Volatile Organic Compounds and Physiological Parameters as Markers of Potato (Solanum tuberosum L.) Infection with Phytopathogens
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Potato Pathogens
3.2. Seed Potatoes Inoculation with Phytopathogens
3.3. Analysis of Volatile Compounds (HS-SPME-GC)
3.4. Growth and Physiological Parameters Analysis
3.4.1. Methods of Plant Cultivation
3.4.2. Assessment of Growth and Physiological Activity Parameters
- Biological condition of the seed potatoes, in terms of their vigor, turgor, rotting, and infection by phytopathogens;
- Percentage of germinating tubers;
- Kinetics of root system development, by assessing every 2 days the percentage of the soil profile area filled by the roots;
- Intensity of gas exchange (net photosynthesis, transpiration, stomata conductivity, and intercellular CO2 content), measured with a TPS-2 apparatus (PP Systems, USA) in the highest positioned fully developed leaves, during the period of most dynamic plant growth [16];
- Index of chlorophyll content, measured with a Minolta SPAD-502 apparatus (Japan) in the highest positioned fully developed leaves, during the period of most dynamic plant growth [16];
- Infestation of seed potatoes, stems, and roots by phytopathogens, assessed throughout the entire plant growth period [14].
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant pathogen interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef]
- Blasioli, S.; Biondi, E.; Samudrala, D.; Spinelli, F.; Cellini, A.; Bertaccini, A.; Cristescu, S.M.; Braschi, I. Identification of Volatile Markers in Potato Brown Rot and Ring Rot by Combined GC-MS and PTR-MS Techniques: Study on in vitro and in vivo Samples. J. Agric. Food Chem. 2014, 62, 337–347. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef]
- Lemfack, M.C.; Gohlke, B.O.; Toguem, S.M.T.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 2.0: A database of microbial volatiles. Nucleic Acids Res. 2018, 46, D1261–D1265. [Google Scholar] [CrossRef] [Green Version]
- Inamdar, A.A.; Morath, S.; Bennett, J.W. Fungal Volatile Organic Compounds: More than Just a Funky Smell? Annu. Rev. Microbiol. 2020, 74, 101–116. [Google Scholar] [CrossRef]
- Wang, A.; Haapalainen, M.; Latvala, S.; Edelenbos, M.; Johansen, A. Discriminant analysis of volatile organic compounds of Fusarium oxysporum f. sp. cepae and Fusarium proliferatum isolates from onions as indicators of fungal growth. Fungal Biol. 2018, 122, 1013–1022. [Google Scholar] [CrossRef]
- Jeleń, H.; Wasowicz, E. Volatile fungal metabolites and their relation to the spoilage of agricultural commodities. Food Rev. Int. 1998, 14, 391–426. [Google Scholar] [CrossRef]
- Mariano, A.P.X.; Ramos, A.L.C.C.; de Oliveira Júnior, A.H.; García, Y.M.; de Paula, A.C.C.F.F.; Silva, M.R.; Augusti, R.; de Araújo, R.L.B.; Melo, J.O.F. Optimization of Extraction Conditions and Characterization of Volatile Organic Compounds of Eugenia klotzschiana O. Berg Fruit Pulp. Molecules 2022, 27, 935. [Google Scholar] [CrossRef]
- Lima, T.d.C.; Santos, R.S.; Silva, S.Y.S.; Santos, D.d.A.; Silva, S.d.C.; Gomes, A.d.A.; Oliveira, M.C.F.; Alves, K.F.; Pinto, L.; Oliveira, M.N. VOCs profile of Colletotrichum spp. as a potential tool for quality control of açaí pulp. Food Chem. 2021, 362, 130150. [Google Scholar] [CrossRef]
- Lees, A.K.; Hilton, A.J. Black dot (Colletotrichum coccodes): An increasingly important disease of potato. Plant Pathol. 2003, 52, 3–12. [Google Scholar] [CrossRef]
