapia 2013, 84, 72–79. [Google Scholar] [CrossRef]
- Szymańska, M.; Majerz, I. Geometry and electron density of phenothazines. J. Mol. Struct. 2020, 1200, 127095. [Google Scholar] [CrossRef]
- Szymańska, M.; Majerz, I. Effect of substitution of hydrogen atoms in the molecules of anthrone and anthraquinone. Molecules 2021, 26, 502. [Google Scholar] [CrossRef]
- Edim, M.M.; Enudi, O.C.; Asuquo, B.B.; Louis, H.; Bisong, E.A.; Agwupuye, J.A.; Chioma, A.G.; Odey, J.O.; Joseph, I.; Bassey, F.I. Aromaticity indices, electronic structural properties, and fuzzy atomic space investigations of naphthalene and its aza-derivatives. Heliyon 2021, 7, e06138. [Google Scholar] [CrossRef] [PubMed]
- Galinari, C.B.; Biachi, T.D.P.; Gonçalves, R.S.; Cesar, G.B.; Bergmann, E.V.; Malacarne, L.C.; Kioshima Cotica, É.S.; Bonfim-Mendonça, P.D.S.; Svidzinski, T.I.E. Photoactivity of hypericin: From natural product to antifungal application. Crit. Rev. Microbiol. 2022, 49, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, S.; Majerz, I. Aromaticity and Electron Density of Hypericin. J. Nat. Prod. 2019, 82, 2106–2115. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, S.; Majerz, I. In silico studies on sennidines—Natural dianthrones from senna. Biology 2021, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; Anase, T.; Osuga, H. Development of a high-performance liquid chromatography method to determine the fagopyrin content of Tartary buckwheat (Fagopyrum tartaricum Gaertn.) and common buckwheat (F. esculentum Moench). Plant Prod. Sci. 2009, 12, 475–480. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Hwang, K.T. Determination and photochemical conversion of protofagopyrins and fagopyrins in buckwheat plants. J. Food Compos. Anal. 2021, 100, 103894. [Google Scholar] [CrossRef]
- Benković, E.T.; Žigon, D.; Friedrich, M.; Plavec, J.; Kreft, S. Isolation, analysis and structures of phototoxic fagopyrins from buckwheat. Food Chem. 2014, 143, 432–439. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, K.T. Fagopyrins in different parts of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) during growth. J. Food Compos. Anal. 2020, 86, 103354. [Google Scholar] [CrossRef]
- Kosyan, A.; Sytar, O. Implications of fagopyrin formation in vitro by uv spectroscopic analysis. Molecules 2021, 26, 2013. [Google Scholar] [CrossRef]
- Samel, D.; Donnella-Deana, A.; De Witte, P. The effect of purified extract of Fagopyrum esculentum (buckwheat) on protein kinases involved in signal transduction pathways. Planta Med. 1996, 62, 106–110. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Lee, K.; Kim, R.H.; Hwang, K.T. Antibacterial photodynamic inactivation of fagopyrin f from tartary buckwheat (Fagopyrum tataricum) flower against streptococcus mutans and its biofilm. Int. J. Mol. Sci. 2021, 22, 6205. [Google Scholar] [CrossRef] [PubMed]
