Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Remarks
3.2. General Cyclization Procedure of 2-Alkoxyaldoximes 1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern Advances in Heterocyclic Chemistry in Drug Discovery. Org. Biomol. Chem. 2016, 14, 6611–6637. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An Overview of the Key Routes to the Best Selling 5-Membered Ring Heterocyclic Pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–495. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Baxendale, I.R. An Overview of the Synthetic Routes to the Best Selling Drugs Containing 6-Membered Heterocycles. Beilstein J. Org. Chem. 2013, 9, 2265–2319. [Google Scholar] [CrossRef] [Green Version]
- Joule, J.A.; Mills, K.; Smith, G.F. Heterocyclic Chemistry; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781003072850. [Google Scholar]
- Joule, J.; Mills, K. Heterocyclic Chemistry, 5th ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Rulev, A.Y.; Romanov, A.R. Unsaturated Polyfluoroalkyl Ketones in the Synthesis of Nitrogen-Bearing Heterocycles. RSC Adv. 2016, 6, 1984–1998. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Ali, I.; Lone, M.; Al-Othman, Z.; Al-Warthan, A.; Sanagi, M. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development. Curr. Drug Targets 2015, 16, 711–734. [Google Scholar] [CrossRef]
- Martorana, A.; Giacalone, V.; Bonsignore, R.; Pace, A.; Gentile, C.; Pibiri, I.; Buscemi, S.; Lauria, A.; Palumbo Piccionello, A. Heterocyclic Scaffolds for the Treatment of Alzheimer’s Disease. Curr. Pharm. Des. 2016, 22, 3971–3995. [Google Scholar] [CrossRef]
- Shiro, T.; Fukaya, T.; Tobe, M. The Chemistry and Biological Activity of Heterocycle-Fused Quinolinone Derivatives: A Review. Eur. J. Med. Chem. 2015, 97, 397–408. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B. Pyrrolo-Isoxazole: A Key Molecule with Diverse Biological Actions. Mini-Rev. Med. Chem. 2014, 14, 623–627. [Google Scholar] [CrossRef]
- Barmade, M.A.; Murumkar, P.R.; Kumar Sharma, M.; Ram Yadav, M. Medicinal Chemistry Perspective of Fused Isoxazole Derivatives. Curr. Top. Med. Chem. 2016, 16, 2863–2883. [Google Scholar] [CrossRef] [PubMed]
- Sysak, A.; Obmińska-Mrukowicz, B. Isoxazole Ring as a Useful Scaffold in a Search for New Therapeutic Agents. Eur. J. Med. Chem. 2017, 137, 292–309. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Mo, J.; Lin, H.; Chen, Y.; Sun, H. The Recent Progress of Isoxazole in Medicinal Chemistry. Bioorg. Med. Chem. 2018, 26, 3065–3075. [Google Scholar] [CrossRef] [PubMed]
- Feuer, H. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470191552. [Google Scholar]
- Suga, H.; Itoh, K. Recent Advances in Catalytic Asymmetric 1,3-Dipolar Cycloadditions of Azomethine Imines, Nitrile Oxides, Diazoalkanes, and Carbonyl Ylides. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 175–204. [Google Scholar]
- Thakur, S.; Das, A.; Das, T. 1,3-Dipolar Cycloaddition of Nitrones: Synthesis of Multisubstituted, Diverse Range of Heterocyclic Compounds. N. J. Chem. 2021, 45, 11420–11456. [Google Scholar] [CrossRef]
- Maiuolo, L.; Algieri, V.; Olivito, F.; de Nino, A. Recent Developments on 1,3-Dipolar Cycloaddition Reactions by Catalysis in Green Solvents. Catalysts 2020, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Cordero, F.M.; Giomi, D.; Lascialfari, L. Five-Membered Ring Systems With O and N Atoms. Prog. Heterocycl. Chem. 2013, 25, 291–317. [Google Scholar]
- Hashimoto, T.; Maruoka, K. Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 2015, 115, 5366–5412. [Google Scholar] [CrossRef]
- Maiuolo, L.; De Nino, A. Synthesis of Isoxazolidines by 1,3-Dipolar Cycloaddition: Recent Advances. Targets Heterocycl. Syst. 2015, 19, 299–345. [Google Scholar]
- Pellissier, H. Asymmetric 1,3-Dipolar Cycloadditions. Tetrahedron 2007, 63, 3235–3285. [Google Scholar] [CrossRef]
- Arumugam, N.; Kumar, R.; Almansour, A.; Perumal, S. Multicomponent 1,3-Dipolar Cycloaddition Reactions in the Construction of Hybrid Spiroheterocycles. Curr. Org. Chem. 2013, 17, 1929–1956. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, H.; Lei, A. Oxidation-Induced C-H Functionalization: A Formal Way for C-H Activation. Chin. J. Chem. 2018, 36, 692–697. [Google Scholar] [CrossRef]
- Liu, K.; Tang, S.; Huang, P.; Lei, A. External Oxidant-Free Electrooxidative [3 + 2] Annulation between Phenol and Indole Derivatives. Nat. Commun. 2017, 8, 775. [Google Scholar] [CrossRef] [PubMed]
- Galenko, A.V.; Khlebnikov, A.F.; Novikov, M.S.; Pakalnis, V.V.; Rostovskii, N.V. Recent Advances in Isoxazole Chemistry. Russ. Chem. Rev. 2015, 84, 335–377. [Google Scholar] [CrossRef]
- Plumet, J. 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides under “Non-Conventional” Conditions: Green Solvents, Irradiation, and Continuous Flow. Chempluschem 2020, 85, 2252–2271. [Google Scholar] [CrossRef] [PubMed]
- Plumet, J.; Roscales, S. Mini-Review: Organic Catalysts in the 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides. Heterocycles 2019, 99, 725. [Google Scholar] [CrossRef]
- Plumet, J. Synthesis of Sugars and Steroid Conjugates via 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides. Targets Heterocycl. Syst. 2019, 23, 70–91. [Google Scholar]
- Roscales, S.; Plumet, J. Metal-Catalyzed 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides. Org. Biomol. Chem. 2018, 16, 8446–8461. [Google Scholar] [CrossRef]
- Tilvi, S.; Singh, K.S. Synthesis of Oxazole, Oxazoline and Isoxazoline Derived Marine Natural Products: A Review. Curr. Org. Chem. 2015, 20, 898–929. [Google Scholar] [CrossRef]
- Hu, F.; Szostak, M. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Adv. Synth. Catal. 2015, 357, 2583–2614. [Google Scholar] [CrossRef]
- Andrés, J.I.; Alcázar, J.; Alonso, J.M.; Alvarez, R.M.; Bakker, M.H.; Biesmans, I.; Cid, J.M.; de Lucas, A.I.; Drinkenburg, W.; Fernández, J.; et al. Tricyclic Isoxazolines: Identification of R226161 as a Potential New Antidepressant That Combines Potent Serotonin Reuptake Inhibition and A2-Adrenoceptor Antagonism. Bioorg. Med. Chem. 2007, 15, 3649–3660. [Google Scholar] [CrossRef]
- Pastor, J.; Alcázar, J.; Alvarez, R.M.; Andrés, J.I.; Cid, J.M.; de Lucas, A.I.; Díaz, A.; Fernández, J.; Font, L.M.; Iturrino, L.; et al. Synthesis of 3a,4-Dihydro-3H-[1]Benzopyrano[4,3-c]Isoxazoles, Displaying Combined 5-HT Uptake Inhibiting and A2-Adrenoceptor Antagonistic Activities. Part 2: Further Exploration on the Cinnamyl Moiety. Bioorg. Med. Chem. Lett. 2004, 14, 2917–2922. [Google Scholar] [CrossRef] [PubMed]
- Andrés, J.I.; Alcázar, J.; Alonso, J.M.; Alvarez, R.M.; Cid, J.M.; de Lucas, A.I.; Fernández, J.; Martínez, S.; Nieto, C.; Pastor, J.; et al. Synthesis of 3a,4-Dihydro-3H-[1]Benzopyrano[4,3-c]Isoxazoles, Displaying Combined 5-HT Uptake Inhibiting and A2-Adrenoceptor Antagonistic Activities: A Novel Series of Potential Antidepressants. Bioorg. Med. Chem. Lett. 2003, 13, 2719–2725. [Google Scholar] [CrossRef]
- Raihan, M.J.; Kavala, V.; Kuo, C.W.; Raju, B.R.; Yao, C.F. ‘On-Water’ Synthesis of Chromeno -Isoxazoles Mediated by [Hydroxy(Tosyloxy)Iodo]Benzene ( HTIB ). Green Chem. 2010, 12, 1090–1096. [Google Scholar] [CrossRef]
- Chao, E.Y.; Minick, D.J.; Sternbach, D.D.; Shearer, B.G.; Collins, J.L. A Novel Method for the Generation of Nitrile Oxides on Solid Phase: Application to the Synthesis of Substituted Benzopyranoisoxazoles. Org. Lett. 2002, 4, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; De, R.N. Enhanced Rate of Intramolecular Nitrile Oxide Cycloaddition and Rapid Synthesis of Isoxazoles and Isoxazolines. Mon. Fur Chem. 2010, 141, 763–771. [Google Scholar] [CrossRef]
- Hassner, A.; Maurya, R.; Mesko, E. Intramolecular Oxime Olefin Cycloadditions. Stereospecific Formation of Functionalized Pyrrolidines. Tetrahedron Lett. 1988, 29, 5313–5316. [Google Scholar] [CrossRef]
- Olofsson, B.; Marek, I.; Rappoport, Z. The Chemistry of Hypervalent Halogen Compounds, 2 Volume Set; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Wirth, T. Hypervalent Iodine Chemistry; Springer International Publishing: Cham, Switzerland, 2016; Volume 373. [Google Scholar] [CrossRef]
- Zhdankin, V.V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; p. 468. [Google Scholar]
- Le Vaillant, F.; Waser, J. Alkynylation of Radicals: Spotlight on the “Third Way” to Transfer Triple Bonds. Chem. Sci. 2019, 10, 8909–8923. [Google Scholar] [CrossRef]
- Merritt, E.A.; Olofsson, B.; Olofsson, B.; Merritt, E.A. Diaryliodonium Salts: A Journey from Obscurity to Fame. Angew. Chem. Int. Ed. 2009, 48, 9052–9070. [Google Scholar] [CrossRef]
- Hari, D.P.; Caramenti, P.; Waser, J. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung. Acc. Chem. Res. 2018, 51, 3212–3225. [Google Scholar] [CrossRef]
- Parra, A. Chiral Hypervalent Iodines: Active Players in Asymmetric Synthesis. Chem. Rev. 2019, 119, 12033–12088. [Google Scholar] [CrossRef]
- Yoshimura, A.; Zhdankin, V.V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chem. Rev. 2016, 116, 3328–3435. [Google Scholar] [CrossRef] [PubMed]
- Kita, Y.; Dohi, T. Pioneering Metal-Free Oxidative Coupling Strategy of Aromatic Compounds Using Hypervalent Iodine Reagents. Chem. Rec. 2015, 15, 886–906. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Saito, A.; Yusubov, M.S.; Zhdankin, V.V. Synthesis of Oxazoline and Oxazole Derivatives by Hypervalent-Iodine-Mediated Oxidative Cycloaddition Reactions. Synthesis 2020, 52, 2299–2310. [Google Scholar] [CrossRef]
- Yoshimura, A.; Zhdankin, V.V. Oxidative Cyclizations of Oximes Using Hypervalent Iodine Reagents. Arkivoc 2016, 2017, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Ciufolini, M.A. Synthetic Studies on Heterocyclic Natural Products. Can. J. Chem. 2014, 92, 186–193. [Google Scholar] [CrossRef]
- Kotali, A.; Kotali, E.; Lafazanis, I.S.; Harris, P.A. Reactions of Nitrogen Derivatives of Carbonyl Compounds with Phenyliodoso Diacetate in Organic Synthesis; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2013. [Google Scholar]
- Kotali, A.; Kotali, E.; Lafazanis, I.; Harris, P. Reactions of Nitrogen Derivatives of Carbonyl Compounds with Phenyliodoso Diacetate in Organic Synthesis. Curr. Org. Synth. 2010, 7, 62–77. [Google Scholar] [CrossRef]
- von Zons, T.; Brokmann, L.; Lippke, J.; Preuße, T.; Hülsmann, M.; Schaate, A.; Behrens, P.; Godt, A. Postsynthetic Modification of Metal–Organic Frameworks through Nitrile Oxide–Alkyne Cycloaddition. Inorg. Chem. 2018, 57, 3348–3359. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, Y.S.; Cho, W.; Park, S.B. Synthesis of 3,5-Disubstituted Isoxazoles Containing Privileged Substructures with a Diverse Display of Polar Surface Area. ACS Comb. Sci. 2017, 19, 407–413. [Google Scholar] [CrossRef]
- Maiti, S.; Samanta, P.; Biswas, G.; Dhara, D. Arm-First Approach toward Cross-Linked Polymers with Hydrophobic Domains via Hypervalent Iodine-Mediated Click Chemistry. ACS Omega 2018, 3, 562–575. [Google Scholar] [CrossRef]
- Pal, G.; Paul, S.; Ghosh, P.P.; Das, A.R. PhIO Promoted Synthesis of Nitrile Imines and Nitrile Oxides within a Micellar Core in Aqueous Media: A Regiocontrolled Approach to Synthesizing Densely Functionalized Pyrazole and Isoxazoline Derivatives. RSC Adv. 2014, 4, 8300–8307. [Google Scholar] [CrossRef]
- Yoshimura, A.; Nguyen, K.C.; Rohde, G.T.; Postnikov, P.S.; Yusubov, M.S.; Zhdankin, V.V. Hypervalent Iodine Reagent Mediated Oxidative Heterocyclization of Aldoximes with Heterocyclic Alkenes. J. Org. Chem. 2017, 82, 11742–11751. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Nguyen, K.C.; Klasen, S.C.; Saito, A.; Nemykin, V.N.; Zhdankin, V.V. Preparation, Structure, and Versatile Reactivity of Pseudocyclic Benziodoxole Triflate, New Hypervalent Iodine Reagent. Chem. Commun. 2015, 51, 7835–7838. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Nguyen, K.C.; Klasen, S.C.; Postnikov, P.S.; Yusubov, M.S.; Saito, A.; Nemykin, V.N.; Zhdankin, V.V. Hypervalent Iodine-Catalyzed Synthesis of 1,2,4-Oxadiazoles from Aldoximes and Nitriles. