Neuroendocrine–Immune Regulatory Network of Eucommia ulmoides Oliver
Abstract
:1. Introduction
2. Neuroendocrine–Immune Regulatory Network
3. Chemical Compounds of E. ulmoides
4. Pharmacological Effects of E. ulmoides on NEI Network-Associated Diseases
4.1. Cancer
4.2. Alzheimer’s Disease (AD)
4.3. Parkinson’s Disease (PD)
4.4. Hyperlipidemia
4.5. Hypertension
4.6. Diabetes Mellitus (DM)
4.7. Obesity
4.8. Osteoporosis
4.9. Insomnia
4.10. Antimicrobial Activity
5. Preclinical and Clinical Studies
6. The Pharmacology Network of Eucommia ulmoides Oliver
7. Eucommia ulmoides Oliver-Based Products
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, W.R.; Cronquist, A. An integrated system of classification of flowering plants. Brittonia 1982, 34, 268–270. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zhu, W.; Bai, X.; Wang, N.; Liu, S. Study advancement about chemical composition and pharmacological effects of Eucommia ulmoides Oliv. Sci. Technol. Food Ind. 2012, 33, 378–382. [Google Scholar]
- Wang, J.J.; Qin, X.M.; Gao, X.X.; Zhang, B.; Wang, P.Y.; Hao, J.Q.; Du, G.H. Research progress on chemical compounds, pharmacological action, and quality status of Eucommia ulmoides. Chin. Tradit. Herb. Drugs 2019, 48, 3228–3237. [Google Scholar]
- Du, H.Y. Green Book of Eucommia Industry: Report on Development of China’s Eucommia Rubber Resources and Industry; Social Sciences Academic Press: Beijing, China, 2015. [Google Scholar]
- Nakazawa, Y.; Toda, Y. Eucommia ulmoides Oliv.(Eucommiaceae): In vitro culture and the production of iridoids, lignans, and other secondary metabolites. In Medicinal and Aromatic Plants VIII; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 33, pp. 215–231. [Google Scholar]
- He, X.; Wang, J.; Li, M.; Hao, D.; Yang, Y.; Zhang, C.; He, R.; Tao, R. Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014, 151, 78–92. [Google Scholar] [CrossRef]
- Feng, H.; Zhou, H.H.; Ouyang, D.S. Chemical constituents and pharmacology of Eucommia ulmoides Oliv. Chin. J. Clin. Pharmacol. Ther. 2015, 20, 713–720. [Google Scholar]
- National Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science and Technology Press: Beijing, China, 2020; Volume 1.
- Ministry of Health and Welfare. Taiwan Herbal Pharmacopeia, 3rd ed.; Ministry of Health and Welfare: Taipei, Taiwan, 2018.
- Wang, C.Y.; Tang, L.; He, J.W.; Li, J.; Wang, Y.Z. Ethnobotany, Phytochemistry and Pharmacological Properties of Eucommia ulmoides: A Review. Am. J. Chin. Med. 2019, 47, 259–300. [Google Scholar] [CrossRef] [PubMed]
- Hosoo, S.; Koyama, M.; Watanabe, A.; Ishida, R.; Hirata, T.; Yamaguchi, Y.; Yamasaki, H.; Wada, K.; Higashi, Y.; Nakamura, K. Preventive effect of Eucommia leaf extract on aortic media hypertrophy in Wistar-Kyoto rats fed a high-fat diet. Hypertens. Res. 2017, 40, 546–551. [Google Scholar] [CrossRef]
- Bai, M.M.; Shi, W.; Tian, J.M.; Lei, M.; Kim, J.H.; Sun, Y.N.; Kim, Y.H.; Gao, J.M. Soluble epoxide hydrolase inhibitory and anti-inflammatory components from the leaves of Eucommia ulmoides Oliver (duzhong). J. Agric. Food Chem. 2015, 63, 2198–2205. [Google Scholar] [CrossRef]
- Li, Q.; Feng, Y.; He, W.; Wang, L.; Wang, R.; Dong, L.; Wang, C. Post-screening characterisation and in vivo evaluation of an anti-inflammatory polysaccharide fraction from Eucommia ulmoides. Carbohydr. Polym. 2017, 169, 304–314. [Google Scholar] [CrossRef]
- Cho, S.; Hong, R.; Yim, P.; Yeom, M.; Lee, B.; Yang, W.M.; Hong, J.; Lee, H.S.; Hahm, D.H. An herbal formula consisting of Schisandra chinensis (Turcz.) Baill, Lycium chinense Mill and Eucommia ulmoides Oliv alleviates disuse muscle atrophy in rats. J. Ethnopharmacol. 2018, 213, 328–339. [Google Scholar] [CrossRef]
- Luo, D.; Or, T.C.; Yang, C.L.; Lau, A.S. Anti-inflammatory activity of iridoid and catechol derivatives from Eucommia ulmoides Oliver. ACS Chem. Neurosci. 2014, 5, 855–866. [Google Scholar] [CrossRef]
- Liu, B.; Li, C.P.; Wang, W.Q.; Song, S.G.; Liu, X.M. Lignans Extracted from Eucommia Ulmoides Oliv. Protects Against AGEs-Induced Retinal Endothelial Cell Injury. Cell. Physiol. Biochem. 2016, 39, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, L.; Zhou, Z.; Sun, Y.; Wang, M.; Wang, H.; Hou, Z.; Gao, D.; Gao, Q.; Song, L. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions. Sci. Rep. 2016, 6, 26396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashley, N.T.; Demas, G.E. Neuroendocrine-immune circuits, phenotypes, and interactions. Horm. Behav. 2017, 87, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Verburg-van Kemenade, B.M.L.; Cohen, N.; Chadzinska, M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Dev. Comp. Immunol. 2017, 66, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Kerage, D.; Sloan, E.K.; Mattarollo, S.R.; McCombe, P.A. Interaction of neurotransmitters and neurochemicals with lymphocytes. J. Neuroimmunol. 2019, 332, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.J.; Sharma, S. Physiology, Adrenocorticotropic Hormone (ACTH); StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Procaccini, C.; Pucino, V.; De Rosa, V.; Marone, G.; Matarese, G. Neuro-endocrine networks controlling immune system in health and disease. Front. Immunol. 2014, 5, 143. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Huang, Y.; Zhao, L.; Li, Y.; Sun, L.; Zhou, Y.; Qian, G.; Zheng, J.C. IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: A potential role for neuronal glutaminase. J. Neurochem. 2013, 125, 897–908. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Jia, X.; Wang, Q.; Li, Y.; Hu, M.; Tian, L.; Yang, J.; Xing, W.; Zhang, W.; et al. Neuroprotection by IFN-gamma via astrocyte-secreted IL-6 in acute neuroinflammation. Oncotarget 2017, 8, 40065–40078. [Google Scholar] [CrossRef] [Green Version]
- Rovet, J.F. The role of thyroid hormones for brain development and cognitive function. In Paediatric Thyroidology; Karger Publishers: Basel, Switzerland, 2014; Volume 26, pp. 26–43. [Google Scholar]
- Hayashi, R.; Kasahara, Y.; Hidema, S.; Fukumitsu, S.; Nakagawa, K.; Nishimori, K. Oxytocin ameliorates impaired behaviors of high fat diet-induced obese mice. Front. Endocrinol. 2020, 11, 379. [Google Scholar] [CrossRef]
- Geng, C.H.; Wang, C.; Yang, J.; Wang, H.; Ma, R.Q.; Liu, X.; Wang, C.H. Arginine vasopressin improves the memory deficits in Han Chinese patients with first-episode schizophrenia. Peptides 2017, 97, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Topete, D.; Cidlowski, J.A. One hormone, two actions: Anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 2015, 22, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Villa, A.; Rizzi, N.; Vegeto, E.; Ciana, P.; Maggi, A. Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci. Rep. 2015, 5, 15224. [Google Scholar] [CrossRef]
- Maseroli, E.; Cellai, I.; Filippi, S.; Comeglio, P.; Cipriani, S.; Rastrelli, G.; Rosi, M.; Sorbi, F.; Fambrini, M.; Petraglia, F.; et al. Anti-inflammatory effects of androgens in the human vagina. J. Mol. Endocrinol. 2020, 65, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, H.P.; Nair, R.S. Strategies to overcome neuroendocrine immune deficits in aging: Role of neuroendocrine-immune modulators and bioactive plant extracts. Turk. J. Immunol. 2019, 7, S99–S107. [Google Scholar] [CrossRef]
- Jiang, S.H.; Zhang, X.X.; Hu, L.P.; Wang, X.; Li, Q.; Zhang, X.L.; Li, J.; Gu, J.R.; Zhang, Z.G. Systemic regulation of cancer development by neuro-endocrine-immune signaling network at multiple levels. Front. Cell Dev. Biol. 2020, 8, 586757. [Google Scholar] [CrossRef]
- Silverman, M.N.; Heim, C.M.; Nater, U.M.; Marques, A.H.; Sternberg, E.M. Neuroendocrine and immune contributors to fatigue. PM R 2010, 2, 338–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padro, C.J.; Sanders, V.M. Neuroendocrine regulation of inflammation. Semin. Immunol. 2014, 26, 357–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syzon, O.; Voznyak, I.; Dashko, M. Features of some clinical examination parameters in patients with psoriatic arthritis. Wiad. Lek. 2017, 70, 205–207. [Google Scholar]
- Jara, L.J.; Medina, G.; Saavedra, M.A.; Vera-Lastra, O.; Torres-Aguilar, H.; Navarro, C.; del Mercado, M.V.; Espinoza, L.R. Prolactin has a pathogenic role in systemic lupus erythematosus. Immunol. Res. 2017, 65, 512–523. [Google Scholar] [CrossRef]
- Bellavance, M.A.; Rivest, S. The neuroendocrine control of the innate immune system in health and brain diseases. Immunol. Rev. 2012, 248, 36–55. [Google Scholar] [CrossRef]
- Oglodek, E.; Szota, A.; Just, M.; Mos, D.; Araszkiewicz, A. The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacol. Rep. 2014, 66, 776–781. [Google Scholar] [CrossRef]
- Bilbo, S.D.; Klein, S.L. Special Issue: The neuroendocrine-immune axis in health and disease. Horm. Behav. 2012, 62, 187–190. [Google Scholar] [CrossRef]
- Procaccini, C.; La Rocca, C.; Carbone, F.; De Rosa, V.; Galgani, M.; Matarese, G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev. Comp. Immunol. 2017, 66, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Deckx, N.; Lee, W.P.; Berneman, Z.N.; Cools, N. Neuroendocrine immunoregulation in multiple sclerosis. Clin. Dev. Immunol. 2013, 2013, 705232. [Google Scholar] [CrossRef] [PubMed]