- Tavčar Benković, E.; Kreft, S. Fagopyrins and Protofagopyrins: Detection, Analysis, and Potential Phototoxicity in Buckwheat. J. Agric. Food Chem. 2015, 63, 5715–5724. [Google Scholar] [CrossRef] [PubMed]
- Lineva, A.; Benković, E.T.; Kreft, S.; Kienzle, E. Remarkable frequency of a history of liver disease in dogs fed homemade diets with buckwheat. Tierärztliche Prax. Ausg. K Kleintiere-Heimtiere 2019, 47, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Švedienė, J.; Ložienė, K.; Paškevičius, A.; Kosyan, A.; Taran, N. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm. Biol. 2016, 54, 3121–3125. [Google Scholar] [CrossRef] [Green Version]
- Zambounis, A.; Sytar, O.; Valasiadis, D.; Hilioti, Z. Effect of photosensitisers on growth and morphology of phytophthora citrophthora coupled with leaf bioassays in pear seedlings. Plant Prot. Sci. 2020, 86, 74–82. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond an Introduction to Modern Structural Chemistry; Cornell University Press: New York, NY, USA, 1960. [Google Scholar]
- Schuster, P.; Zundel, G.; Sandorfy, C. The Hydrogen Bond, II: Structure and Spectroscopy; North-Holland Publishing Company: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1975. [Google Scholar]
- Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory; Oxford University Press: Oxford, UK, 2009; ISBN 9780191720949. [Google Scholar]
- Frisch, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; et al. Gaussian 16, Rev. A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Keith, T.A. AIMALL, version 19.02.13; TK Gristmill Software: Overland Park, KS, USA, 2019. [Google Scholar]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Krygowski, T.M. Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of π-Electron Systems. J. Chem. Inf. Comput. Sci. 1993, 33, 70–79. [Google Scholar] [CrossRef]
- Richard, F. Bader: Atoms in Molecules (A Quantum Theory); Clarendon Press: Oxford, UK, 1990; ISBN 019-855-1681. [Google Scholar]
- Bader, R.F.W. Bond paths are not chemical bonds. J. Phys. Chem. A 2009, 113, 10391–10396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Structure | Plane/Angle [Deg.] | |||
---|---|---|---|---|---|
A–C | F–H | A–F | C–H | ||
Fagopyrin A | 1 | 13.695 | 12.708 | 23.717 | 30.165 |
2 | 10.787 | 10.001 | 23.965 | 29.275 | |
3 | 16.005 | 13.476 | 25.420 | 30.763 | |
4 | 18.505 | 15.241 | 27.456 | 31.058 | |
5 | 16.694 | 14.646 | 30.072 | 30.773 | |
6 | 20.601 | 20.002 | 28.554 | 33.411 | |
Fagopyrin B | 7 | 12.227 | 11.517 | 23.245 | 4.320 |
8 | 11.303 | 11.437 | 23.632 | 3.099 | |
9 | 17.136 | 11.257 | 26.050 | 5.012 | |
10 | 23.343 | 8.266 | 26.391 | 2.675 | |
11 | 17.52 | 15.562 | 30.230 | 4.862 | |
