Impact of the Cooking Process on Metabolite Profiling of Acanthocereus tetragonus, a Plant Traditionally Consumed in Mexico
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content and Antioxidant Activity of Crude and Cooked Samples of A. tetragonus
2.2. Phytochemical Analysis of A. tetragonus Young Stems
3. Materials and Methods
3.1. Sample Collection and Preparation for Phytochemical Analysis
3.2. Phytochemical Analysis Using UHPLC-PDA-HESI-Orbitrap-MS/MS
MS Parameters
3.3. Total Phenolic Compound Determination
3.4. Antioxidant Activity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Underutilized plants of the Cactaceae family: Nutritional aspects and technological applications. Food Chem. 2021, 362, 130196. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Campohermoso, A.D.; López-Espinosa, A.; Ocampo-Fletes, I. Conocimiento y uso de Cactaceas por familias campesinas en Coxcatlán, Puebla. Ra Ximhai 2010, 6, 347–353. [Google Scholar] [CrossRef]
- Jimenez Sierra, C.L. Las cactáceas mexicanas y los riesgos que enfretan. Rev. Digit. Univ. 2011, 12, 1–23. [Google Scholar]
- Santos-Díaz, M.S.; Pérez-Molphe-Balch, E.; Ramírez-Malagón, R.; Núñez-Palenius, H.G.; Ochoa-Alejo, N.; Tepper, G.H. Species diversity and extinction. In Mexican Threatened Cacti: Current Status and Strategies for Their Conservation; Nova Science: New York, NY, USA, 2010; pp. 1–60. [Google Scholar]
- Goettsch, B.; Hilton-Taylor, C.; Cruz-Piñón, G.; Duffy, J.P.; Frances, A.; Hernández, H.M.; Inger, R.; Pollock, C.; Schipper, J.; Superina, M.; et al. High proportion of cactus species threatened with extinction. Nat. Plants 2015, 1, 15142. [Google Scholar] [CrossRef] [Green Version]
- Porras-Loaiza, A.P.; López-Malo, A. Importancia de los grupos fenólicos en los alimentos. Temas Selectos de Ingeniería de Alimentos 2009, 3, 121–134. [Google Scholar]
- Naz, S.; Gallart-Ayala, H.; Reinke, S.N.; Mathon, C.; Blankley, R.; Chaleckis, R.; Wheelock, C.E. Development of a Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics Method with High Specificity for Metabolite Identification Using All Ion Fragmentation Acquisition. Anal. Chem. 2017, 89, 7933–7942. [Google Scholar] [CrossRef] [Green Version]
- Lacalle-Bergeron, L.; Izquierdo-Sandoval, D.; Sancho, J.V.; López, F.J.; Hernández, F.; Portolés, T. Chromatography hyphenated to high resolution mass spectrometry in untargeted metabolomics for investigation of food (bio)markers. Trends Anal. Chem. 2021, 135, 116161. [Google Scholar] [CrossRef]
- Juárez-Cruz, A.; Goytia-Jiménez, M.A.; Garcia, G. Acanthocereus tetragonus y A. subinermis: Parte de la Diversidad Fitogenética y Gastronómica de México. In Proceedings of the 1er Foro Estudiantil Indígena México, Washington, DC, USA, 6 October 2016. [Google Scholar]
- Nataren-Velazquez, J.; Del Angel-Pérez, A.L.; Megchún-García, J.V.; Ramírez-Herrera, E.; Ibarra-Pérez, F. Colecta y caracterización morfológica del izote (Yucca elephantipes) y cruceta (Acanthocereus tetragonus) del estado de Veracruz. In Prospectiva de la Investigación Agrícola en el Siglo XXI en México; Avendaño Ruiz, B.D., Bautista Ortega, J., Del Angel-Pérez, A.L., Ireta Paredes, A.d.R., Martinez Trejo, G., Pérez Hernández, P., Schwentesius Ridermann, R., Eds.; Universidad Autónoma de Chapingo and Plaza y Valdés, S.L.: Texcoco, México, 2020; pp. 137–149. [Google Scholar]
- Arias, S.; Aquino, D. Familia Cactaceae I. Flora Del Bajío Reg. Adyac. 2019, 209, 1–295. [Google Scholar] [CrossRef]
- Peddler; Potrero del Llano, municipio de Álamo-te mapache, Veracruz, México. Personal communication, 2022.