- Santana-Galvez, J.; Cisneros-Zevallos, L.; Jacobo-Velazquez, D.A. Chlorogenic acid: Recent advances on Its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [Green Version]
- Peng, S. Preparation of Aucubin and Research on Antioxidant Constutuents from the Leaves of Eucommia ulmoides Oliv. Master’s Thesis, Jishou University, Jishou, China, 2011. [Google Scholar]
- Zhang, Q.; Su, Y.; Zhang, J. Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides oliver leaf. Molecules 2013, 18, 1857–1868. [Google Scholar] [CrossRef]
- Li, Q.; Niu, Y.; Diao, H.; Wang, L.; Chen, X.; Wang, Y.; Dong, L.; Wang, C. In situ sequestration of endogenous PDGF-BB with an ECM-mimetic sponge for accelerated wound healing. Biomaterials 2017, 148, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guo, G.W.; Meng, F.C.; Wang, H.H.; Niu, Y.M.; Zhang, Q.W.; Zhang, J.F.; Wang, Y.T.; Dong, L.; Wang, C.M. A naturally derived, growth factor-binding polysaccharide for therapeutic angiogenesis. ACS Macro Lett. 2016, 5, 617–621. [Google Scholar] [CrossRef]
- Xing, Y.F.; He, D.; Wang, Y.; Zeng, W.; Zhang, C.; Lu, Y.; Su, N.; Kong, Y.H.; Xing, X.H. Chemical constituents, biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver. Food Sci. Hum. Wellness 2019, 8, 177–188. [Google Scholar] [CrossRef]
- Sturmberg, J.P.; Bennett, J.M.; Martin, C.M.; Picard, M. ‘Multimorbidity’ as the manifestation of network disturbances. J. Eval. Clin. Pract. 2017, 23, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Straub, R.H.; Cutolo, M.; Buttgereit, F.; Pongratz, G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J. Intern. Med. 2010, 267, 543–560. [Google Scholar] [CrossRef]
- Fisher, R.E.; Steele, M.; Karrow, N.A. Fetal programming of the neuroendocrine-immune system and metabolic disease. J. Pregnancy 2012, 2012, 792934. [Google Scholar] [CrossRef] [Green Version]
- Shao, P.; Zhang, J.F.; Chen, X.X.; Sun, P.L. Microwave-assisted extraction and purification of chlorogenic acid from by-products of Eucommia Ulmoides Oliver and its potential anti-tumor activity. J. Food Sci. Technol. 2015, 52, 4925–4934. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tan, X.; Li, S.; Yang, S. The total flavonoid of Eucommia ulmoides sensitizes human glioblastoma cells to radiotherapy via HIF-alpha/MMP-2 pathway and activates intrinsic apoptosis pathway. Onco Targets Ther. 2019, 12, 5515–5524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, D.; Shu, L.; Huang, R. Antitumor effects of total flavonoids of Eucommia ulmoides in tumorbearing mice. Chin. J. Clin. Pharmacol. Ther. 2014, 19, 1332–1336. [Google Scholar]
- Fujiwara, A.; Nishi, M.; Yoshida, S.; Hasegawa, M.; Yasuma, C.; Ryo, A.; Suzuki, Y. Eucommicin A, a beta-truxinate lignan from Eucommia ulmoides, is a selective inhibitor of cancer stem cells. Phytochemistry 2016, 122, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Tan, A.; Lv, S.; Chen, B.; Du, A.; Wang, S. Pentacyclic triterpenoids from Eucommia ulmoides and their antitumor activities. Chin. Tradit. Pat. Med. 2019, 41, 1059–1065. [Google Scholar]
- Zhang, S.; Li, X.; Liu, Z.; Wang, Q. Effect of Active Components of Eucommia Ulmoides Leaves on Proliferation and Apoptosis of Colon Cancer Cells. Chin. Arch. Tradit. Chin. Med. 2018, 36, 284–287. [Google Scholar]
- In, M.-J.; Kim, E.J.; Kim, D.C. In vitro anticancer and antioxidant effects of acetone extract of Eucommia ulmoides Oliver leaves. J. Appl. Biol. Chem. 2018, 61, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Luo, Z.G. The mechanism of Eucommia ulmoides total polysaccharides EOP inhibit tumor cell proliferation through upregulating caspase3 expression in lung cancer cell line. Pract. J. Cancer 2018, 33, 1045–1048, 1060. [Google Scholar]
- Zeng, Z.; Li, X.; Zhang, S.; Huang, D. Characterization of Nano Bamboo Charcoal Drug Delivery System for Eucommia ulmoides Extract and Its Anticancer Effect In vitro. Pharmacogn. Mag. 2017, 13, 498–503. [Google Scholar] [PubMed] [Green Version]
- Li, X.H.; Zhang, S.; Liu, Z.L.; Lyu, L.; Dong, X.T. Effect of Eucommia ulmoides leaves extract on invasion and migration of colon cancer cells. Liaoning J. Tradit. Chin. Med. 2018, 45, 1019–1022, 1118. [Google Scholar]
- Kwon, S.H.; Ma, S.X.; Hwang, J.Y.; Ko, Y.H.; Seo, J.Y.; Lee, B.R.; Lee, S.Y.; Jang, C.G. The anti-inflammatory activity of Eucommia ulmoides Oliv. bark. involves NF-kappaB suppression and Nrf2-dependent HO-1 induction in BV-2 microglial cells. Biomol. Ther. 2016, 24, 268–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.H.; Ma, S.X.; Hong, S.I.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells. J. Ethnopharmacol. 2014, 152, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Kim, M.J.; Ma, S.X.; You, I.J.; Hwang, J.Y.; Oh, J.H.; Kim, S.Y.; Kim, H.C.; Lee, S.Y.; Jang, C.G. Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells. J. Ethnopharmacol. 2012, 142, 337–345. [Google Scholar] [CrossRef]
- Kwon, S.H.; Ma, S.X.; Joo, H.J.; Lee, S.Y.; Jang, C.G. Inhibitory effects of Eucommia ulmoides Oliv. bark on scopolamine-induced learning and memory deficits in mice. Biomol. Ther. 2013, 21, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Yin, Q.; Li, D.; Ma, J.; Li, L.; Chai, S.; Guo, H.; Yang, Z. Anti-neuroinflammatory effects of Eucommia ulmoides Oliv. In a Parkinson’s mouse model through the regulation of p38/JNK-Fosl2 gene expression. J. Ethnopharmacol. 2020, 260, 113016. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Shi, F.; Li, M.; Liu, Q.; Yu, B.; Hu, L. Neuroprotective effects of Eucommia ulmoides Oliv. and its bioactive constituent work via ameliorating the ubiquitin-proteasome system. BMC Complement. Altern. Med. 2015, 15, 151. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Hou, J.; Mo, Y.; Ren, M.; Yang, G.; Qu, Z.; Hu, Y. Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice. Eur. J. Pharmacol. 2020, 869, 172857. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, G.; Li, P.; Wang, Y.; Si, C.L.; He, J.; Long, W.; Bai, Y.; Feng, Z.; Wang, X. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-kappaB activation. Chem.-Biol. Interact. 2014, 224, 108–116. [Google Scholar] [CrossRef]
- Lee, G.H.; Lee, H.Y.; Park, S.A.; Shin, T.S.; Chae, H.J. Eucommia ulmoides leaf extract ameliorates steatosis induced by high-fat diet in rats by increasing lysosomal function. Nutrients 2019, 11, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.Y.; Lee, G.H.; Lee, M.R.; Kim, H.K.; Kim, N.Y.; Kim, S.H.; Lee, Y.C.; Kim, H.R.; Chae, H.J. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation. PLoS ONE 2013, 8, e81349. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.F.; Li, B.; Lin, S.M.; Yadav, R.K.; Kim, H.R.; Chae, H.J. Mechanism of the inhibitory effects of Eucommia ulmoides Oliv. cortex extracts (EUCE) in the CCl 4 -induced acute liver lipid accumulation in rats. Int. J. Endocrinol. 2013, 2013, 751854. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.H.; Lee, M.R.; Lee, H.Y.; Kim, S.H.; Kim, H.K.; Kim, H.R.; Chae, H.J. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX. PLoS ONE 2014, 9, e88017. [Google Scholar] [CrossRef]
- Hao, S.; Xiao, Y.; Lin, Y.; Mo, Z.T.; Chen, Y.; Peng, X.F.; Xiang, C.H.; Li, Y.Q.; Li, W.N. Chlorogenic acid-enriched extract from Eucommia ulmoides leaves inhibits hepatic lipid accumulation through regulation of cholesterol metabolism in HepG2 cells. Pharm. Biol. 2016, 54, 251–259. [Google Scholar] [CrossRef]
- Lei, Y.N.; Zhang, X.B. The total flavonoids from Eucommia ulmoides leaves on lowering blood lipid. J. Northwest Univ. 2015, 45, 777–780, 786. [Google Scholar]
- Zhang, R.; Pan, Y.L.; Hu, S.J.; Kong, X.H.; Juan, W.; Mei, Q.B. Effects of total lignans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro. J. Ethnopharmacol. 2014, 155, 104–112. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.I.; Song, M.; Lee, D.; Song, J.; Kim, S.Y.; Park, J.; Choi, H.Y.; Kim, H. Effects of Eucommia ulmoides extract on longitudinal bone growth rate in adolescent female rats. Phytother. Res. 2015, 29, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.L.; Zhang, Y.H.; Cai, J.P.; Zhu, L.H.; Ge, W.J.; Zhang, X. 5-(Hydroxymethyl)-2-furaldehyde inhibits adipogenic and enhances osteogenic differentiation of rat bone mesenchymal stem cells. Nat. Prod. Commun. 2014, 9, 529–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, M.C.; Yang, J.; Yang, D.; Su, Y.F.; Fan, G.W.; Zhu, Y.; Gao, X.M.; Paoletti, R. Estrogenic properties of six compounds derived from Eucommia ulmoides Oliv. and their differing biological activity through estrogen receptors alpha and beta. Food Chem. 2011, 129, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fan, Y.J.; Mehl, C.; Zhu, J.J.; Chen, H.; Jin, L.Y.; Xu, J.H.; Wang, H.M. Eucommia ulmoides Oliv. antagonizes H2O2-induced rat osteoblastic MC3T3-E1 apoptosis by inhibiting expressions of caspases 3, 6, 7, and 9. J. Zhejiang Univ. Sci. B 2011, 12, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhu, W.; Yang, L.; Fei, D.; Fan, J.; Du, L.; Liu, Y. Evaluation of the sedative and hypnotic effects of Eucommiol in Eucommia. Nat. Prod. Res. 2013, 27, 1657–1659. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, Z.; Fei, D.; Liu, Y.; Zhang, M.; Liu, S. Evaluation of the sedative and hypnotic effects of astragalin isolated from Eucommia ulmoides leaves in mice. Nat. Prod. Res. 2017, 31, 2072–2076. [Google Scholar] [CrossRef]
- Ding, Z.J.; Liang, C.; Wang, X.; Yao, X.; Yang, R.H.; Zhang, Z.S.; He, J.J.; Du, H.Y.; Fang, D.; Li, Q. Antihypertensive Activity of Eucommia Ulmoides Oliv: Male Flower Extract in Spontaneously Hypertensive Rats. Evid. Based Complement. Altern. Med. 2020, 2020, 6432173. [Google Scholar] [CrossRef]
- He, K.; Li, X.; Chen, X.; Ye, X.; Huang, J.; Jin, Y.; Li, P.; Deng, Y.; Jin, Q.; Shi, Q.; et al. Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. J. Ethnopharmacol. 2011, 137, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, T.; Hirata, T.; Wada, A.; Kawamura, N.; Yamaguchi, Y.; Fujimura, K.; Ueda, T.; Yurugi, Y.; Soya, H.; Nishibe, S. Chronic administration of Eucommia leaf stimulates metabolic function of rats across several organs. Br. J. Nutr. 2010, 104, 1868–1877. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, T.; Hirata, T.; Hosoo, S.; Nakajima, K.; Wada, A.; Yurugi, Y.; Soya, H.; Matsui, T.; Yamaguchi, A.; Ogata, M.; et al. Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity. J. Nutr. Sci. 2012, 1, e10. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Zhang, S. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells. Evid. Based Complement. Altern. Med. 2016, 2016, 6362094. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.S.; Liu, I.M.; Niu, C.S.; Ku, P.M.; Hsu, C.T.; Cheng, J.T. Eucommia bark (Du-Zhong) improves diabetic nephropathy without altering blood glucose in type 1-like diabetic rats. Drug Des. Devel. Ther. 2016, 10, 971–978. [Google Scholar]
- Do, M.H.; Hur, J.; Choi, J.; Kim, M.; Kim, M.J.; Kim, Y.; Ha, S.K. Eucommia ulmoides ameliorates glucotoxicity by suppressing advanced glycation end-products in diabetic mice kidney. Nutrients 2018, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Sugawa, H.; Ohno, R.; Shirakawa, J.; Nakajima, A.; Kanagawa, A.; Hirata, T.; Ikeda, T.; Moroishi, N.; Nagai, M.; Nagai, R. Eucommia ulmoides extracts prevent the formation of advanced glycation end products. Food Funct. 2016, 7, 2566–2573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.Y.; Deng, X.L.; Huang, W.H.; Li, L.; Li, H.; Jing, X.; Tian, Y.Y.; Lv, P.Y.; Yang, T.L.; Zhou, H.H.; et al. Lignans from the bark of Eucommia ulmoides inhibited Ang II-stimulated extracellular matrix biosynthesis in mesangial cells. Chin. Med. 2014, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Yokoyama, Y.; Tanaka, K.; Benegiamo, G.; Hirayama, A.; Zhu, Q.; Kitamura, N.; Sugizaki, T.; Morimoto, K.; Itoh, H.; et al. Asperuloside Improves Obesity and Type 2 Diabetes through Modulation of Gut Microbiota and Metabolic Signaling. iScience 2020, 23, 101522. [Google Scholar] [CrossRef]
- Lai, L.L.; Lu, H.Q.; Li, W.N.; Huang, H.P.; Zhou, H.Y.; Leng, E.N.; Zhang, Y.Y. Protective effects of quercetin and crocin in the kidneys and liver of obese Sprague-Dawley rats with type 2 diabetes: Effects of quercetin and crocin on T2DM rats. Hum. Exp. Toxicol. 2021, 40, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, H.; Miyazaki, S.; Kurata, R.; Hattori, M.; Hayashi, N.; Kawaguchi, N.; Hirata, T.; Ueda, T.; Fujikawa, T. Eucommia leaf extract induces BDNF production in rat hypothalamus and enhances Lipid metabolism and aerobic glycolysis in rat liver. Curr. Mol. Pharmacol. 2021, 14, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, X.; Lin, E.J.; Wang, C.; Choi, E.Y.; Riban, V.; Lin, B.; During, M.J. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 2010, 142, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, X.M.; Wang, Y.H.; Feng, M.X.; Liu, X.J.; Zhang, Y.L.; Huang, S.; Wu, Z.; Xue, F.; Qin, W.X.; et al. Monoamine oxidase A suppresses hepatocellular carcinoma metastasis by inhibiting the adrenergic system and its transactivation of EGFR signaling. J. Hepatol. 2014, 60, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Nie, H.; Cao, Q.; Zhu, L.; Gong, Y.; Gu, J.; He, Z. Acetylcholine acts on androgen receptor to promote the migration and invasion but inhibit the apoptosis of human hepatocarcinoma. PLoS ONE 2013, 8, e61678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.H.; Li, J.; Dong, F.Y.; Yang, J.Y.; Liu, D.J.; Yang, X.M.; Wang, Y.H.; Yang, M.W.; Fu, X.L.; Zhang, X.X.; et al. Increased serotonin signaling contributes to the Warburg effect in pancreatic tumor cells under metabolic stress and promotes frowth of pancreatic tumors in mice. Gastroenterology 2017, 153, 277–291.e219. [Google Scholar] [CrossRef]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 2018, 4, 17105. [Google Scholar] [CrossRef]
- Chong, C.M.; Su, H.; Lu, J.J.; Wang, Y. The effects of bioactive components from the rhizome of Salvia miltiorrhiza (Danshen) on the characteristics of Alzheimer’s disease. Chin. Med. 2019, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- De Pablo-Fernandez, E.; Breen, D.P.; Bouloux, P.M.; Barker, R.A.; Foltynie, T.; Warner, T.T. Neuroendocrine abnormalities in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2017, 88, 176–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Yu, Z.; Xia, J.; Zhang, X.; Liu, K.; Sik, A.; Jin, M. Anti-Parkinson’s disease activity of phenolic acids from Eucommia ulmoides Oliver leaf extracts and their autophagy activation mechanism. Food Funct. 2020, 11, 1425–1440. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.F.; Bordoni, B. Hyperlipidemia; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Fredrickson, D.S. An international classification of hyperlipidemias and hyperlipoproteinemias. Ann. Intern. Med. 1971, 75, 471–472. [Google Scholar] [CrossRef] [PubMed]
- Freimark, D.; Feinberg, M.S.; Matezky, S.; Hochberg, N.; Shechter, M. Impact of short-term intermittent intravenous dobutamine therapy on endothelial function in patients with severe chronic heart failure. Am. Heart J. 2004, 148, 878–882. [Google Scholar] [CrossRef]
- Szabo, C.; Pacher, P.; Zsengeller, Z.; Vaslin, A.; Komjati, K.; Benko, R.; Chen, M.; Mabley, J.G.; Kollai, M. Angiotensin II-mediated endothelial dysfunction: Role of poly(ADP-ribose) polymerase activation. Mol. Med. 2004, 10, 28–35. [Google Scholar] [CrossRef]
- Cabral, M.D.; Teixeira, P.; Soares, D.; Leite, S.; Salles, E.; Waisman, M. Effects of thyroxine replacement on endothelial function and carotid artery intima-media thickness in female patients with mild subclinical hypothyroidism. Clinics 2011, 66, 1321–1328. [Google Scholar]
- Wilbert-Lampen, U.; Trapp, A.; Modrzik, M.; Fiedler, B.; Straube, F.; Plasse, A. Effects of corticotropin-releasing hormone (CRH) on endothelin-1 and NO release, mediated by CRH receptor subtype R2: A potential link between stress and endothelial dysfunction? J. Psychosom. Res. 2006, 61, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Lee, J.Y.; Joo, H.K.; Cho, E.J.; Kim, C.S.; Lee, S.D.; Park, J.B.; Jeon, B.H. Tat-mediated p66shc transduction decreased phosphorylation of endothelial nitric oxide synthase in endothelial cells. Korean J. Physiol. Pharmacol. 2012, 16, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Picchi, A.; Gao, X.; Belmadani, S.; Potter, B.J.; Focardi, M.; Chilian, W.M.; Zhang, C. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ. Res. 2006, 99, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Lenna, S.; Han, R.; Trojanowska, M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 2014, 66, 530–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, T.; Kobayashi, T.; Wada, A.; Ueda, T.; Fujikawa, T.; Miyashita, H.; Ikeda, T.; Tsukamoto, S.; Nohara, T. Anti-obesity compounds in green leaves of Eucommia ulmoides. Bioorg. Med. Chem. Lett. 2011, 21, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Miyazawa, M.; Kojima, T. The use of Morus alba L. (mulberry) and Eucommia ulmoides (Tochu) leaves as functional foods: A promising approach in the management of hyperlipidemia. J. Tradit. Med. 2010, 27, 225–230. [Google Scholar]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar]
- Nahmod, K.A.; Vermeulen, M.E.; Raiden, S.; Salamone, G.; Gamberale, R.; Fernandez-Calotti, P.; Alvarez, A.; Nahmod, V.; Giordano, M.; Geffner, J.R. Control of dendritic cell differentiation by angiotensin II. FASEB J. 2003, 17, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Kranzhofer, R.; Browatzki, M.; Schmidt, J.; Kubler, W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem. Biophys. Res. Commun. 1999, 257, 826–828. [Google Scholar] [CrossRef]
- Okamura, A.; Rakugi, H.; Ohishi, M.; Yanagitani, Y.; Takiuchi, S.; Moriguchi, K.; Fennessy, P.A.; Higaki, J.; Ogihara, T. Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages. J. Hypertens. 1999, 17, 537–545. [Google Scholar] [CrossRef]
- Kitazono, T.; Padgett, R.C.; Armstrong, M.L.; Tompkins, P.K.; Heistad, D.D. Evidence that angiotensin-II is present in human monocytes. Circulation 1995, 91, 1129–1134. [Google Scholar] [CrossRef]