- Laddomada, B.; Del Coco, L.; Durante, M.; Presicce, D.S.; Siciliano, P.A.; Fanizzi, F.P.; Logrieco, A.F. Volatile Metabolite Profiling of Durum Wheat Kernels Contaminated by Fusarium poae. Metabolites 2014, 4, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mo, H.; Xu, D.; Hu, H.; Hu, L.; Shuai, L.; Li, H. Determination of volatile organic compounds by HS-GC-IMS to detect different stages of Aspergillus flavus infection in Xiang Ling walnut. Food Sci. Nutr. 2021, 9, 2703–2712. [Google Scholar] [CrossRef] [PubMed]
- Josselin, L.; De Clerck, C.; De Boevre, M.; Moretti, A.; Jijakli, M.H.; Soyeurt, H.; Fauconnier, M.-L. Volatile Organic Compounds Emitted by Aspergillus flavus Strains Producing or Not Aflatoxin B1. Toxins 2021, 13, 705. [Google Scholar] [CrossRef]
- Janas, R.; Górnik, K.; Grzesik, M.; Romanowska-Duda, Z.; van Duijn, B. Effectiveness of pulsed radio frequency in seed quality improvement of vegetable plant species. Int. Agrophys. 2019, 33, 463–471. [Google Scholar] [CrossRef]
- Grzesik, M.; Górnik, K.; Janas, R.; Lewandowski, M.; Romanowska-Duda, Z.; van Duijn, B. High efficiency stratification of apple cultivar Ligol seed dormancy by phytohormones, heat shock and pulsed radio frequency. J. Plant Physiol. 2017, 219, 81–90. [Google Scholar] [CrossRef]
- Grzesik, M.; Romanowska-Duda, Z.; Kalaji, M.H. Effectiveness of Cyanobacteria and green algae in increasing physiological activity and development of willow (Salix viminalis L.) plants in conditions of limited use of synthetic fertilizers. Photosynthetica 2017, 55, 510–521. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Grzesik, M.; Janas, R. Ash from Jerusalem artichoke and biopreparations enhance the growth and physiological activity of sorghum and limit environmental pollution by decreasing artificial fertilization needs. Int. Agrophys. 2020, 34, 365–379. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Grzesik, M.; Janas, R. Maximal efficiency of PSII as a marker of sorghum development fertilized with waste from a biomass biodigestion to methane. Front. Sci. Front. 2019, 9, 1920. [Google Scholar] [CrossRef] [Green Version]
- Romanowska-Duda, Z.; Grzesik, M.; Kalaji, H.M. Phytotoxkit test in growth assessment of corn as an energy plant fertilized with sewage sludge. Environ. Prot. Eng. 2010, 36, 73–81. [Google Scholar]
- Romanowska-Duda, Z.; Janas, R.; Grzesik, M. Application of Phytotoxkit in the quick assessment of ashes suitability as fertilizers in sorghum crops. Int. Agrophys. 2019, 33, 145–152. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Szufa, S.; Grzesik, M.; Piotrowski, K.; Janas, R. The promotive effect of Cyanobacteria and Chlorella sp. foliar biofertilization on growth and metabolic activities of willow (Salix viminalis L.) plants as feedstock production, solid biofuel and biochar as carrier for fertilizers via torrefaction process. Energies 2021, 14, 5262. [Google Scholar] [CrossRef]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Sielski, J.; Grzesik, M.; Romanowska-Duda, Z.; Piotrowski, K.; Lewandowska, W. Acquisition of Torrefied Biomass from Jerusalem Artichoke Grown in a Closed Circular System Using Biogas Plant Waste. Molecules 2020, 25, 3862. [Google Scholar] [CrossRef] [PubMed]
- Badek, B.; Romanowska-Duda, Z.; Grzesik, M.; Kuras, A. Physiological Markers for Assessing Germinability of Lycopersicon esculentum Seeds Primed by Environment-Friendly Methods. Pol. J. Environ. Stud. 2016, 25, 1831–1838. [Google Scholar] [CrossRef]
- Badek, B.; Romanowska-Duda, Z.; Grzesik, M.; van Duijn, B. Rapid evaluation of primed China aster seed (Callistephus chinensis Ness.) germinability using physiological and biochemical markers. J. Hortic. Res. 2014, 22, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Manimekalai, R. Phytoplasma diseases of plants: Molecular diagnostics and way forward. World J. Microbiol. Biotechnol. 2021, 37, 102. [Google Scholar] [CrossRef]