- Juárez-Cruz, A.; Livera-Muñoz, M.; Sosa-Montes, E.; Goytia-Jiménez, M.A.; González-Hernández, V.A.; Bárcena-Gama, R. Composición química de tallos inmaduros de Acanthocereus spp. e Hylocereus undatus (Haw.) Britton & Rose. Rev. Fitotec. Mex. 2012, 35, 171–175. [Google Scholar]
- Ghafoor, K.; Ahmed, I.A.M.; Doğu, S.; Uslu, N.; Fadimu, G.J.; Juhaimi, F.A.; Babiker, E.E.; Özcan, M.M. The effect of heating temperature on total phenolic content, antioxidant activity, and phenolic compounds of plum and mahaleb fruits. Int. J. Food Eng. 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Zapata, J.E.; Sepúlveda, C.T.; Álvarez, A.C. Kinetics of the thermal degradation of phenolic compounds from achiote leaves (Bixa orellana L.) and its effect on the antioxidant activity. Food Sci. Technol. 2022, 42, 1–8. [Google Scholar] [CrossRef]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Kwack, M.H.; Ahn, J.S.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Preventable effect of L-threonate, an ascorbate metabolite, on androgen-driven balding via repression of dihydrotestosterone-induced dickkopf-1 expression in human hair dermal papilla cells. BMB Rep. 2010, 43, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Escobar, C.A.; Priego-Capote, F.; Luque de Castro, M.D. Characterization of lemon (Citrus limon) polar extract by liquid chromatography-tandem mass spectrometry in high resolution mode. J. Mass Spectrom. 2015, 50, 1196–1205. [Google Scholar] [CrossRef]
- Füzfai, Z.; Molnár-Perl, I. Gas chromatographic–mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives: Analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits. J. Chromatogr. A 2007, 1149, 88–101. [Google Scholar] [CrossRef]
- Best, I.; Casimiro-Gonzales, S.; Portugal, A.; Olivera-Montenegro, L.; Aguilar, L.; Muñoz, A.M.; Ramos-Escudero, F. Phytochemical screening and DPPH radical scavenging activity of three morphotypes of Mauritia flexuosa L.f. from Peru, and thermal stability of a milk-based beverage enriched with carotenoids from these fruits. Heliyon 2020, 6, e05209. [Google Scholar] [CrossRef]
- Cabañas-García, E.; Areche, C.; Gómez-Aguirre, Y.A.; Jáuregui-Rincon, J.; Cruz-Sosa, F.; Pérez-Molphe-Balch, E. Phytochemical profile of Coryphantha macromeris (Engelm.) Britton & Rose (Cactaceae) obtained from in vitro cultures. Rev. Mex. Ing. Quim. 2019, 19, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Mores, S.; Vandenberghe, L.P.S.; Magalhães Júnior, A.I.; de Carvalho, J.C.; de Mello, A.F.M.; Pandey, A.; Soccol, C.R. Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. Bioresour. Technol. 2021, 320, 124426. [Google Scholar] [CrossRef]
- Cabañas-García, E.; Areche, C.; Jáuregui-Rincón, J.; Cruz-Sosa, F.; Pérez-Molphe Balch, E. Phytochemical Profiling of Coryphantha macromeris (Cactaceae) Growing in Greenhouse Conditions Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2019, 24, 705. [Google Scholar] [CrossRef] [Green Version]