- Sanchez-Lemus, E.; Benicky, J.; Pavel, J.; Saavedra, J.M. In vivo Angiotensin II AT1 receptor blockade selectively inhibits LPS-induced innate immune response and ACTH release in rat pituitary gland. Brain Behav. Immun. 2009, 23, 945–957. [Google Scholar] [CrossRef] [Green Version]
- Dalbeth, N.; Edwards, J.; Fairchild, S.; Callan, M.; Hall, F.C. The non-thiol angiotensin-converting enzyme inhibitor quinapril suppresses inflammatory arthritis. Rheumatology 2005, 44, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagawa, K.; Nagatani, K.; Komagata, Y.; Yamamoto, K. Angiotensin receptor blockers suppress antigen-specific T cell responses and ameliorate collagen-induced arthritis in mice. Arthritis Rheum. 2005, 52, 1920–1928. [Google Scholar] [CrossRef]
- Yan, J.K.; Ding, L.Q.; Shi, X.L.; Donkor, P.O.; Chen, L.X.; Qiu, F. Megastigmane glycosides from leaves of Eucommia ulmoides Oliver with ACE inhibitory activity. Fitoterapia 2017, 116, 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.Z.; Yang, X.S.; Jiang, Y.H.; Shao, L.L.; Jiang, L.Y.; Yang, C.H. Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics. BioMed Res. Int. 2020, 2020, 4261485. [Google Scholar] [CrossRef]
- Li, J.; Zhao, M.; Jiang, X.; Liu, T.; Wang, M.; Zhao, C. Synergistic therapeutic effects of Duzhong Jiangya Tablets and amlodipine besylate combination in spontaneously hypertensive rats using (1) H-NMR- and MS-based metabolomics. Biomed. Chromatogr. 2020, 34, e4741. [Google Scholar]
- Guo, F.; Zhang, W.; Su, J.; Xu, H.; Yang, H. Prediction of Drug Positioning for Quan-Du-Zhong Capsules Against Hypertensive Nephropathy Based on the Robustness of Disease Network. Front. Pharmacol. 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2010, 38, 602–606. [Google Scholar] [CrossRef]
- Prpic-Krizevac, I.; Canecki-Varzic, S.; Bilic-Curcic, I. Hyperactivity of the hypothalamic-pituitary-adrenal axis in patients with type 2 diabetes and relations with insulin resistance and chronic complications. Wien. Klin. Wochenschr. 2012, 124, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Beauquis, J.; Homo-Delarche, F.; Giroix, M.H.; Ehses, J.; Coulaud, J.; Roig, P.; Portha, B.; De Nicola, A.F.; Saravia, F. Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats. Exp. Neurol. 2010, 222, 125–134. [Google Scholar] [CrossRef]
- Tagawa, N.; Kubota, S.; Kato, I.; Kobayashi, Y. Resveratrol inhibits 11beta-hydroxysteroid dehydrogenase type 1 activity in rat adipose microsomes. J. Endocrinol. 2013, 218, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.B.; Jung, W.H.; Kang, N.S.; Park, J.S.; Bae, G.H.; Kim, H.Y.; Rhee, S.D.; Kang, S.K.; Ahn, J.H.; Jeong, H.G.; et al. Anti-diabetic and anti-inflammatory effect of a novel selective 11beta-HSD1 inhibitor in the diet-induced obese mice. Eur. J. Pharmacol. 2013, 721, 70–79. [Google Scholar] [CrossRef]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity and Overweight. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 20 August 2021).
- Jung, F.U.; Bae, Y.J.; Kratzsch, J.; Riedel-Heller, S.G.; Luck-Sikorski, C. Internalized weight bias and cortisol reactivity to social stress. Cogn. Affect. Behav. Neurosci. 2020, 20, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Herhaus, B.; Petrowski, K. Cortisol stress reactivity to the trier social stress test in obese adults. Obes. Facts 2018, 11, 491–500. [Google Scholar] [CrossRef]
- Peckett, A.J.; Wright, D.C.; Riddell, M.C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 2011, 60, 1500–1510. [Google Scholar] [CrossRef]
- Miranda, R.A.; Torrezan, R.; De Oliveira, J.C.; Barella, L.F.; Da Silva Franco, C.C.; Lisboa, P.C.; Moura, E.G.; Mathias, P.C. HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats. J. Endocrinol. 2016, 230, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquali, R.; Vicennati, V. The abdominal obesity phenotype and insulin resistance are associated with abnormalities of the hypothalamic-pituitary-adrenal axis in humans. Horm. Metab. Res. 2000, 32, 521–525. [Google Scholar] [CrossRef]
- Van den Bergh, J.P.; Van Geel, T.A.; Geusens, P.P. Osteoporosis, frailty and fracture: Implications for case finding and therapy. Nat. Rev. Rheumatol. 2012, 8, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Limmer, A.; Wirtz, D.C. Osteoimmunology: Influence of the immune system on bone regeneration and consumption. Z. Orthop. Unfall. 2017, 155, 273–280. [Google Scholar] [CrossRef]
- Weitzmann, M.N.; Ofotokun, I. Physiological and pathophysiological bone turnover—Role of the immune system. Nat. Rev. Endocrinol. 2016, 12, 518–532. [Google Scholar] [CrossRef]
- Bozec, A.; Zaiss, M.M. T regulatory cells in bone remodelling. Curr. Osteoporos. Rep. 2017, 15, 121–125. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, L.; Zhang, X. Osteoimmunology: Memorandum for rheumatologists. Sci. China Life Sci. 2016, 59, 1241–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayanagi, H. Osteoimmunology and the effects of the immune system on bone. Nat. Rev. Rheumatol. 2009, 5, 667–676. [Google Scholar] [CrossRef]
- Guerrini, M.M.; Takayanagi, H. The immune system, bone and RANKL. Arch. Biochem. Biophys. 2014, 561, 118–123. [Google Scholar] [CrossRef]
- Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.; Fett, N.; Rosenbach, M.; Werth, V.P.; Micheletti, R.G. Prevention and management of glucocorticoid-induced side effects: A comprehensive review: A review of glucocorticoid pharmacology and bone health. J. Am. Acad. Dermatol. 2017, 76, 11–16. [Google Scholar] [CrossRef]
- Weinstein, R.S.; Jilka, R.L.; Parfitt, A.M.; Manolagas, S.C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids—Potential mechanisms of their deleterious effects on bone. J. Clin. Investig. 1998, 102, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Hofbauer, L.C.; Rauner, M. Minireview: Live and let die: Molecular effects of glucocorticoids on bone cells. Mol. Endocrinol. 2009, 23, 1525–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Uyl, D.; Bultink, I.E.; Lems, W.F. Advances in glucocorticoid-induced osteoporosis. Curr. Rheumatol. Rep. 2011, 13, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canalis, E.; Centrella, M.; Burch, W.; McCarthy, T.L. Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J. Clin. Investig. 1989, 83, 60–65. [Google Scholar] [CrossRef]
- Canalis, E.; Delany, A.M. Mechanisms of glucocorticoid action in bone. Ann. N. Y. Acad. Sci. 2002, 966, 73–81. [Google Scholar] [CrossRef]
- Delany, A.M.; Durant, D.; Canalis, E. Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol. Endocrinol. 2001, 15, 1781–1789. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.Q.; Feng, H.; Zhou, H.H.; Ouyang, D.S. Advance of Eucommia ulmoides Oliver. for anti-osteoporosis. Chin. J. Clin. Pharmacol. Ther. 2016, 21, 1434–1440. [Google Scholar]
- Zhao, J.; Yang, T.; Zhao, N.; Ma, T.; Xue, X.; Li, W.; Zhang, L.C. Research progress on osteogenic differentiation of bone marrow mesenchymal stem cells induced by eucommia ulmoides oliv. to prevent and cure osteoporosis related signal pathway. Chin. J. Osteoporosis 2020, 26, 1868–1872. [Google Scholar]
- Li, S. Experimental Study on the Anti-Osteoporosis of Eucommia ulmoides Oliv. Seed Extract. Master’s Thesis, Northwest University, Xi’an, China, 2010. [Google Scholar]
- Li, M.; Xie, R.M.; Sun, W.J. Experimental study on anti-glucocorticoid-induced osteoporosis in mice by total glucoside of Eucommia ulmoides Oliv. seed extract. Chin. Tradit. Pat. Med. 2010, 32, 205–208. [Google Scholar]
- Liu, C.; Guo, F.F.; Xiao, J.P.; Wei, J.Y.; Tang, L.Y.; Yang, H.J. Research advances in chemical constituents and pharmacological activities of different parts of Eucommia ulmoides. China J. Chin. Mater. Med. 2020, 45, 497–512. [Google Scholar]
- Wan, P.; Chen, H.; Guo, Y.; Bai, A.P. Advances in treatment of ulcerative colitis with herbs: From bench to bedside. World J. Gastroenterol. 2014, 20, 14099–14104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, Z.G.; Li, C.; Hu, S.J.; Liu, L.; Wang, J.P.; Mei, Q.B. Du-Zhong (Eucommia ulmoides Oliv.) cortex extract prevent OVX-induced osteoporosis in rats. Bone 2009, 45, 553–559. [Google Scholar] [CrossRef]
- Xiong, W.; Zhao, L. Effect of Eucommia ulmoides with salt water on blood biochemical indexes in senile osteoporosis rats. Lishizhen Med. Mater. Med. Res. 2016, 27, 2623–2624. [Google Scholar]
- Zhu, L.; Qian, X.; Tan, X. Wnt signaling pathway for osteogenic differentiation of bone marrow mesenchymal stem cells induced by eucommia bark. Chin. J. Tissue Eng. Res. 2012, 16, 8520–8523. [Google Scholar]
- Zhang, L.; Mingtao, D.; Dai, P.; Chen, W.; Fang, N.; Chen, L.; Du, C.; Luo, J.; Liu, R. Eucommia leaf promotes rat osteoblast proliferation by activating the phosphorylation of ERK and AKT. Chin. J. Osteoporosis 2013, 19, 217–220. [Google Scholar]
- Chen, L.P.; Deng, M.T.; Du, C.; Fang, N.; Luo, J.; Liu, R.H. A study of quercetin extracted from Eucommia leaf promoting the proliferation of bone marrow derived mesenchymal stem cells through the phosphorylation of REK. Lishizhen Med. Mater. Med. Res. 2014, 25, 2845–2847. [Google Scholar]