- Niessen, L. Loop-mediated isothermal amplification-based detection of Fusarium graminearum. Methods Mol. Biol. 2013, 968, 177–193. [Google Scholar]
- Toth, I.K.; Bell, K.S.; Holeva, M.C.; Birch, P.R. Soft rot erwiniae: From genes to genomes. Mol. Plant Pathol. 2003, 4, 17–30. [Google Scholar] [CrossRef]
- Atallah, Z.K.; Stevenson, W.R. A Methodology to Detect and Quantify Five Pathogens Causing Potato Tuber Decay Using Real-Time Quantitative Polymerase Chain Reaction. Phytopathology 2006, 96, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Cullen, D.W.; Lees, A.K. Detection of the nec1 virulence gene and its correlation with pathogenicity in Streptomyces species on potato tubers and in soil using conventional and real-time PCR. J. Appl. Microbiol. 2007, 102, 1082–1094. [Google Scholar] [CrossRef]
- Zeki, Ö.C.; Eylem, C.C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. [Google Scholar] [CrossRef]
- Lui, L.H.; Kushalappa, A.C. Response surface models to predict potato tuber infection by Fusarium sambucinum from duration of 786 wetness and temperature, and dry rot lesion expansion from storage time and temperature. Int. J. Food Microbiol. 2002, 76, 19–25. [Google Scholar] [CrossRef]
- Hernández-Aparicio, F.; Lisón, P.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P. Signaling in the Tomato Immunity against Fusarium oxysporum. Molecules 2021, 26, 1818. [Google Scholar] [CrossRef] [PubMed]
- Khorramifar, A.; Rasekh, M.; Karami, H.; Covington, J.A.; Derakhshani, S.M.; Ramos, J.; Gancarz, M. Application of MOS Gas Sensors Coupled with Chemometrics Methods to Predict the Amount of Sugar and Carbohydrates in Potatoes. Molecules 2022, 27, 3508. [Google Scholar] [CrossRef]
- Rusinek, R.; Jelen, H.; Malaga-Tobola, U.; Molenda, M.; Gancarz, M. Influence of Changes in the Level of Volatile Compounds Emitted during Rapeseed Quality Degradation on the Reaction of MOS Type Sensor-Array. Sensors 2020, 20, 3135. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Kate, A.; Mohapatra, D.; Tripathi, M.K.; Ray, H.; Akuli, A.; Ghosh, A.; Modhera, B. Volatile organic compounds (VOCs): Biomarkers for quality management of horticultural commodities during storage through e-sensing. Trends Food Sci. Technol. 2020, 106, 417–433. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Z.; Zou, Y.; Li, W.; He, F.; Huang, X.; Lin, C.; Cai, Q.; Wisniewski, M.; Wu, X. Pre- and postharvest measures used to control decay and mycotoxigenic fungi in potato (Solanum tuberosum L.) during storage. Crit. Rev. Food Sci. Nutr. 2020, 62, 415–428. [Google Scholar] [CrossRef]
- Adolf, B.; Andrade-Piedra, J.; Bittara Molina, F.; Przetakiewicz, J.; Hausladen, H.; Kromann, P.; Lees, A.; Lindqvist-Kreuze, H.; Perez, W.; Secor, G.A. Fungal, Oomycete, and Plasmodiophorid diseases of potato. In The Potato Crop; Springer International Publishing: Cham, Switzerland, 2020; pp. 307–350. [Google Scholar] [CrossRef]
- A’Hara, D. Detection and Identification of Phoma Pathogens of Potato. Methods Mol. Biol. 2015, 1302, 17–27. [Google Scholar] [CrossRef]
- Tomilova, O.G.; Shaldyaeva, E.M.; Kryukova, N.A.; Pilipova, Y.V.; Schmidt, N.S.; Danilov, V.P.; Kryukov, V.Y.; Glupov, V.V. Entomopathogenic fungi decrease Rhizoctonia disease in potato in field conditions. PeerJ 2020, 8, e9895. [Google Scholar] [CrossRef]
- Charkowski, A.; Sharma, K.; Parker, M.L.; Secor, G.A.; Elphinstone, J. Bacterial diseases of potato. In The Potato Crop; Springer International Publishing: Cham, Switzerland, 2020; pp. 351–388. [Google Scholar] [CrossRef]
- Marković, S.; Komić, S.M.; Jelušić, A.; Iličić, R.; Bagi, F.; Stanković, S.; Popović, T. First Report of Pectobacterium versatile Causing Blackleg of Potato in Serbia. Plant Dis. 2022, 106, 312. [Google Scholar] [CrossRef]
- Kothawade, G.S.; Sankaran, S.; Bates, A.A.; Schroeder, B.K.; Khot, L.R. Feasibility of Volatile Biomarker-Based Detection of Pythium Leak in Postharvest Stored Potato Tubers Using Field Asymmetric Ion Mobility Spectrometry. Sensors 2020, 20, 7350. [Google Scholar] [CrossRef]
- Zeringue, H.J.; Bhatnagar, D.; Cleveland, T.E. C15H24 Volatile Compounds Unique to Aflatoxigenic Strains of Aspergillus flavus. Appl. Environ. Microbiol. 1993, 59, 2264–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, J.J.; Berbasova, T.; Sasaki, T.; Jefferson-George, K.; Spakowicz, D.J.; Dunican, B.F.; Portero, C.E.; Narváez-Trujillo, A.; Strobel, S.A. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases. J. Biol. Chem. 2015, 290, 8511–8526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lacy Costello, B.P.J.; Evans, P.; Ewen, R.J.; Gunson, H.E.; Jones, P.R.H.; Ratcliffe, N.M.; Spencer-Phillips, P.T.N. Gas chromatography-mass spectrometry analyses of volatile organic compounds from potato tubers inoculated with Phytophthora infestans or Fusarium coeruleum. Plant Pathol. 2001, 50, 489–496. [Google Scholar] [CrossRef]
- Boivin, M.; Bourdeau, N.; Barnabé, S.; Desgagné-Penix, I. Black spruce extracts reveal antimicrobial and sprout suppressive potentials to prevent potato (Solanum tuberosum L.) losses during storage. J. Agric. Food Res. 2021, 5, 100187. [Google Scholar] [CrossRef]
- Ma, M.; Mu, T.; Zhou, L. Identification of saprophytic microorganisms and analysis of changes in sensory, physicochemical, and nutritional characteristics of potato and wheat steamed bread during different storage periods. Food Chem. 2021, 348, 128927. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Behiry, S.I.; Younes, H.A.; Ashmawy, N.A.; Salem, M.Z.; Márquez-Molina, O.; Barbabosa-Pilego, A. Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microb. Pathog. 2019, 135, 103604. [Google Scholar] [CrossRef]
- Ouellette, E.; Raghavan, G.; Reeleder, R.D.; Greenhalgh, R. Volatile monitoring technique for disease detection in stored potatoes. J. Food Process. Preserv. 1990, 14, 279–300. [Google Scholar] [CrossRef]
- Ngo, T.T.; Dart, P.; Callaghan, M.; Klieve, A.; McNeill, D. Volatile organic compound profiles associated with microbial development in feedlot pellets inoculated with Bacillus amyloliquefaciens H57 probiotic. Animals 2021, 11, 3227. [Google Scholar] [CrossRef]
- O’Leary, J.; Hiscox, J.; Eastwood, D.C.; Savoury, M.; Langley, A.; McDowell, S.W.; Rogers, H.J.; Boddy, L.; Müller, C.T. The whiff of decay: Linking volatile production and extracellular enzymes to outcomes of fungal interactions at different temperatures. Fungal Ecol. 2019, 39, 336–348. [Google Scholar] [CrossRef]
- Buśko, M.; Kulik, T.; Ostrowska, A.; Góral, T.; Perkowski, J. Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. FEMS Microbiol. Lett. 2014, 359, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Achimón, F.; Brito, V.D.; Pizzolitto, R.P.; Zygadlo, J.A. Effect of Carbon Sources on the Production of Volatile Organic Compounds by Fusarium verticillioides. J. Fungi 2022, 8, 158. [Google Scholar] [CrossRef]
- Sangjan, W.; Marzougui, A.; Mattinson, D.S.; Schroeder, B.K.; Bates, A.A.; Khot, L.R.; Sankaran, S. Identification of volatile biomarkers for high-throughput sensing of soft rot and Pythium leak diseases in stored potatoes. Food Chem. 2021, 370, 130910. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Sørensen, A.; Ahamed, A.; Ahring, B.K. Production of hydrocarbons by Aspergillus carbonarius ITEM 5010. Fungal Biol. 2015, 119, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Suwannarach, N.; Bussaban, B.; Nuangmek, W.; Pithakpol, W.; Jirawattanakul, B.; Matsui, K.; Lumyong, S. Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J. Sci. Food Agric. 2016, 96, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Moisan, K.; Raaijmakers, J.M.; Dicke, M.; Lucas-Barbosa, D.; Cordovez, V. Volatiles from soil-borne fungi affect directional growth of roots. Plant Cell Environ. 2021, 44, 339–345. [Google Scholar] [CrossRef]
- Dresow, J.F.; Böhm, H. The influence of volatile compounds of the flavour of raw, boiled and baked potatoes: Impact of agricultural measures on the volatile components. Landbauforsch.—vTI Agric. For. Res. 2009, 59, 309–338. [Google Scholar]
- Kanchiswamy, C.N.; Malnoy, M.; Maffei, M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 2015, 6, 151. [Google Scholar] [CrossRef] [Green Version]
- Siddiquee, S.; Cheong, B.E.; Taslima, K.; Kausar, H.; Hasan, M.M. Separation and Identification of Volatile Compounds from Liquid Cultures of Trichoderma harzianum by GC-MS using Three Different Capillary Columns. J. Chromatogr. Sci. 2012, 50, 358–367. [Google Scholar] [CrossRef] [Green Version]
- De Lacy Costello, B.P.J.; Evans, P.; Ewen, R.J.; Gunson, H.E.; Ratcliffe, N.M.; Spencer-Phillips, P.T.N. Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris Piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp. Plant Pathol. 1999, 48, 345–351. [Google Scholar] [CrossRef]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.; Inamdar, A. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins? Toxins (Basel) 2015, 7, 3785–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loulier, J.; Lefort, F.; Stocki, M.; Asztemborska, M.; Szmigielski, R.; Siwek, K.; Grzywacz, T.; Hsiang, T.; Ślusarski, S.; Oszako, T.; et al. Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms. Molecules 2020, 25, 5749. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, O.; Li, L.; Ma, J.-B.; Hatab, S.; Xu, L.; Guo, J.-W.; Rasulov, B.A.; Liu, Y.-H.; Hedlund, B.P.; Li, W.-J. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations from Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus against Verticillium dahliae. Front. Microbiol. 2018, 9, 924. [Google Scholar] [CrossRef] [PubMed]
- Alves, Z.; Melo, A.; Figueiredo, A.R.; Coimbra, M.A.; Gomes, A.C.; Rocha, S.M. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains. PLoS ONE 2015, 10, e0143641. [Google Scholar] [CrossRef] [Green Version]
- Waterer, D.R.; Pritchard, M.K. Volatile monitoring as a technique for differentiating between E. carotovora and C. sepedonicum infections in stored potatoes. Am. Potato J. 1984, 61, 345–353. [Google Scholar] [CrossRef]
- Rykaczewska, K. Assessment of potato mother tubers vigour using the method of accelerated ageing (AA). Plant Prod. Sci. 2013, 16, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Stumm, C.; Neuhoff, D.; Köpke, U. Effect of storage temperature during tuber pre-sprouting on sprout and yield development of organically grown potatoes. In Building Organic Bridges, Proceedings of the 4th ISOFAR Scientific Conference at the Organic World Congress, Istanbul, Turkey, 13–15 October 2014; Rahmann, G., Aksoy, U., Eds.; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2014; pp. 445–448. [Google Scholar] [CrossRef]
- COBORU. Results Yield of Cultivars of Agricultural Plants in Post-Registration Experiences in the Kuyavian-Pomeranian Voivodeship Potato 2020. Kujawsko-Pomorski Zespół Porejestrowego Doświadczalnictwa Odmianowego; 2020; pp. 1–11. Available online: https://www.coboru.gov.pl/PlikiWynikow/14_2020_WPDO_19_ZIK.pdf (accessed on 15 April 2022).