- Feitosa Teles, F.F.; Warren Stull, J.; Brown, W.H.; Whiting, F.M. Amino and organic acids of the prickly pear cactus (Opuntia ficus indica L.). J. Sci. Food Agric. 1984, 35, 421–425. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2021, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Petruk, G.; Di Lorenzo, F.; Imbimbo, P.; Silipo, A.; Bonina, A.; Rizza, L.; Piccoli, R.; Monti, D.M.; Lanzetta, R. Protective effect of Opuntia ficus-indica L. cladodes against UVA-induced oxidative stress in normal human keratinocytes. Bioorg. Med. Chem. Lett. 2017, 27, 5485–5489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, F.; Andreu-Coll, L.; Bento-Silva, A.; Serra, A.T.; Mena, P.; Legua, P.; Bronze, M.R. Phytochemical profile of Opuntia ficus-indica (L.) Mill fruits (cv. ´Orito´) stored at different conditions. Foods 2022, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Russo, R.; Negro, C.; De Bellis, L.; Frassinetti, S. Antimicrobial and antibiofilm activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. cladode polyphenolic extracts. Antioxidants 2019, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, E.M.C.; Coelho, M.C.; Ozcan, K.; Pinto, C.A.; Teixeira, J.A.; Saraiva, J.A.; Pintado, M. Emergent technologies for the extraction of antioxidants from prickly pear peel and their antimicrobial activity. Foods 2021, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Missaoui, M.; D’Antuono, I.; D’Imperio, M.; Linsalata, V.; Boukhchina, S.; Logrieco, A.F.; Cardinali, A. Characterization of micronutrients, bioaccessibility and antioxidant activity of prickly pear cladodes as functional ingredient. Molecules 2020, 25, 2176. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Park, S.; Koshizawa, T.; Ueda, M. (R)-Eucomic acid, a leaf-opening factor of the model organism, Lotus japonicus. Tetrahedron 2009, 65, 2136–2141. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef]
- García-Salas, P.; Gómez-Caravaca, A.M.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Identification and quantification of phenolic compounds in diverse cultivars of eggplant grown in different seasons by high-performance liquid chromatography coupled to diode array detector and electrospray-quadrupole-time of flight-mass spectrometry. Food Res. Int. 2014, 57, 114–122. [Google Scholar] [CrossRef]
- Gluchoff-Fiasson, K.; Jay, M.; Viricel, M.R. Flavone O- and C-glycosides from Setaria italica. Phytochemistry 1989, 28, 2471–2475. [Google Scholar] [CrossRef]
- Mohamed, A.I.E.-A.; El-Negoumy, S.I.; Nabiel, A.; Saleh, M. The flavonoids of Cynara sibthorpiana. Biochem. Syst. Ecol. 1988, 16, 285. [Google Scholar] [CrossRef]
- Cha, M.-N.; Jun, H.-I.; Lee, W.-J.; Kim, M.-J.; Kim, M.-K.; Kim, Y.-S. Chemical composition and antioxidant activity of Korean cactus (Opuntia humifusa) fruit. Food Sci. Biotechnol. 2013, 22, 523–529. [Google Scholar] [CrossRef]
- Jun, H.-I.; Cha, M.-N.; Yang, E.-I.; Choi, D.G.; Kim, Y.-S. Physicochemical properties and antioxidant activity of Korean cactus (Opuntia humifusa) cladodes. Hortic Environ. Biotechnol. 2013, 54, 288–295. [Google Scholar] [CrossRef]
- Lim, H.K.; Tan, C.P.; Karim, R.; Ariffin, A.A.; Bakar, J. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chem. 2010, 119, 1326–1331. [Google Scholar] [CrossRef]
- Chahdoura, H.; Barreira, J.C.M.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Achour, L. Seeds of Opuntia spp. as a novel high potential by-product: Phytochemical characterization and antioxidant activity. Ind. Crops Prod. 2015, 65, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Fernández-López, J.A.; Almela, L.; Obón, J.M.; Castellar, R. Determination of Antioxidant Constituents in Cactus Pear Fruits. Plant Foods Hum. Nutr. 2010, 65, 253–259. [Google Scholar] [CrossRef]
