Heteroleptic Copper(I)-Based Complexes Incorporating BINAP and π-Extended Diimines: Synthesis, Catalysis and Biological Applications
Abstract
:1. Introduction
2. Results and Discussion
- Copper-based complexes derived from BINAP with π-extended diimine ligands without ortho-substitution did not show significant different photophysical properties when compared to analogous complexes with the exception of the excited state lifetime, which decreased by approximately an order of magnitude.
- The new BINAP-containing complexes were active in the visible-light Appel-type process, with the Cu(dpq)(BINAP)BF4 complex having slightly better activity than analogous complexes derived from phen of dmp ligands.
- The new BINAP-derived complexes did not afford complexes active for a PCET process.
- In an energy transfer process, high yields of the desired product could be obtained with either BINAP or the dpq, dppz, and ddppz diimines through judicious choice of the accompanying ligand. For example, Cu(dmp)(BINAP)BF4 and Cu(dppz)(XantPhos)BF4 afforded quantitative yields of the product.
- In addition to the photocatalysis, the copper complexes were evaluated for the first time in a medicinal chemistry context against triple-negative breast cancer cell lines. Controls indicated that copper complexes, and not their ligands, were responsible for activity. Encouraging activity was displayed by a homoleptic complex Cu(dppz)2BF4.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 2019, 364, 6439–6450. [Google Scholar] [CrossRef] [PubMed]
- Albini, A.; Fagnoni, M. (Eds.) Handbook of Synthetic Photochemistry; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Teply, F. The twentieth century roots. In Chemical Photocatalysis; De Gruyter: Berlin, Germany, 2013; Volume 111. [Google Scholar]
- Nagib, D.A.; Scott, M.E.; MacMillan, D.W.C. Enantioselective α-Trifluoromethylation of Aldehydes via Photoredox Organocatalysis. J. Am. Chem. Soc. 2009, 131, 10875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwendiman, D.P.; Kutal, C. Catalytic role of copper(I) in the photoassisted valence isomerization of norbornadiene. J. Am. Chem. Soc. 1977, 99, 5677. [Google Scholar] [CrossRef]
- Hertel, R.; Mattay, J.; Runsink, J. Cycloadditions. 30. Copper(I)-catalyzed intramolecular diene-diene cycloaddition reactions and rearrangements. J. Am. Chem. Soc. 1991, 113, 657. [Google Scholar] [CrossRef]
- Mitani, M.; Nakayama, M.; Koyama, K. The cuprous chloride catalyzed addition of halogen compounds to olefins under photo-irradiation. Tetrahedron Lett. 1980, 21, 4457. [Google Scholar] [CrossRef]
- Do, H.-Q.; Bachman, S.; Bissember, A.C.; Peters, J.C.; Fu, G.C. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 2014, 136, 2162. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, D.T.; Choi, J.; Muçoz-Molina, J.M.; Bissember, A.C.; Peters, J.C.; Fu, G.C. A Versatile Approach to Ullmann C–N Couplings at Room Temperature: New Families of Nucleophiles and Electrophiles for Photoinduced, Copper-Catalyzed Processes. J. Am. Chem. Soc. 2013, 135, 13107. [Google Scholar] [CrossRef] [Green Version]
- Paria, S.; Reiser, O. Copper in Photocatalysis. ChemCatChem 2014, 6, 2477. [Google Scholar] [CrossRef]
- Kern, J.-M.; Sauvage, J.-P. Photoassisted C–C coupling via electron transfer to benzylic halides by a bis(di-imine) copper(I) complex. J. Chem. Soc. Chem. Commun. 1987, 546, 546–548. [Google Scholar] [CrossRef]
- Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. [Cu(dap)2Cl] As an Efficient Visible-Light-Driven Photoredox Catalyst in Carbon–Carbon Bond-Forming Reactions. Chem. Eur. J. 2012, 18, 7336–7340. [Google Scholar] [CrossRef]
- Prentice, C.; Morrisson, J.; Smith, A.D.; Zysman-Colman, E. Recent developments in enantioselective photocatalysis. Beilstein J. Org. Chem. 2020, 16, 2363–2441. [Google Scholar] [CrossRef] [PubMed]