- Kołodziejczyk, M.; Szmigiel, A. Chemical composition and selected quality parameters of potato tubers depending on timing and degree of reduction of assimilation area of plants. Fragm. Agron. 2012, 29, 88–94. [Google Scholar]
- Taye, M.; Lommen, W.J.M.; Struik, P.C. Seasonal light interception, radiation use efficiency, growth and tuber production of the tuber crop Plectranthus edulis. Eur. J. Agron. 2013, 45, 153–164. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Mahattanatawee, K.; Goodner, K.L.; Baldwin, E.A. Volatile constituents and character impact compounds of selected Florida’s tropical fruit. In Proceedings of the Annual Meeting of the Florida State Horticultural Society Florida State Horticultural Society, Tampa, FL, USA, 5–7 June 2005; Volume 118, pp. 414–418. [Google Scholar]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov/chemistry (accessed on 20 May 2022).
Photograph | Description | Photograph | Description |
---|---|---|---|
Pectobacterium carotovorum Soft, cream-colored, decaying mass with a characteristic smell. | Alternaria solani White mycelium spots on the whole surface. | ||
Streptomyces scabiei Small, brown scab on the surface. | Alternaria tenuissima White or brown, lumpy mycelium on the surface. The tuber collapsed. | ||
Fusarium oxysporum White, wadded mycelial and spore pads on the surface. Tuber sunken. | Alternaria alternata White mycelium visible on the sprouts. | ||
Fusarium sambucinum White or yellowish-white, wadded mycelial and spore pads on the surface. | Phoma exigua Rotting, lumpy mass. Skin clearly separated from the tuber interior. | ||
Rhizoctonia solani White, wadded mycelium on the surface. Partially soft, foaming mass. | Colletotrichum coccodes Soft mass, clearly separated from the tuber skin. |
Sample | PC 1 | PC 2 | PC 3 | PC 4 |
---|---|---|---|---|
Control | 0.128 | 0.001 | 0.840 | 0.018 |
A. alternata | 0.048 | 0.070 | 0.015 | 0.003 |
A. solani | 0.120 | 0.087 | 0.037 | 0.006 |
A. tenuissima | 0.093 | 0.001 | 0.007 | 0.751 |
C. coccodes | 0.041 | 0.051 | 0.038 | 0.005 |
F. oxysporum | 0.752 | 0.050 | 0.115 | 0.078 |
F. sambucinum | 0.206 | 0.783 | 0.000 | 0.005 |
P. carotovorum | 0.005 | 0.001 | 0.018 | 0.073 |
P. exigua | 0.001 | 0.084 | 0.014 | 0.000 |
R. solani | 0.147 | 0.120 | 0.014 | 0.001 |
S. scabiei | 0.154 | 0.162 | 0.013 | 0.174 |
Marker of Pathogen Infestation | Compound Name | Origin * (M/P) |
---|---|---|
All pathogens: F. oxysporum; F. sambucinum; A. alternata; A. solani; A. tenuissima; R. solani; C. coccodes; P. exigua; S. scabiei; P. carotovorum. | Acetic acid (no. 60) | M [7,45,50,58]; P [58] |
α-Pinene (no. 128) | M [7,44,52,59]; P [58] | |
1-Methyl-3-propylbenzene (no. 13; with exception of A. alternata), | M [60] | |