12 | 20.611 | 20.796 | 33.032 | 5.543 | |
Fagopyrin C | 13 | 10.728 | 12.357 | 24.436 | 19.975 |
14 | 8.323 | 10.393 | 24.598 | 18.545 | |
15 | 13.846 | 12.925 | 25.928 | 20.427 | |
16 | 17.886 | 13.166 | 27.414 | 18.563 | |
17 | 15.129 | 18.324 | 30.626 | 20.972 | |
18 | 17.561 | 20.219 | 33.223 | 20.238 | |
Fagopyrin D | 19 | 10.778 | 12.366 | 24.422 | 19.978 |
20 | 8.305 | 10.341 | 24.604 | 18.515 | |
21 | 13.847 | 12.918 | 25.848 | 20.431 | |
22 | 17.800 | 13.066 | 27.297 | 18.533 | |
23 | 14.637 | 16.649 | 30.708 | 20.473 | |
24 | 17.558 | 20.262 | 33.338 | 20.209 | |
Fagopyrin E | 25 | 13.469 | 12.696 | 24.195 | 30.168 |
26 | 10.838 | 10.654 | 24.508 | 29.384 | |
27 | 15.981 | 13.491 | 25.502 | 30.778 | |
28 | 18.502 | 15.112 | 27.347 | 30.987 | |
29 | 16.798 | 14.604 | 30.088 | 30.787 | |
30 | 21.120 | 22.148 | 27.824 | 33.555 | |
Fagopyrin F | 31 | 13.482 | 12.721 | 24.089 | 30.172 |
32 | 10.805 | 10.638 | 24.461 | 29.384 | |
33 | 16.011 | 13.53 | 25.430 | 30.789 | |
34 | 18.581 | 15.220 | 27.322 | 30.993 | |
35 | 17.361 | 16.870 | 30.244 | 31.195 | |
36 | 21.112 | 21.813 | 27.898 | 33.568 | |
Hypericin | - | 13.334 | 12.363 | 23.188 | 30.095 |
Structure | Hydrogen Bond Location | H∙∙∙O/H∙∙∙N [Å] | O∙∙∙O/O∙∙∙N [Å] | OHO/OHN [deg.] |
---|---|---|---|---|
31 | C(A)-O-H∙∙∙O=C(B) | 1.6047 | 2.5133 | 149.530 |
C(C)-O-H∙∙∙O=C(B) | 1.6583 | 2.5485 | 147.083 | |
C(F)-O-H∙∙∙O=C(G) | 1.6022 | 2.5125 | 149.135 | |
C(H)-O-H∙∙∙O=C(G) | 1.6721 | 2.5591 | 146.198 | |
C(A)-O-H∙∙∙O-C(F) | 1.5751 | 2.5155 | 158.577 | |
C(F)-O-H∙∙∙N(R2) | 1.5386 | 2.5278 | 156.683 | |
32 | C(A)-O-H∙∙∙O=C(B) | 1.6220 | 2.5319 | 149.412 |
C(C)-O-H∙∙∙O=C(B) | 1.6667 | 2.5580 | 147.383 | |
C(F)-O-H∙∙∙O=C(G) | 1.6244 | 2.5338 | 149.346 | |
C(H)-O-H∙∙∙O=C(G) | 1.6677 | 2.5589 | 147.388 | |
C(A)-O-H∙∙∙N(R1) | 1.7233 | 2.6379 | 150.007 | |
C(F)-O-H∙∙∙N(R2) | 1.6676 | 2.6012 | 152.071 | |
33 | C(A)-O-H∙∙∙N(R1) | 1.7164 | 2.6276 | 149.868 |
C(C)-O-H∙∙∙O=C(B) | 1.5936 | 2.5098 | 149.406 | |
C(F)-O-H∙∙∙O=C(G) | 1.6035 | 2.5143 | 149.243 | |
C(H)-O-H∙∙∙O=C(G) | 1.6720 | 2.5597 | 147.032 | |
C(A)-O-H∙∙∙O-C(F) | 1.5849 | 2.5207 | 157.420 | |
C(F)-O-H∙∙∙N(R2) | 1.5508 | 2.5354 | 156.626 | |
34 | C(A)-O-H∙∙∙N(R1) | 1.7350 | 2.6378 | 148.993 |
C(F)-O-H∙∙∙O=C(G) | 1.6062 | 2.5164 | 149.237 | |
C(H)-O-H∙∙∙O=C(G) | 1.6750 | 2.5627 | 147.055 | |
C(A)-O-H∙∙∙O-C(F) | 1.5977 | 2.5319 | 157.421 | |
C(F)-O-H∙∙∙N(R2) | 1.5590 | 2.5402 | 156.438 | |
35 | C(A)-O-H∙∙∙N(R1) | 1.7220 | 2.6316 | 149.766 |
C(C)-O-H∙∙∙O=C(B) | 1.6017 | 2.5156 | 149.256 | |
C(F)-O-H∙∙∙N(R2) | 1.6940 | 2.6188 | 152.744 | |
C(H)-O-H∙∙∙O=C(G) | 1.6095 | 2.5203 | 149.017 | |
C(A)-O-H∙∙∙O-C(F) | 1.6717 | 2.5572 | 149.732 | |
36 | C(A)-O-H∙∙∙N(R1) | 1.7438 | 2.6437 | 148.744 |
C(F)-O-H∙∙∙N(R2) | 1.7087 | 2.6243 | 151.524 | |