- Lin, Q.S.; Zou, X.N.; Zeng, R.F.; Li, Y.J.; Zhang, H.B. Effects of Eucommia Ulmoides Oliv Ethanol Extracts on Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells Via RhoA/ROCK Signaling Pathway. J. Liaoning Univ. Tradit. Chin. Med. 2019, 21, 26–30. [Google Scholar]
- Richardson, G.S.; Roth, T. Future directions in the management of insomnia. J. Clin. Psychiatry 2001, 62 (Suppl. S10), 39–45. [Google Scholar]
- Holsboer, F.; Vonbardeleben, U.; Steiger, A. Effects of intravenous corticotropin-releasing hormone upon sleep-related growth-hormone surge and sleep EEG in Man. Neuroendocrinology 1988, 48, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Born, J.; Spath-Schwalbe, E.; Schwakenhofer, H.; Kern, W.; Fehm, H.L. Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J. Clin. Endocrinol. Metab. 1989, 68, 904–911. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, W.X.; Guo, H.; Liu, S.Y. Sedative and Hypnotic Effects of Water-soluble Alkaloids from Male Flowers of Eucommia. Food Sci. 2011, 32, 296–299. [Google Scholar]
- Wu, D.; Yu, D.; Zhang, Y.; Dong, J.; Li, D.; Wang, D. Metabolite Profiles, Bioactivity, and HPLC Fingerprint of Different Varieties of Eucommia ulmoides Oliv.: Towards the Utilization of Medicinal and Commercial Chinese Endemic Tree. Molecules 2018, 23, 1898. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Gu, W.; Xu, H.Y.; Yang, G.L.; Shan, X.F.; Chen, G.; Wang, C.F.; Qian, A.D. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 2018, 8, 114. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, J.; Xiao, D.; Li, J.; Liu, Y.; Tan, B.; Yin, Y. Eucommia ulmoides Flavones as Potential Alternatives to Antibiotic Growth Promoters in a Low-Protein Diet Improve Growth Performance and Intestinal Health in Weaning Piglets. Animals 2020, 10, 1998. [Google Scholar] [CrossRef]
- Hu, R.; He, Z.; Liu, M.; Tan, J.; Zhang, H.; Hou, D.X.; He, J.; Wu, S. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. J. Anim. Sci. Biotechnol. 2020, 11, 92. [Google Scholar] [CrossRef]
- Jia, C.F.; Yu, W.N.; Zhang, B.L. Manufacture and antibacterial characteristics of Eucommia ulmoides leaves vinegar. Food Sci. Biotechnol. 2020, 29, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Qiu, L.; Luo, S.; Kang, K.; Zhu, M.; Yao, Y. Chemical constituents and antimicrobial activity of wood vinegars at different pyrolysis temperature ranges obtained from Eucommia ulmoides Olivers branches. RSC Adv. 2018, 8, 40941–40949. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Wang, Z.; Peng, S.; Zhang, M.; Duan, Y.; Li, F.; Shi, S.; Yang, Q.; Zhang, C. Dietary supplementation with the extract from Eucommia ulmoides leaves changed epithelial restitution and gut microbial community and composition of weanling piglets. PLoS ONE 2019, 14, e0223002. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Luo, G. The experimental study on hepatitis B virus of total flavone eucommia ulmoides in vitro. J. Mod. Med. Health 2015, 31, 187–191. [Google Scholar]
- Huang, A.G.; Tan, X.P.; Cui, H.B.; Qi, X.Z.; Zhu, B.; Wang, G.X. Antiviral activity of geniposidic acid against white spot syndrome virus replication in red swamp crayfish Procambarus clarkii. Aquaculture 2020, 528, 735533. [Google Scholar] [CrossRef]
- Zhu, M.Q.; Sun, R.C. Eucommia ulmoides Oliver: A Potential Feedstock for Bioactive Products. J. Agric. Food Chem. 2018, 66, 5433–5438. [Google Scholar] [CrossRef]
- Zhou, C.J.; Hao, L.; Li, K.; Hou, X.Q.; Liu, X.L.; Liu, R.X.; Weng, W.C.; Tetsuya, H.; Yoshihiro, Y.; Atsunori, W.; et al. The inhibitive effect of Eucommia ulmoides leaves extract on abdominal fat. Int. J. Endocrinol. Metab. 2011, 31, 368–370. [Google Scholar]
- Triggianese, P.; Perricone, C.; Perricone, R.; De Carolis, C. Prolactin and natural killer cells: Evaluating the neuroendocrine-immune axis in women with primary infertility and recurrent spontaneous abortion. Am. J. Reprod. Immunol. 2015, 73, 56–65. [Google Scholar] [CrossRef]
- Liu, M.; He, Y. Study on the treatment of progesterone capsule combined with Eucommia ulmoides Oliv. granule on threatened abortion patients caused by insufficient corpus luteum during pregnancy. Shaanxi J. Tradit. Chin. Med. 2017, 38, 226–227. [Google Scholar]
- Galvez, I.; Torres-Piles, S.; Hinchado, M.D.; Alvarez-Barrientos, A.; Torralbo-Jimenez, P.; Guerrero, J.; Martin-Cordero, L.; Ortega, E. Immune-neuroendocrine dysregulation in patients with osteoarthritis: A revision and a pilot study. Endocr. Metab. Immune Disord. Drug Targets 2017, 17, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.Y.; Cho, J.H.; Nam, D.; Kim, E.J.; Ha, I.H. Efficacy and safety of Cortex Eucommiae (Eucommia ulmoides Oliver) extract in subjects with mild osteoarthritis: Study protocol for a 12-week, multicenter, randomized, double-blind, placebo-controlled trial. Medicine (Baltimore) 2019, 98, e18318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Disease | Compound | Model | Dosage | Effect | Mechanism | Ref. | |
---|---|---|---|---|---|---|---|
In Vitro | In Vivo | ||||||
Cancer | Chlorogenic acid | AGS cells | 0–2 mg/mL | Cytotoxicity | [51] | ||
Total flavonoids | GBMs cells lines U251, U87, HS683 and A172 and human normal cell HA | H22 tumor-bearing mice | 50–200 mg/kg | Inhibit tumor growth Radiosensitization Induce apoptosis | Increase Bax expression and decrease in Bcl-2 expression; Decrease the ratio of Bcl-2/Bax and downregulate the expression of HIF-1α, MMP-2 as well as Wee1. | [52,53] | |
Eucommicin A | iCSCL-10A-1, iCSCL-10A-2, MCF7, MDA-MB231 cells | 0–100 μM | Cytotoxicity, suppressed tumor sphere formation | [54] | |||
Pentacyclic triterpenoids (betulinic acid, lupeol, and 3-O-laurylbetulinic acid) | Hela, MDA-MB-231, and T47D cells | 3–80 μM | Inhibit tumor cell growth and induce apoptosis | Induce mitochondrial fragmentation and suppress lysosome production in Hela cells. | [55] | ||
Chlorogenic acid | HCT-116, LOVO | 600–1600 µg/mL | Inhibit proliferation and promote apoptosis | [56] | |||
Eucommia ulmoides Oliver leaf (EUL) extract | A549, SNU-C4, HeLa, | 25–200 µg/mL | Inhibit proliferation | [57] | |||
Total Polysaccharides | LLC, KMB-17 | 0.5–8.0 µg/mL | Induce apoptosis and inhibit proliferation | Activate Caspase-3 pathway. | [58] | ||
E. ulmoides extract | HCT116 | 500–800 mg/L | Cytotoxicity | [59] | |||
EUL extract and chlorogenic acid | HCT116, LOVO | 1600 µg/mL | Inhibit invasion and migration | [60] | |||
Alzheimer’s disease (AD) and Parkinson’s disease (PD) | Eucommia ulmoides Oliver bark (EUE) extract | Lipopolysaccharide (LPS)-stimulated BV-2 microglia 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y cells | 2.5–100 μg/mL | Anti-inflammatory Anti-oxidative stress | Inhibit phosphorylation of MAPKs, PI3K/Akt, and GSK-3β, suppress NF-κB activation and induce Nrf2-dependent HO-1 activation; Inhibit reactive oxygen species (ROS) production, mitochondrial dysfunction, and phosphorylation of JNK, PI3K/Akt and GSK-3β, thereby blocking NF-κB nuclear translocation. | [61,62] | |
EUE extract | H2O2 -induced SH-SY5Y cells | Scopolamine-induced ICR mice | 5–20 μg/mL, 5–20 mg/kg | Anti-cytotoxicity Enhance cholinergic signaling | Inhibit cytotoxicity, reduce ROS accumulation, DNA condensation, MMP stabilization, regulate Bcl-2 family proteins, inhibit MAPKs and PI3K/Akt phosphorylation; Decrease the activity of AChE and TBARS, protect BDNF and activate CREB expression. | [63,64] | |
EUE extract | MPTP-induced male C57BL/6J mice | 2.5–10 g/kg, 150–600 mg/kg | Anti-neuroinflammationAnti-PD | Downregulate expression of p38, JNK, and Fosl2, reduce pro-inflammatory factors; Antagonize loss of striatal neurotransmitters and alleviate associated ambulatory motor abnormalities. | [65,66] | ||
Betulin, wogonin, oroxylin A, geniposidic, aucubin | MPP+-induced SH-SY5Y cells | 10 μM | Anti-PD | Ameliorate the ubiquitin-proteasome system. | [66] | ||
Geniposidic acid (GPA) | APP/PS1 mice and C57BL/6J mice | 25, 75 mg/kg | Anti-neuroinflammatory | Inhibit the activation of astrocytes and microglia, down-regulate the expression of pro-inflammatory cytokines and iNOS, upregulate the expression of anti-inflammatory cytokines and Arg-1, and block the TLR4/2-MyD88 signaling pathway by reducing the expression of HMGB-1. | [67] | ||
Macranthoin G | Hydrogen peroxide (H2O2)-induced PC12 cells | 6.25–50 μM | Anti-oxidative stress-mediated cellular injury Anti-PD and anti-AD | Decrease MDA production and ROS levels, increase MMP, restore CAT, GSH-Px and SOD activity, and inhibit NF-κB pathway and activation of IκBα, p38 and ERK. | [68] | ||
Dsylipidemia | EUL extract | High-fat diet (HFD)-induced male Sprague-Dawley | 200 mg/kg | Hepatoprotective | Inhibit ER stress, enhance lysosomal function, and increase autophagic flux associated with inhibition of the mTOR-ER stress pathway. | [69] | |
EUE extract, aucubin and geniposide | Palmitate-induced HepG2 cells HFD-induced female Sprague-Dawley rats | 100 μg/mL extracts, 10 μg/mL aucubin or geniposide | Anti-hepatic dyslipidemia | Inhibit ER stress by increasing V-ATPase activity, reduce hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol; Enhance lysosomal activity and to regulate ER stress. | [70] | ||
EUE extract | CCl4-induced Sprague-Dawley rats | 0.25–1 g/kg | Anti-hepatic dyslipidemia | Increase lysosomal enzyme activity, reduce ER stress by improving Apo B secretion, then inhibit ROS accumulation. | [71] | ||
EUE extract, aucubin, geniposide | BAX-induced HepG2 cells; | HFD-induced female Sprague-Dawley | 100 μg/mL extracts, 10 μg/mL aucubin or geniposide; 0.25–1 g/kg; | Anti-hepatic dyslipidemia | Inhibit cell death through enhancement of lysosome activity; Enhance lysosomal activity to the regulate lysosomal BAX activation and cell death. | [72] | |
CGA enriched-EUL extract | HepG2 cells | 10–80 mg/L; 0.3–600 μM; | Lipid-lowering | Activate AMPK and inhibit SREBP2 and HMGCR to reduce TC synthesis and TG levels, increase ABCA1 and CYP7A1, and enhance TC excretion and bile acid transport, synthesis and excretion. | [73] | ||
Total flavonoid | HFD-induced male Wistar rats | 10–90 mg/kg/day | Anti-hyperlipidemia | Lower serum cholesterol, triglyceride, lipoprotein, apolipoprotein, and density lipoprotein cholesterol levels, increase HDL cholesterol and apolipoprotein A. | [74] | ||
Osteoporosis | Total lignans | Primary cultures of rat osteoblasts | Ovariectomy rat model | 20, 40, or 80 mg/kg/day; 300 μg/mL | Anti-osteoporosis, prevent OVX-induced decrease of bone mass and deterioration of trabecular microarchitecture | Induce primary osteoblastic cell proliferation and differentiation; Increase osteoprotegrin expression and decrease NF-κB ligand expression. | [75] |
EUE extract | Adolescent female rats | 30, 100 mg/kg | Increase longitudinal bone growth rate and enhance osteoblastogenesis | Promote chondrogenesis in the growth plate and increase BMP-2 and IGF-1. | [76] | ||
5-(hydroxymethyl)-2-furaldehyde (5-HMF) | Rat bone mesenchymal stem cells (bMSCs) | 0.05, 0.10, and 0.20 mg/mL | Anti-osteoporosis; inhibit adipogenesis and enhance osteoblastogenesis | Increase ALP, COL1alpha1 (7 days only), OCN and OPN expression, decrease PPARgamma, FABP4, C/EBPalpha and LPL expression. | [77] | ||
Pinoresinol 4′-O-β-d-glucopyranoside, pinoresinol di-O-β-d-glucopyranoside, aucubin, wogonin, baicalein, and α-O-β-d-glucopyranosyl-4,2′,4′-trihydroxydihydrochalcone | MCF-7 cells; MDA-MB-231 cells; Hela cells | 10−6 M, 10−5 M, and 10−4 M | Prevent estrogen deficiency-induced osteoporosis | Activate ER-dependent transcription of estrogen target genes; Exhibit significant difference in ER subtype (α vs. β) selectivity; Proliferation effect on breast cancer cells mediated by the genomic action of Erα. Stimulation of endogenous estrogen-responsive genes (pS2). | [78] | ||
EUL extracts | Rat osteoblastic MC3T3-E1 cells | 6.25, 12.5, 25, 50, and 100 µg/mL | Anti-osteoporosis, restrain cell oxidative damage and increase cell survival rate in a dose-dependent manner | Decrease the expression of caspases 3, 6, 7, and 9. | [79] | ||
Insomnia | Astragalin; Eucommiol | KM mice | 5, 10 and 20 mg/kg; 50, 100, and 200 mg/kg | Reduce spontaneous activity, increase sleep ratio, shorten sleep latency and lengthen sleep time; Reduce the convulsion rate and prolong convulsion latency. | [80,81] | ||
Hypertension | Total flavonoid | Human glioblastoma cells (U251, U87, HS683 and A172) | 0.5–32 μg/mL | Enhance the radiotherapy effect, decrease the cell viability, inhibit migration and invasion, | HIF-α/MMP-2 pathway and intrinsic apoptosis pathway. | [52] | |
Male flower extract | Male spontaneously hypertensive rats, Sprague Dawley rats | 0.05, 0.10, 0.20 g/mL | Reduce blood pressure, promote the expression of ACE2 | Activate the ACE2-Ang-(1–7)-Mas signaling pathways. | [82] | ||
EUL extract | Wistar-Kyoto rats | 5% (w/w, extract/high-fat diet) | Reduce blood pressure, prevent aortic media hypertrophy | [11] | |||
Diabetes mellitus | EUE extract | Streptozotocin (STZ)-induced diabetic rat model | 1.4 g/kg | Reduce the level of plasma glucose | Prohibit the reduction of superoxide dismutase (SOD) activity; Suppress the elevation of malondialdehyde (MDA). | [83] | |
EUL extract and EUL powder | HFD-induced male SD rats | 3%, 9% EUL 3%, 9% EGLP | Improve insulin resistance and decrease plasma glucose level, reduce the production of ATP and the level of triacylglyceride, and regulate fatty acid oxidation | Enhance the use of circulating blood glucose in skeletal muscles. | [84] | ||
Asperuloside | HFD-induced male SD rats | 0.03, 0.1, 0.3 ASP; 5% ELE | Reduce body weight, visceral fat, food intake, and circulating levels of glucose, insulin, triacylglyceride and nonesterified fatty acid | Increase mRNA levels of Cs, Idh3α, Ogdh, Sdha, Comp I, Comp IV, and Comp V in skeletal muscles; Reduce ATP production in WAT; Increase mRNA level of FA transport protein, Cpt1α and Acadvl, suppress Fas mRNA, and activate FA β-oxidation. | [85] | ||
5% chlorogenic acids contained in ELE | HepG2 cells | 200, 400, 500 μg/mL | Promote glucose uptake | Inhibit glucose-6-phosphate displacement enzyme and α-glucosidase. | [86] | ||
E. ulmoides | STZ induced- type 1-like DM rats | 1 g/kg/day oral administration | Decrease the level of blood urea nitrogen and creatinine, improve renal fibrosis, without influencing blood glucose level | Inhibit TGF-β/Smad signaling pathway and suppress expression of TGF-β/connective tissue growth factor. | [87] | ||
EUE extract | STZ-induced mice | 200 mg/kg oral administration | Inhibit production of advanced glycation end products (AGEs) and AGEs receptors | Increase the Glo1 expression and activity; Elevate Nrf2 protein expression and reduce RAGE expression. | [88] | ||
Isoquercetin, 6″-O-acetyl-astragalin, kaempferol, quercetin, rutin, kaempferol 3-O-rutinoside, astragalin | Ribose-gelatin | 0.01, 0.1, 1, 10, 100 μg/mL | Inhibit the formation of AGEs | Block the formation of CML and CMA. | [89] | ||
Lignans | RF/6A cells | STZ-induced male C57BL/6 mice | 25, 50, 75, and 100 μg/mL | Protect endothelial function from AGEs injury and oxidative stress | Regulate Nrf2/HO-1 signaling pathway. | [16] | |
Lignans | RMCs (HBZY-1 cells) | 20, 40, and 80 mg/L | Inhibit the proliferation of mesangial cells | Reduce the mRNA expression of Col I, Col III, Col IV, and fibronectin; Reverse the elevation of aldose reductase. | [90] | ||
Obesity | Asperuloside | Male C57BL/6J mice | 0.25% (w/w) | Reduce liver, epididymal, and mesenteric white adipose tissue, decrease serum triglyceride level | Increase Akkermansia, Parabacteroides, Bacteroides, Sutterella, Anaerostipes, Roseburia, and Coprobacillus abundance Change metabolic level of cecum, Inhibit GLP-1; Reduce the level of tumor necrosis factor alpha (TNFα), monocyte chemoattractant protein 1 (MCP1), and collagen type 1 alpha1 (Col1a1) Increase lipoprotein lipase (Lpl) and carnitine palmitoyl transferase 1 (Cpt1). | [91] | |
EUL extract Asperuloside | HFD-induced male SD rats | 0.03, 0.1, 0.3 ASP; 5% ELE | ASP reduce the body weight, visceral fat, food take, triacylglyceride and nonestesterified fatty acid | Diminish dehydrogenase;Increase Glut4, succinyl CoA synthase; Increase mRNA levels of Cs, Idh3α, Ogdh, Sdha, Comp I, Comp IV and Comp V in skeletal muscles; Increase uncoupling protein 1 in brown adipose tissue mRNA;Reduce ATP production in WAT; Increase mRNA level of FA transport protein, Cpt1α and Acadvl, suppress Fas mRNA, and activate FA β-oxidation. | [85] | ||
Quercetin | Reduce fat accumulation in liver | Decrease the level of plasma lipid. | [92] | ||||
ELE, ELE aroma | Male SD rats | 5% ELE | Promote metabolism of lipid | Elevate the level of Cpt2, Acad, complex II and V mRNA in liver; Increase expression of brain-derived neurotrophic factor, protein kinase, and phospholipase Cγ in hypothalamus. | [93] | ||
ELE extract | Male Wistar-Kyoto rats | 5% ELE | Reduce the body weight gain, visceral and perirenal fat | [11] | |||
CGA-enriched extract from EUE | HepG2 cells | 10, 20, 25, 40, 60, and 80 mg/L | Reduce the lipid in HepG2 cells | Elevate the expression of ABCA1, CYP7A1, and AMPKα2; Reduce the level of SREBP2 and inhibit mRNA and expression of HMGCR. | [73] |
No. | Formulas | Dosage Form | Pharmacological Effects |
---|---|---|---|
1 | San-Bao capsule | Capsule | Strengthen kidney and fill essence, nourish heart, and calm mind. It is used for deficiency of kidney essence and deficiency of heart and blood, resulting in weakness of the waist and legs, impotence and spermatorrhea, dizziness, tinnitus and deafness, palpitation, insomnia, and loss of appetite. |
2 | Tian-Zi-Hong-Nv-Jin capsule | Capsule | Benefit qi and nourish blood, tonify the kidney and warm the uterus, used for qi and blood deficiency, kidney deficiency and coldness in the uterus, irregular menstruation, cold pain in the waist and knees, cold and infertility in the uterus. |
3 | Quan-Du-Zhong capsule | Capsule | Tonify the liver and kidney, strengthen the muscles and bones, and lower blood pressure. Used for kidney deficiency and lumbar pain, weakness of the waist and knees; hypertension. |
4 | Gui-Ling-Ji | Capsule | Strengthen the body and nourish the brain, strengthen the kidneys and tonify the qi, and increase appetite. It is used for kidney deficiency and Yang weakness, memory loss, night dreams with semen overflow, waist thinness and leg weakness, and cough with qi deficiency. |
5 | Zhi-Mai-Kang capsule | Capsule | It is used to reduce food intake, lower lipids, promote blood circulation, and benefit qi and blood. Used for arteriosclerosis and hyperlipidemia caused by internal stagnation and deficiency of qi and blood. |
6 | Ha-Ha-Bu-Shen capsule | Capsule | Strengthen the Yang and benefit the kidney, fill the essence and replenish the blood. For physical weakness, deficiency of vital energy, frequent urination. |
7 | Qiang-Li-Ding-Xuan capsule | Capsule | Lower blood pressure, lipids, and dizziness. For hypertension, arteriosclerosis, hyperlipidemia, headache, dizziness, dizziness, tinnitus, and insomnia caused by the above diseases. |
8 | Tian-Ma-Gou-Teng granule | Granule | Calm the liver and quench wind; clear heat and calm the mind. For headache, dizziness, tinnitus, blurred vision, tremor, insomnia caused by hyperactivity of liver Yang; hypertension. |
9 | Tian-Zhi granule | Granule | Calm the liver and submerge the Yang, tonify the liver and kidney, educate and calm the mind. For dizziness, headache, insomnia, irritability, dryness of the mouth and throat, weakness of the waist and knees, loss of intelligence, slow thinking, poor orientation, and mild to moderate vascular dementia. |
10 | Yun-Kang granule | Granule | Strengthen the spleen and kidney, nourish blood, and calm the fetus. It is used for kidney deficiency and qi and blood weakness type of pre-eclampsia and habitual miscarriage. |
11 | Fu-Bao granule | Granule | Benefit the kidney and blood, regulate qi and relieve pain. It is used in treating weakness of the kidney and stasis in the lower back and legs, distension and pain in the abdomen, leucorrhea, and menstrual leakage; chronic pelvic inflammatory disease and adnexitis. |
12 | Ji-Sheng-Zhui-Feng alcohol | Medicinal wine | Tonify the liver and kidney, dispel wind dampness, and relieve paralysis and pain. It is used for deficiency of liver and kidney, wind cold and dampness paralysis, cold pain in the waist and knees, unfavorable flexion, and extension; rheumatic arthritis, lumbar muscle strain, late stage of bruises and injuries. |
13 | Du-Huo-Ji-Sheng mixture | Mixture | Nourish blood, relax tendons, dispel wind and dampness, and nourish the liver and kidney. It is used for paralysis caused by wind, cold and dampness, deficiency of liver and kidney, and deficiency of qi and blood, which results in cold pain in the waist and knees and unfavorable flexion and extension. |
14 | Tian-Jing-Bu-Shen ointment | Ointment | Warm the kidney and help Yang, tonify essence and blood. Used for deficiency of kidney Yang and deficiency of essence and blood, resulting in weakness of the waist and knees, depression, fear of cold, impotence and spermatorrhea. |
15 | Yun-Kang oral liquid | Oral liquid | Strengthen the spleen and kidney, nourish blood and calm the fetus. Used for kidney deficiency, qi and blood weakness, pre-term abortion and habitual abortion. |
16 | Hen-Gu-Gu-Shang-Yu-He | Oral liquid | Promote healing of fractures by invigorating the blood, tonify the liver and kidneys, connect bones and tendons, relieve swelling and pain. It is used for fresh and old fractures, femoral head necrosis, osteoarthrosis, lumbar intervertebral disc exacerbation. |
17 | Qian-Jin-Zhi-Dai pill | Pill | Strengthen the spleen and tonifying the kidneys, regulate menstruation and stop banding. It is used for menstrual disorders caused by deficiency of the spleen and kidneys, and for the disease of hypermenorrhea, which is characterized by irregular menstrual flow, large amount of menstruation or dripping without lumpiness, or a large amount of hypermenorrhea with white and thin color, fatigue, and weakness of the waist and knees. |
18 | Tian-Ma pill | Pill | Dispel wind and dampness, relieve pain, tonifying the liver and kidney. It is used for paralysis caused by wind dampness and stagnation and liver–kidney deficiency, which is characterized by constriction of limbs, numbness of hands and feet, and pain in the waist and legs. |
19 | Dang-Gui-Bu-Xue pill | Pill | Benefit qi and nourish blood to regulate menstruation. For menstrual disorders caused by deficiency of qi and blood, such as early menstruation, low or high menstrual blood volume, prolonged menstrual period, weakness of limbs. |
20 | Quan-Lu pill | Pill | Tonify the kidney and fill the essence, strengthen the spleen, and benefit the qi. Used for the elderly with weakness of the waist and knees, fatigue, cold in the extremities, and frequent urination due to deficiency of both spleen and kidney. |
21 | Fu-Ke-Yang-Kun pill | Pill | Diversify the liver and qi, nourish the blood, and invigorate the blood. Used for irregular menstruation, amenorrhea, dysmenorrhea, and menstrual headache caused by blood deficiency and liver depression. |
22 | Fu-Ke-Yang-Rong pill | Pill | Nourish qi and blood, relieve liver and depression, eliminate blood stasis, and regulate menstruation. Used for deficiency of qi and blood, liver depression, menstrual disorders, dizziness, blood leakage and blood collapse, anemia, and infertility. |
23 | Shen-Jin-Huo-Luo pill | Pill | Relax tendons and activates collaterals, dispel wind and dampness, warm menstruation and relieve pain. It is used for paralysis caused by wind, cold and dampness, blocking the arteries and veins, and is associated with cold and painful joints of the limbs, unfavorable flexion and extension, numbness of the hands and feet, and paralysis of the body. |
24 | Miao-Ji pill | Pill | Tonify the liver and kidneys, dispel dampness and promote circulation, activate blood circulation and relieving pain. It is used for paralysis caused by deficiency of liver and kidney, wind-dampness, and stagnation, and is associated with pain in the bones, soreness and weakness of the waist and knees, and numbness and constriction of the limbs. |
25 | Qing-E-pill | Pill | Tonify the kidney and strengthen the waist. For kidney deficiency and lumbar pain, unfavorable starting and sitting, and weakness of the knees. |
26 | Shen-Rong-Bao-Tai pill | Pill | Nourish the liver and kidney, tonify the blood and calm the fetus. Used for deficiency of liver and kidney, deficiency of blood, physical weakness, pain in the waist and knees, abdominal cramps, bleeding in pregnancy and fetal disturbance. |
27 | Du-Huo-Ji-Sheng pill | Pill | Nourish blood, relax tendons, dispel wind and dampness, and nourish the liver and kidney. It is used for paralysis caused by wind, cold and dampness, deficiency of liver and kidney, and deficiency of qi and blood, which results in cold pain in the waist and knees and unfavorable flexion and extension. |
28 | Jian-Nao-Bu-Shen tablet | Pill | Strengthen the brain, tonify the kidneys, benefit the qi and strengthen the spleen, calm the mind, and fix the will. It is used for forgetfulness, insomnia, dizziness, tinnitus, palpitations, weakness of the waist and knees, seminal emission due to deficiency of the spleen and kidneys; neurasthenia and sexual dysfunction with the above symptoms. |
29 | Pei-Kun pill | Pill | Tonify qi and blood, nourish the liver and kidney. Used for women with blood deficiency, poor digestion, irregular menstruation, abdominal cold pain, weakened qi and blood, and prolonged infertility. |
30 | Hu-Po-Huan-Qing pill | Pill | Tonify the liver and kidney, clear heat and brighten the eyes. For internal and external cataracts, dilated pupils, diminished vision, night blindness, blurred vision, shyness of the eyes, and tears in the wind due to deficiency of the liver and kidneys and inflammation of deficiency fire. |
31 | Suo-Yang-Gu-Jing pill | Pill | Warm the kidney and consolidate the essence. For soreness of the waist and knees, dizziness, and tinnitus, spermatorrhea and premature ejaculation due to deficiency of kidney Yang. |
32 | Shu-Jin pill | Pill | Dispel wind and dampness, relax tendons, and activate blood. Used for wind-cold dampness paralysis, numbness of limbs, tendon pain and difficulty walking. |
33 | Qiang-Li-Tian-Ma-Du-Zhong pill | Pill | Disperse wind and invigorate blood, sooth tendons and relieve pain. It is used for painful strokes, numbness of the limbs, inconvenience in walking, soreness of the back and legs, headache, and dizziness. |
34 | Shu-Feng-Ding-Tong pill | Pill | Dispel wind and disperse cold, activate blood circulation, and relieve pain. It is used for paralysis caused by wind, cold, and dampness, and blood stasis. |
35 | Yao-Tong pill | Pill | Tonify the kidney and invigorate blood, strengthen tendons, and relieve pain. For low back pain and lumbar muscle strain caused by deficiency of kidney Yang and stasis of blood. |