- Abouseadaa, H.H.; Atia, M.A.M.; Younis, I.Y.; Issa, M.Y.; Ashour, H.A.; Saleh, I.; Osman, G.H.; Arif, I.A.; Mohsen, E. Gene-targeted molecular phylogeny, phytochemical profiling, and antioxidant activity of nine species belonging to family Cactaceae. Saudi J. Biol. Sci. 2020, 27, 1649–1658. [Google Scholar] [CrossRef]
- Ammar, I.; Ennouri, M.; Attia, H. Phenolic content and antioxidant activity of cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method. Ind. Crops Prod. 2015, 64, 97–104. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Yahia, E.M.; Mondragon-Jacobo, C. Nutritional components and anti-oxidant capacity of ten cultivars and lines of cactus pear fruit (Opuntia spp.). Food Res. Int. 2011, 44, 2311–2318. [Google Scholar] [CrossRef]
- Kuti, J.O. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Saïdani Tounsi, M.; Ouerghemmi, I.; Ksouri, R.; Aidi Wannes, W.; Hammrouni, I.; Marzouk, B. HPLC-Determination of Phenolic Composition and Antioxidant Capacity of Cactus Prickly Pears Seeds. Asian J. Chem. 2011, 11, 1006–1010. [Google Scholar]
- Cruz-Bravo, R.K.; Guzmán-Maldonado, S.H.; Araiza-Herrera, H.A.; Zegbe, J.A. Storage alters physicochemical characteristics, bioactive compounds and antioxidant capacity of cactus pear fruit. Postharvest Biol. Technol. 2019, 150, 105–111. [Google Scholar] [CrossRef]
- De Leo, M.; Abreu, M.B.D.; Pawlowska, A.M.; Cioni, P.L.; Braca, A. Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochem. Lett. 2010, 3, 48–52. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef]
- Morales, P.; Barros, L.; Ramírez-Moreno, E.; Santos-Buelga, C.; Ferreira, I.C.F.R. Exploring xoconostle by-products as sources of bioactive compounds. Food Res. Int. 2014, 65, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Aspee, F.; Quispe, C.; Soriano, M.d.P.C.; Fuentes Gonzalez, J.; Hüneke, E.; Theoduloz, C.; Schmeda-Hirschmann, G. Antioxidant activity and characterization of constituents in copao fruits (Eulychnia acida Phil., Cactaceae) by HPLC–DAD–MS/MSn. Food Res. Int. 2014, 62, 286–298. [Google Scholar] [CrossRef]
- Valente, L.M.M.; da Paixão, D.; do Nascimento, A.C.; dos Santos, P.F.P.; Scheinvar, L.A.; Moura, M.R.L.; Tinoco, L.W.; Gomes, L.N.F.; da Silva, J.F.M. Antiradical activity, nutritional potential and flavonoids of the cladodes of Opuntia monacantha (Cactaceae). Food Chem. 2010, 123, 1127–1131. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, Z.-C.; Xie, X.; Lu, Y.; Wang, Z.-C.; Wang, H.; Sha, X.-M. Antihyperglycemic, antioxidant activities of two Acer palmatum cultivars, and identification of phenolics profile by UPLC-QTOF-MS/MS: New natural sources of functional constituents. Ind. Crops Prod. 2016, 89, 522–532. [Google Scholar] [CrossRef]
- Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.-W.; De León-Rodríguez, A.; Fomsgaard, I.S.; Barba de la Rosa, A.P. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J. Food Compos. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Pandurangan, A.K.; Mohebali, N.; Esa, N.M.; Looi, C.Y.; Ismail, S.; Saadatdoust, Z. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. Int. Immunopharmacol. 2015, 28, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tu, Z.; Wang, H.; Zhang, L. Ultrasound-Assisted Extraction Optimization of alpha-Glucosidase Inhibitors from Ceratophyllum demersum L. and Identification of Phytochemical Profiling by HPLC-QTOF-MS/MS. Molecules 2020, 25, 4507. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, A.; Salgado, F.; Caballero, J.; Vargas, R.; Simirgiotis, M.; Areche, C. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor. Int. J. Mol. Sci. 2016, 17, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Areche, C.; Sepúlveda, B. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC–Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simirgiotis, M.J.; Quispe, C.; Areche, C.; Sepúlveda, B. Phenolic Compounds in Chilean Mistletoe (Quintral, Tristerix tetrandus) Analyzed by UHPLC–Q/Orbitrap/MS/MS and Its Antioxidant Properties. Molecules 2016, 21, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-Ciocalteau Reagent for Polyphenolic Assay. Int. J. Food Sci. 2014, 3, 147–156. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
A. tetragonus Sample | Total Phenolic Content Gallic Acid Equivalents (µg mg−1 DW) | DPPH Inhibition (%) |
---|---|---|
Crude | 40.79 ± 1.00 a | 86.44 |
Cooked | 27.52 ± 1.36 b | 5.96 |
Peak | Retention Time (min.) | Uv Max | Tentative Identification | Elemental Composition [M-H]− | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (ppm) | MSn Ions | Sample |
---|---|---|---|---|---|---|---|---|---|
1 | 2.63 | 237 | Threonic acid | C4H7O5− | 135.0299 | 135.0294 | 3.70 | 119.0350, 103.0390 | Crude |
2 | 2.74 | 249 | 2-Hydroxy-Succinic Acid (malic acid) | C4H5O5− | 133.0139 | 133.0134 | 3.76 | 115.0028 | Crude |
3 | 3.10 | 260 | 2-Hydroxy-Succinic Acid (malic acid) isomer | C4H5O5− | 133.0139 | 133.0135 | 3.01 | 115.0028 | Crude |
4 | 3.12 | 262 | Citric acid derivative | C5H7O5− | - | 147.0293 | - | 111.0079 | Cooked |
5 | 3.51 | 265 | Citric acid | C6H7O7− | 191.01973 | 191.0193 | 2.25 | 111.0079 | Crude, cooked |
6 | 3.85 | 262 | Citric acid derivative isomer | C5H7O5− | - | 147.02916 | - | 111.0080 | Crude, cooked |
7 | 11.41 | 281 | Piscidic acid | C11H11O7− | 255.051 | 255.0506 | 1.57 | 193.0498, 165.0549, 149.0600 | Crude |
8 | 12.14 | 250 | Citric acid derivative | C7H11O5− | 175.0612 | 175.0606 | 3.43 | 111.0077 | Crude |
9 | 12.39 | 240, 280 | Eucomic acid | C11H11O6− | 239.0561 | 239.0557 | 1.67 | 195.0656, 165.0550, 149.0600, 133.0650, 107.0493 | Crude, cooked |
10 | 13.17 | 248, 285 | Eucomic acid isomer | C11H11O6− | 239.0561 | 239.0560 | 0.42 | 195.0656, 165.0550, 149.0600, 133.0650, 107.0493 | Cooked |
11 | 13.49 | 250 | Dihydroxybenzoic acid | C7H5O4− | 153.0188 | 153.0188 | 0.00 | 109.0287 | Cooked |
12 | 13.80 | 275, 360 | Luteolin rutinoside | C27H29O15− | 593.1518 | 593.1507 | 1.85 | 285.0399 | Crude, cooked |
13 | 13.91 | 275, 360 | Luteolin rutinoside isomer | C27H29O15− | 593.1518 | 593.1507 | 1.85 | 285.0399 | Crude, cooked |
14 | 14.44 | 280, 335 | Diphenylphenol | C18H13O− | 245.0972 | 245.0928 | 17.95 | 229.1076 | Crude, cooked |
15 | 14.58 | 255, 340 | Sinapic acid | C11H11O5− | 223.0607 | 223.0607 | 0.00 | 179.0708 193.0501 | Crude, cooked |
16 | 15.75 | 315 | 4-Hydroxycinnamic Acid isomer I | C9H7O3− | 163.0396 | 163.0391 | 3.07 | 119.0493 | Crude |
17 | 15.82 | 315 | 4-Hydroxycinnamic Acid isomer II | C9H7O3− | 163.0396 | 163.0400 | 2.45 | 119.0495 | Cooked |
18 | 15.99 | 315 | 4-Hydroxycinnamic Acid isomer III | C9H7O3− | 163.0396 | 163.0400 | 2.45 | 119.0492 | Cooked |
19 | 16.05 | 325 | 4-Hydroxycinnamic Acid isomer IV | C9H7O3− | 163.03958 | 163.03958 | 0.00 | 119.0495 | Cooked |