Decanal (no. 72; with exception of P. carotovorum) | M [7] | |
Methylbenzene (no. 101) | P [58,61] | |
Nonanal (no. 106) | M [45] | |
p-Xylene (no. 119) | M [7,58]; P [58] | |
p-Cymene (no. 111) | M [7] | |
F. oxysporum | 2-Methylheptane (no. 35) 2-Methylhexane (no. 36) 3-Methylhexane (no. 52) 1-Ethyl-4-methylbenzene (no. 12) Cyclohexane (no. 68) Cyclohexanone (no. 69) 2,4-Dimethylhexane (no. 24) 4-Heptanone (no. 57) 1,2,3,-Trimethylcyclopentane (no. 6) 3-Methyloctane (no. 53) | M [53] M [61] M [61] # M [61] M [35] M [7] M [50] # M [61] |
F. sambucinum | Valencene (no. 125) 3-Octanol (no. 54) α-Cubebene (no. 126) α-Guaiene (no. 127) Spiro[3.4]octan-5-one (no. 120) Chamigrene (no. 66) (+)-epi-Bicyclosesquiphellandrene (no. 2) Naphtalene (no. 105) Acenaphtene (no. 59) Dimethyl disulfide (no. 77) 1-Methyl-4-propylbenzene (no. 14) 1-Methylnaphtalene (no. 15) | M [7] M [7] M [7] M [7] M [56] M [7,51] M [7,43] M [7] M [62] M [5,7,63,64,65]; P [58] # M [52,65] |
A. alternata | D-Limonene (no. 78) Pentane (no. 114) Cyclohexane (no. 68) | M [7,44,45,61]; P [58] M [7,49] M [61] |
A. solani | 1-Octen-3-one (no. 18) 3-Carene (no. 36) | M [36,57] M [35] |
A. tenuissima | Isobutylbenzene (no. 96) 2,6,11-Trimethyldodecane (no.26) Benzothiazole (no. 64) β-Cedrene (no. 129) | # M [53] M [45]; P [58] M [64] |
R. solani | 1,2,4-Trimethylbenzene (no. 7) | M [7,52]; P [58] |
C. coccodes | D-Limonene (no. 78) 3-Octanone (no. 55) 4-Methyloctane (no. 58) 1,2,4-Trimethylbenzene (no. 7) | M [7,45,46,61]; P [58] M [7,50,51,53] M [51] M [7,52]; P [58] |
P. exigua | 2-ethyl-1,4-dimethylbenzene (no. 21) 1,2,4-Trimethylcyclopentane (no. 8) 2-Hexanone (no. 33) | M [60] # M [63] |
S. scabiei | 2-Methylbutanal (no. 51) 3-Methylbutanal (no. 50) Eucalyptol (no. 86) 2-Phenylisopropanol (no. 43) Cyclopentanone (no. 70) Hexadecane (no. 89) D-Limonene (no. 78) | M [50,52]; P [58] M [50,52]; P [58] M [7,44] M [66] M [7]; P [7] M [45,52]; P [7] M [7,44,45,61]; P [58] |
P. carotovorum | D-Limonene (no. 78) 2-Butanol (no. 28) | M [7,44,45,61]; P [58] M [7]; P [58] |
Present only in control sample, not infected with pathogens | 1-Butanol (no. 10) 2,6-Dimethylundecane (no. 27) 2-Butanone (no. 29) 2-Pentanone (no. 41) Benzaldehyde (no. 61) Ethyl acetate (no. 81) Undecane (no. 124) | M [53]; P [58] M [53] M [56]; P [58,67] M [7,50,63]; P [61] M [7,52,61] M [7] M [53]; P [58] |
Date of Seed Potatoes Planting to Soil | Phytopathogens Inoculated to Seed Potatoes | Yield of Bulbs from One Plant (g) | Yield of Stems from One Plant (g) | ||
---|---|---|---|---|---|
Fresh Mass (g) | Dry Mass (g) | Fresh Mass (g) | Dry Mass (g) | ||
10.03 | Control | 494.7 b | 84.6 bc | 53.5 c | 29.3 bc |
Fusarium oxysporum | 484.1 a | 82.4 a | 49.9 a | 27.3 a | |
Pectobacterium corotovorum | 485.4 ab | 84.2 ab | 51.9 b | 28.5 b | |
Rhizoctonia solani | 484.8 ab | 83.3 ab | 51.8 b | 28.4 b | |
10.04 | Control | 505.9 d | 86.8 e | 59.9 e | 32.2 e |
Fusarium oxysporum | 484.5 ab | 83.3 ab | 53.6 c | 29.3 bc | |
Pectobacterium corotovorum | 495.7 c | 85.2 cd | 55.4 d | 30.4 d | |
Rhizoctonia solani | 495.4 c | 85.1 cd | 55.2 d | 30.3 d | |
10.05 | Control | 517.3 e | 88.6 f | 67.1 h | 37.2 h |
Fusarium oxysporum | 494.6 bc | 84.9 bcd | 63.0 f | 34.8 f | |
Pectobacterium corotovorum | 506.7 d | 86.6 de | 64.9 g | 35.9 g | |
Rhizoctonia solani | 506.0 d | 86,5 de | 64.6 g | 36.0 g | |
LSD0.05 | 10.0 | 1.8 | 1.5 | 1.0 |
Strains | Origin |
---|---|
Alternaria alternata ŁOCK 408 | Collection of Pure Cultures of Industrial Microorganisms ŁOCK at the Lodz University of Technology (Łódź, Poland) |
Fusarium oxysporum Z154 | Plant Breeding and Acclimatization Institute (IHAR)—National Research Institute (Radzików, Poland) |
Alternaria solani Z184 | |
Pectobacterium carotovorum PCM 2056 * | Polish Collection of Microorganisms of the Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences (Wrocław, Poland) |
Alternaria tenuissima DSM 63360 | German Collection of Microorganisms and Cell Cultures GmbH (DSMZ, Braunschweig, Germany) |
Fusarium sambucinum DSM 62397 | |
Rhizoctonia solani DSM 22843 | |
Colletotrichum coccodes DSM 62126 | |
Phoma exigua DSM 62040 | |
Streptomyces scabiei DSM 4077 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steglińska, A.; Pielech-Przybylska, K.; Janas, R.; Grzesik, M.; Borowski, S.; Kręgiel, D.; Gutarowska, B. Volatile Organic Compounds and Physiological Parameters as Markers of Potato (Solanum tuberosum L.) Infection with Phytopathogens. Molecules 2022, 27, 3708. https://doi.org/10.3390/molecules27123708
Steglińska A, Pielech-Przybylska K, Janas R, Grzesik M, Borowski S, Kręgiel D, Gutarowska B. Volatile Organic Compounds and Physiological Parameters as Markers of Potato (Solanum tuberosum L.) Infection with Phytopathogens. Molecules. 2022; 27(12):3708. https://doi.org/10.3390/molecules27123708
Chicago/Turabian StyleSteglińska, Aleksandra, Katarzyna Pielech-Przybylska, Regina Janas, Mieczysław Grzesik, Sebastian Borowski, Dorota Kręgiel, and Beata Gutarowska. 2022. "Volatile Organic Compounds and Physiological Parameters as Markers of Potato (Solanum tuberosum L.) Infection with Phytopathogens" Molecules 27, no. 12: 3708. https://doi.org/10.3390/molecules27123708
APA StyleSteglińska, A., Pielech-Przybylska, K., Janas, R., Grzesik, M., Borowski, S., Kręgiel, D., & Gutarowska, B. (2022). Volatile Organic Compounds and Physiological Parameters as Markers of Potato (Solanum tuberosum L.) Infection with Phytopathogens. Molecules, 27(12), 3708. https://doi.org/10.3390/molecules27123708