C(A)-O-H∙∙∙O-C(F) | 1.6658 | 2.5536 | 150.072 | |
Hypericin | C(A)-O-H∙∙∙O=C(B) | 1.6499 | 2.5422 | 147.330 |
C(C)-O-H∙∙∙O=C(B) | 1.6659 | 2.5548 | 146.940 | |
C(F)-O-H∙∙∙O=C(G) | 1.6400 | 2.5351 | 147.385 | |
C(H)-O-H∙∙∙O=C(G) | 1.6750 | 2.5606 | 146.668 | |
C(A)-O-H∙∙∙O-C(F) | 1.6670 | 2.5605 | 151.168 |
Structure | HOMO–LUMO Gap [kcal∙mol−1] |
---|---|
1 | 58.4 |
2 | 58.4 |
3 | 59.2 |
4 | 61.0 |
5 | 61.0 |
6 | 66.5 |
7 | 59.7 |
8 | 59.9 |
9 | 60.2 |
10 | 61.7 |
11 | 62.7 |
12 | 67.9 |
13 | 59.1 |
14 | 59.3 |
15 | 60.0 |
16 | 61.6 |
17 | 62.2 |
18 | 67.3 |
19 | 59.0 |
20 | 59.3 |
21 | 60.0 |
22 | 61.6 |
23 | 62.1 |
24 | 67.1 |
25 | 58.4 |
26 | 58.5 |
27 | 59.5 |
28 | 61.1 |
29 | 61.1 |
30 | 67.1 |
31 | 58.4 |
32 | 58.5 |
33 | 59.4 |
34 | 61.1 |
35 | 61.2 |
36 | 66.9 |
Structure | Band [nm] | Orbital Transition | Transition Contribution [%] |
---|---|---|---|
31 | 556 | 176(HOMO) → 177(LUMO) | 95.7 |
175 → 177 | 1.3 | ||
457 | 174 → 177 | 90.3 | |
172 → 177 | 3.0 | ||
176 → 179 | 2.7 | ||
173 → 177 | 1.3 | ||
32 | 552 | 176(HOMO) → 177(LUMO) | 96.7 |
455 | 175 → 177 | 91.2 | |
173 → 177 | 3.6 | ||
176 → 179 | 3.1 | ||
33 | 552 | 176(HOMO) → 177(LUMO) | 97.1 |
459 | 175 → 177 | 86.7 | |
174 → 177 | 7.7 | ||
176 → 179 | 1.5 | ||
173 → 177 | 1.4 | ||
436 | 174 → 177 | 87.1 | |
175 → 177 | 7.0 | ||
176 → 179 | 2.2 | ||
173 → 177 | 1.2 | ||
34 | 546 | 176(HOMO) → 177(LUMO) | 96.0 |
477 | 175 → 177 | 70.7 | |
174 → 177 | 17.3 | ||
173 → 177 | 6.8 | ||
176 → 179 | 1.1 | ||
427 | 173 → 177 | 82.6 | |
174 → 177 | 10.2 | ||
176 → 179 | 1.9 | ||
172 → 177 | 1.2 | ||
175 → 177 | 1.1 | ||
35 | 539 | 176(HOMO) → 177(LUMO) | 97.3 |
437 | 175 → 177 | 74.5 | |
174 → 177 | 17.2 | ||
176 → 179 | 2.7 | ||
172 → 177 | 1.8 | ||
36 | 503 | 176(HOMO) → 177(LUMO) | 96.8 |
421 | 174 → 177 | 52.5 | |
175 → 177 | 29.4 | ||
172 → 177 | 9.5 | ||
176 → 179 | 3.1 | ||
171 → 177 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymański, S.; Majerz, I. Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins—Natural Photosensitizers of Fagopyrum. Molecules 2022, 27, 3689. https://doi.org/10.3390/molecules27123689
Szymański S, Majerz I. Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins—Natural Photosensitizers of Fagopyrum. Molecules. 2022; 27(12):3689. https://doi.org/10.3390/molecules27123689
Chicago/Turabian StyleSzymański, Sebastian, and Irena Majerz. 2022. "Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins—Natural Photosensitizers of Fagopyrum" Molecules 27, no. 12: 3689. https://doi.org/10.3390/molecules27123689
APA StyleSzymański, S., & Majerz, I. (2022). Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins—Natural Photosensitizers of Fagopyrum. Molecules, 27(12), 3689. https://doi.org/10.3390/molecules27123689