- Sandroni, M.; Pellegrin, Y.; Odobel, F.C.R. Heteroleptic bis-diimine copper(I) complexes for applications in solar energy conversion. Comptes Rendus Chim. 2016, 19, 79. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.-P.; Meja, E.; Friedrich, A.; Pazidis, A.; Junge, H.; Surkus, A.-E.; Jackstell, R.; Denurra, S.; Gladiali, S.; Lochbrunner, S.; et al. Photocatalytic Water Reduction with Copper-Based Photosensitizers: A Noble-Metal-Free System. Angew. Chem. Int. Ed. 2013, 52, 419. [Google Scholar] [CrossRef] [PubMed]
- Armaroli, N.; Accorsi, G.; Holler, M.; Moudam, O.; Nierengarten, J.F.; Zhou, Z.; Wegh, R.T.; Welter, R.; Armaroli, N.; Accorsi, G.; et al. Highly Luminescent CuI Complexes for Light-Emitting Electrochemical Cells. Adv. Mater. 2006, 18, 1313. [Google Scholar] [CrossRef]
- Cuttell, D.G.; Kuang, S.-M.; Fanwick, P.E.; McMillin, D.R.; Walton, R.A. Simple Cu(I) Complexes with Unprecedented Excited-State Lifetimes. J. Am. Chem. Soc. 2002, 124, 6. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Perez, A.C.; Collins, S.K. A visible-light-mediated synthesis of carbazoles. Angew. Chem. Int. Ed. 2013, 52, 12696. [Google Scholar] [CrossRef] [PubMed]
- Beatty, J.W.; Stephenson, C.R.J. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis. Acc. Chem. Res. 2015, 48, 1474. [Google Scholar] [CrossRef] [Green Version]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322. [Google Scholar] [CrossRef] [Green Version]
- Arias-Rotondo, D.M.; McCusker, J.K. The photophysics of photoredox catalysis: A roadmap for catalyst design. Chem. Soc. Rev. 2016, 45, 5803. [Google Scholar] [CrossRef]
- Gentry, E.C.; Knowles, R.R. Synthetic Applications of Proton-Coupled Electron Transfer. Acc. Chem. Res. 2016, 49, 1546. [Google Scholar] [CrossRef] [Green Version]
- Knorn, M.; Rawner, T.; Czerwieniec, R.; Reiser, O. [Copper(phenanthroline)(bisisonitrile)]+-Complexes for the Visible-Light-Mediated Atom Transfer Radical Addition and Allylation Reactions. ACS Catal. 2015, 5, 5186. [Google Scholar] [CrossRef]
- Hernandez-Perez, A.C.; Collins, S.K. Heteroleptic Cu-Based Sensitizers in Photoredox Catalysis. Acc. Chem. Res. 2016, 49, 1557. [Google Scholar] [CrossRef] [PubMed]
- Cruché, C.; Neiderer, W.; Collins, S.K. Heteroleptic Copper-Based Complexes for Energy-Transfer Processes: E → Z Isomerization and Tandem Photocatalytic Sequences. ACS Catal. 2021, 11, 8829–8836. [Google Scholar] [CrossRef]
- Sosoe, J.; Cruché, C.; Morin, É.; Collins, S.K. Evaluating Heteroleptic Copper(I)-Based Complexes Bearing π-Extended Diimines in Different Photocatalytic Processes. Can. J. Chem. 2020, 98, 461–465. [Google Scholar] [CrossRef]
- Guo, W.; Engelman, B.J.; Haywood, T.L.; Blok, N.B.; Beaudoin, D.S.; Obare, S.O. Dual fluorescence and electrochemical detection of the organophosphorus pesticides-ethion, malathion and fenthion. Talanta 2011, 87, 276–283. [Google Scholar] [CrossRef]
- Chunhui Dai, C.; Narayanam, J.M.R.; Stephenson, C.R.J. Visible-light-mediated conversion of alcohols to halides. Nat. Chem. 2011, 3, 140. [Google Scholar]
- Minozzi, C.; Grenier-Petel, J.-C.; Parisien-Collette, S.; Collins, S.K. Photocatalyic Appel reaction enabled by copper-based complexes in continuous flow. Beilstein J. Org. Chem. 2018, 14, 2730. [Google Scholar] [CrossRef]
- Tarantino, K.T.; Liu, P.; Knowles, R.R. Catalytic Ketyl-Olefin Cyclizations Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2013, 135, 10022–10025. [Google Scholar] [CrossRef]
- Caron, A.; Morin, É.; Collins, S.K. Bifunctional Copper-Based Photocatalyst for Reductive Pinacol-Type Couplings. ACS Catal. 2019, 9, 9458. [Google Scholar] [CrossRef]
- Michelet, B.; Deldaele, C.; Kajouj, S.; Moucheron, C.; Evano, G. A General Copper Catalyst for Photoredox Transformations of Organic Halides. Org. Lett. 2017, 19, 3576. [Google Scholar] [CrossRef] [Green Version]