36 | Tian-Ma-Qu-Feng-Bu tablet | Tablet | Warm the kidney and nourish the liver, expel wind and relieve pain. It is used for paralysis caused by deficiency of liver and kidney and wind dampness entering the ligaments, which is characterized by dizziness and tinnitus, joint pain, weakness of the waist and knees, fear of cold, cold limbs, and numbness of the hands and feet. |
37 | Shen-Yan-Kang-Fu tablet | Tablet | Benefit qi and nourish yin, strengthen the spleen and tonify the kidneys, and clear residual toxins. It is used for edema caused by deficiency of qi and yin, deficiency of spleen and kidney, and water and dampness. |
38 | Shen-Rong-Gu-Ben tablet | Tablet | Tonify qi and nourish blood. Used for tiredness of the limbs, dullness of the face, tinnitus, and dizziness due to deficiency of qi and blood. |
39 | Yao-Tong tablet | Tablet | Tonify the kidney and invigorate blood, strengthen tendons, and relieve pain. For low back pain and lumbar muscle strain caused by deficiency of kidney Yang and blood stasis. |
40 | Er-Shi-Qi-Wei-Ding-Kun pill | Pill | Tonify qi and nourish blood, relieve depression and regulate menstruation, for deficiency of qi and blood, weakness of body, irregular menstruation, menstrual disorders, abdominal pain during menstruation, menorrhagia, lumbago, and weakness of legs. |
41 | Wu-Bi-Shan-Yao pill | Pill | Strengthen the spleen and tonify the kidney. It is used for deficiency of spleen and kidneys, less food and muscle thinning, soreness and weakness of the waist and knees, dizziness, and tinnitus. |
42 | Danlu Tongdu tablet | Tablet | Promote blood circulation and benefit the kidney and the ligament. For intermittent claudication, lumbar and leg pain, restricted movement, soreness and pain in the lower extremities, and dark tongue or petechiae in lumbar spinal stenosis (e.g., thickening of the ligamentum flavum, degenerative changes of the vertebral body, and old disc protrusion) caused by stasis obstructing the directing vessel. |
43 | You-Gui pill | Pill | Warm kidney Yang, fill essence and stop spermatorrhea. It is used for deficiency of kidney Yang, failure of the vital gate fire, coldness of the waist and knees, mental weakness, coldness, and fear of cold, impotence and spermatorrhea, tantalizing thin stools, frequent and clear urination. |
44 | Qiang-Shen tablet | Tablet | Tonify the kidney and fill the essence, benefit the qi and strengthen Yang. It is used for edema, lumbago, spermatorrhea, impotence, premature ejaculation, frequent nocturia caused by deficiency of both yin and Yang; chronic nephritis and long-standing pyelonephritis with the above symptoms. |
No. | Domestic Drugs | Number | Dosage Form | Pharmacological Effects |
---|---|---|---|---|
1 | Quan-Du-Zhong capsule | 1 | Capsule | Lower blood pressure, tonify the liver and kidney, and strengthen the muscles and bones. Used for hypertension, kidney deficiency and lumbar pain, weakness of the waist and knees. |
2 | Du-Zhong-Bu-Tian-Su capsule | 1 | Capsule | Warm the kidney and nourish the heart, strengthen the waist, and calm the mind. Used for soreness and weakness of the lumbar spine, excessive urination at night, neurasthenia. |
3 | Du-Zhong-Ping-Ya capsule | 1 | Capsule | Lower blood pressure and strengthen tendons and bones. Indicated for high blood pressure, dizziness, soreness of the waist and knees, and impotence of the tendons and bones. |
4 | Du-Zhong-Zhuang-Gu capsule | 2 | Capsule | Benefit qi, strengthen the spleen, nourish the liver and waist, activate blood circulation, strengthen the muscles and bones, dispel wind, and dampness. Used for rheumatic paralysis, weakness of tendons and bones, unfavorable flexion and extension, difficult gait, pain in the waist and knees, fearing cold and preferring warmth. |
5 | Fu-Fang-Du-Zhong capsule | 2 | Capsule | For hypertension due to kidney deficiency and liver exuberance. |
6 | Qiang-Li-Tian-Ma-Du-Zhong capsule | 9 | Capsule | It is used for the painful restraint of tendons and veins caused by stroke, numbness of limbs, inconvenience in walking, soreness of back and legs, headache, and dizziness. |
7 | Fu-Fang-Du-Zhong-Zhuang-Yao capsule | 1 | Capsule | It is used for lumbago and knee weakness caused by kidney deficiency, aggravated by exertion, lack of mobility and lack of warmth in the hands and feet. |
8 | Du-Zhong granule | 13 | Granule | Tonify the liver and kidney, strengthen the muscles and bones, calm the fetus, and lower blood pressure. Used for kidney deficiency and lumbago, weakness of the waist and knees, fetal restlessness, pre-term abortion, hypertension. |
9 | Fu-Fang-Du-Zhong-Jian-Gu granule | 1 | Granule | It is used for swelling, pain and dysfunction caused by osteoarthritis of the knee joint. |
10 | Du-Zhong medical wine | 1 | Medical wine | Warm the liver and kidney, tonify the qi and blood, strengthen the tendons and bones, dispel wind and dampness. For deficiency of liver and kidney, impotence of tendons and bones, wind cold and dampness paralysis. |
11 | Fu-Fang-Du-Zhong-Qiang-Yao medical wine | 1 | Medical wine | For kidney Yang deficiency caused by lumbar pain, unfavorable rotation, soreness and weakness of the waist and knees, tiredness, and weakness auxiliary treatment. |
12 | Du-Zhong-Bu-Yao mixture | 1 | Mixture | Tonify the liver and kidney, benefit the vital energy and blood, and strengthen the waist and knees. Used for pain in the waist and legs, fatigue and weakness, mental weakness, and frequent urination. |
13 | Fu-Fang-Du-Zhong-Fu-Zheng mixture | 1 | Mixture | For soreness and weakness of the waist and knees, tiredness and fatigue due to deficiency of the spleen and kidneys, loss of appetite, shortness of breath and fatigue. |
14 | Du-Zhong-Zhuang-Gu pill | 1 | Pill | Benefit qi, strengthen the spleen, nourish the liver and waist, activate blood circulation, strengthen tendons and bones, dispel wind and remove dampness. For the treatment of rheumatic paralysis, weakness of tendons and bones, unfavorable flexion and extension, difficult gait, pain in the waist and knees, fearing cold and preferring warmth. |
15 | Fu-Fang-Du-Zhong pill | 1 | Pill | Tonify the kidney, calm the liver and clear heat. Used for hypertension due to kidney deficiency and liver hyperactivity. |
16 | Shen-Qi-Du-Zhong pill | 1 | Pill | Benefit qi and tonify the kidney. For tiredness and fatigue, soreness and weakness of the waist and knees, forgetfulness, and insomnia. |
17 | Du-Zhong-Bu-Tian-Su pill | 1 | Pill | Warm the kidney and nourish the heart, strengthen the waist, and calm the mind. Used for soreness and weakness of the lumbar spine, excessive urination at night, neurasthenia |
18 | Qiang-Li-Tian-Ma-Du-Zhong pill | 1 | Pill | It is used for the painful restraint of tendons and veins caused by stroke, numbness of limbs, inconvenience in walking, soreness of back and legs, headache, and dizziness. |
19 | Du-Zhong-Ping-Ya tablet | 10 | Tablet | Tonify the liver and kidney, strengthen tendons and bones. For dizziness and dizziness caused by deficiency of liver and kidney, soreness of the waist and knees, impotence of tendons and bones, hypertension. |
20 | Du-Zhong-Jiang-Ya tablet | 3 | Tablet | Tonify the kidney, calm the liver and clear heat. For hypertension due to kidney deficiency and liver exuberance. |
21 | Fu-Fang-Du-Zhong tablet | 3 | Tablet | Tonify the kidney, calm the liver and clear heat. For hypertension due to kidney deficiency and liver hyperactivity. |
22 | Du-Zhong-Bu-Tian-Su tablet | 1 | Tablet | Warm the kidney and nourish the heart, strengthen the waist, and calm the mind. Used for soreness and weakness of the lumbar spine, excessive urination at night, neurasthenia. |
23 | Du-Zhong-Ping-Ya dispersion tablet | 1 | Tablet | Lower blood pressure and strengthen tendons and bones. It is suitable for high blood pressure, dizziness, soreness of the waist and knees, and impotence of tendons and bones. |
24 | Du-Zhong-Shuang-Jiang-Dai tea | 1 | Tea | It has the effect of lowering blood pressure and lipid. Used for hypertension and hyperlipidemia. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Tan, D.-C.; Peng, B.; Yang, L.; Zhang, S.-Y.; Shi, R.-P.; Chong, C.-M.; Zhong, Z.-F.; Wang, S.-P.; Liang, Q.-L.; et al. Neuroendocrine–Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules 2022, 27, 3697. https://doi.org/10.3390/molecules27123697
Zhao Y, Tan D-C, Peng B, Yang L, Zhang S-Y, Shi R-P, Chong C-M, Zhong Z-F, Wang S-P, Liang Q-L, et al. Neuroendocrine–Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules. 2022; 27(12):3697. https://doi.org/10.3390/molecules27123697
Chicago/Turabian StyleZhao, Yi, De-Chao Tan, Bo Peng, Lin Yang, Si-Yuan Zhang, Rui-Peng Shi, Cheong-Meng Chong, Zhang-Feng Zhong, Sheng-Peng Wang, Qiong-Lin Liang, and et al. 2022. "Neuroendocrine–Immune Regulatory Network of Eucommia ulmoides Oliver" Molecules 27, no. 12: 3697. https://doi.org/10.3390/molecules27123697
APA StyleZhao, Y., Tan, D. -C., Peng, B., Yang, L., Zhang, S. -Y., Shi, R. -P., Chong, C. -M., Zhong, Z. -F., Wang, S. -P., Liang, Q. -L., & Wang, Y. -T. (2022). Neuroendocrine–Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules, 27(12), 3697. https://doi.org/10.3390/molecules27123697