20 | 16.28 | 250 | Gallic acid | C7H5O5− | 169.0144 | 169.01369 | 4.20 | 125.0235 | Cooked |
21 | 21.8 | 278 | Unknown | C21H36NO6− | - | 398.2549 | - | 353.9409, 340.0991 | Cooked |
22 | 22.03 | 279 | Unknown | C22H38NO6− | - | 412.2705 | - | 291.0549, 252.1563 | Cooked |
23 | 22.72 | 260, 320 | Di-tert-butyl 4-amino-4-(3-(tert-butoxy)-3-oxopropyl)heptanedioate | C22H40NO6− | 414.2861 | 414.2861 | 0.00 | 344.2484, 270.1710 | Cooked |
24 | 23.52 | 1,4-Benzenediol, 2,2’-(6-dodecyne-1,12-diyl) bis [3,6-dimethoxy•] | C28H37O8− | 501.2493 | 501.2493 | 0.00 | 193.0867 | Cooked | |
25 | 24.20 | 285 | linolenic acid derivative | C30H53N6O14− | - | 721.3663 | - | 277.2169 | Cooked |
26 | 24.84 | 290 | Unknown | Not given | - | 562.3153 | - | 341.0167, 268.9643 | Cooked |
27 | 25.25 | 275 | Unknown | C30H55N6O14− | - | 723.3820 | - | 500.3238 302.3297 115.1763 | Cooked |
28 | 25.46 | 278 | Unknown | C29H41N2O11− | - | 593.2735 | - | 468.8837, 321.3711, 2423554 | Cooked |
29 | 25.74 | 270 | Unknown | C27H40O7− | - | 476.2781 | - | 226.2443 | Cooked |
30 | 26.15 | 260 | Dirhamnosyl linolenic acid | C28H47O11− | 559.3124 | 559.3124 | 0.00 | 277.2171 | Cooked |
31 | 26.81 | 275 | Unknown | Not given | - | 197.8075 | - | - | Crude |
32 | 26.86 | 265 | Unknown | C21H43N3O15− | - | 577.2690 | - | 499.1897, 434.2263, 283.1618 | Cooked |
33 | 27.78 | 254, 286 | N,N-dihexyl-4-hydroxy-3,5-dimethoxybenzamide | C21H34NO4− | 364.2493 | 364.2494 | 0.27 | 334.2388, 288.2328 | Cooked |
34 | 28.39 | 270 | Dodecyl 4-O-acetyl-2-O-(4-O-acetyl-6-deoxy-α-L-mannopyranosyl)-6-deoxy-β-D-galactopyranoside | C28H49O11− | 561.3280 | 561.3280 | 0.00 | 515.3221 | Cooked |
35 | 28.98 | 275 | Unknown | C19H38O7− | - | 378.2650 | - | 272.2274, 199.1150, 175.0970, 151.2393 | Cooked |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornejo-Campos, J.; Gómez-Aguirre, Y.A.; Velázquez-Martínez, J.R.; Ramos-Herrera, O.J.; Chávez-Murillo, C.E.; Cruz-Sosa, F.; Areche, C.; Cabañas-García, E. Impact of the Cooking Process on Metabolite Profiling of Acanthocereus tetragonus, a Plant Traditionally Consumed in Mexico. Molecules 2022, 27, 3707. https://doi.org/10.3390/molecules27123707
Cornejo-Campos J, Gómez-Aguirre YA, Velázquez-Martínez JR, Ramos-Herrera OJ, Chávez-Murillo CE, Cruz-Sosa F, Areche C, Cabañas-García E. Impact of the Cooking Process on Metabolite Profiling of Acanthocereus tetragonus, a Plant Traditionally Consumed in Mexico. Molecules. 2022; 27(12):3707. https://doi.org/10.3390/molecules27123707
Chicago/Turabian StyleCornejo-Campos, Jaqueline, Yenny Adriana Gómez-Aguirre, José Rodolfo Velázquez-Martínez, Oscar Javier Ramos-Herrera, Carolina Estefanía Chávez-Murillo, Francisco Cruz-Sosa, Carlos Areche, and Emmanuel Cabañas-García. 2022. "Impact of the Cooking Process on Metabolite Profiling of Acanthocereus tetragonus, a Plant Traditionally Consumed in Mexico" Molecules 27, no. 12: 3707. https://doi.org/10.3390/molecules27123707
APA StyleCornejo-Campos, J., Gómez-Aguirre, Y. A., Velázquez-Martínez, J. R., Ramos-Herrera, O. J., Chávez-Murillo, C. E., Cruz-Sosa, F., Areche, C., & Cabañas-García, E. (2022). Impact of the Cooking Process on Metabolite Profiling of Acanthocereus tetragonus, a Plant Traditionally Consumed in Mexico. Molecules, 27(12), 3707. https://doi.org/10.3390/molecules27123707