- Farney, E.P.; Yoon, T.P. Visible-Light Sensitization of Vinyl Azides by Transition-Metal Photocatalysis. Angew. Chem. Int. Ed. 2014, 53, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.B.; Days, L.C.; Alajroush, D.R.; Faye, K.; Khodour, Y.; Beebe, S.J.; Holder, A.A. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer. Photochem. Photobiol. 2022, 98, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Jia, X.; Wang, C.; Zhen, W.; Jiang, X. Methylene Blue Loaded Cu-Tryptone Complex Nanoparticles: A New Glutathione-Reduced Enhanced Photodynamic Therapy Nanoplatform. ACS Biomater. Sci. Eng. 2019, 5, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.R.; Raza, M.K.; Musib, D.; Roy, M. Selenonaphthaquinone-Based Copper (II) Complexes as the Next-Generation Photochemotherapeutic Agents. Anti-Cancer Agents Med. Chem. 2021, 21, 33–41. [Google Scholar] [CrossRef]
- Wu, W.; Ji, S.; Wu, W.; Shao, J.; Guo, H.; James, T.D.; Zhao, J. Ruthenium(II)–Polyimine–Coumarin Light-Harvesting Molecular Arrays: Design Rationale and Application for Triplet–Triplet-Annihilation-Based Upconversion. Chem. Eur. J. 2012, 18, 4953–4964. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Kumagai, M.; Nakanishi, T.; Fushimi, K.; Hasegawa, Y. First aggregation-induced emission of a Tb(iii) luminophore based on modulation of ligand–ligand charge transfer bands. Dalton Trans. 2020, 49, 2431–2436. [Google Scholar] [CrossRef]
- Roy, N.; Sen, U.; Ray Chaudhuri, S.; Muthukumar, V.; Moharana, P.; Paira, P.; Bose, B.; Gauthaman, A.; Moorthy, A. Mitochondria specific highly cytoselective iridium(iii)–Cp* dipyridophenazine (dppz) complexes as cancer cell imaging agents. Dalton Trans. 2021, 50, 2268–2283. [Google Scholar] [CrossRef]
- Barrientos, L.; Araneda, C.; Loeb, B.; Crivelli, I.G. Synthesis, spectroscopic and electrochemical characterization of copper(I) complexes with functionalized pyrazino[2,3-f]-1,10-phenanthroline. Polyhedron 2008, 27, 1287–1295. [Google Scholar] [CrossRef]
- Plutschack, M.B.; Seeberger, P.H.; Gilmore, K. Visible-Light-Mediated Achmatowicz Rearrangement. Org. Lett. 2017, 19, 30–33. [Google Scholar] [CrossRef] [Green Version]
Entry | NN | PP | Yield (%) a | λ max (nm) | ε (L/mol·cm) | τ (ns) | λ emm (nm) | ET (eV) | E (* CuI/CuII) |
---|---|---|---|---|---|---|---|---|---|
1 | ddpq | 78 | 458 | 6760 | 3 | 680 | 1.82 | −1.36 | |
2 | ddpq | DPEPhos | 84 | 382 | 4485 | 5 | 565 | 2.19 | −1.26 |
3 | ddpq | XantPhos | 85 | 386 | 3444 | 3 | 560 | 2.21 | −1.72 |
4 | ddpq | dppf | 91 | 380 | 3346 | 73 | 530 | 2.34 | −1.15 |
5 | dpq | BINAP | 75 | 424 | 5752 | 1.4 | 625 | 2.38 | −1.02 |
6 | ddppz | 99 | 453 | 14428 | 4 | 762 | 1.63 | −0.90 | |
7 | ddppz | DPEPhos | 78 | 380 | 17508 | 44 | 664 | 1.87 | −1.12 |
8 | ddppz | XantPhos | 91 | 380 | 12489 | 71 | 634 | 1.95 | −0.82 |
9 | ddppz | dppf | 79 | 380 | 17508 | 61 | 510 | 2.43 | −1.59 |
10 | dppz | BINAP | 77 | 433 | 6759 | 1.8 | 545 | 2.27 | −1.26 |
11 | dbdppz | 82 | 412 | 25891 | 78 | 567 | 2.19 | −1.34 | |
12 | dbdppz | DPEPhos | 77 | 409 | 16663 | 69 | 489 | 2.53 | −1.82 |
13 | dbdppz | XantPhos | 50 | 408 | 13754 | 75 | 565 | 2.19 | −1.29 |
14 | dbdppz | dppf | 79 | 413 | 11711 | 69 | 597 | 2.08 | −0.80 |
15 | bdppz | BINAP | 53 | 462 | 5930 | 2.3 | 560 | 2.21 | −1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruché, C.; Gupta, S.; Kodanko, J.; Collins, S.K. Heteroleptic Copper(I)-Based Complexes Incorporating BINAP and π-Extended Diimines: Synthesis, Catalysis and Biological Applications. Molecules 2022, 27, 3745. https://doi.org/10.3390/molecules27123745
Cruché C, Gupta S, Kodanko J, Collins SK. Heteroleptic Copper(I)-Based Complexes Incorporating BINAP and π-Extended Diimines: Synthesis, Catalysis and Biological Applications. Molecules. 2022; 27(12):3745. https://doi.org/10.3390/molecules27123745
Chicago/Turabian StyleCruché, Corentin, Sayak Gupta, Jeremy Kodanko, and Shawn K. Collins. 2022. "Heteroleptic Copper(I)-Based Complexes Incorporating BINAP and π-Extended Diimines: Synthesis, Catalysis and Biological Applications" Molecules 27, no. 12: 3745. https://doi.org/10.3390/molecules27123745
APA StyleCruché, C., Gupta, S., Kodanko, J., & Collins, S. K. (2022). Heteroleptic Copper(I)-Based Complexes Incorporating BINAP and π-Extended Diimines: Synthesis, Catalysis and Biological Applications. Molecules, 27(12), 3745. https://doi.org/10.3390/molecules27123745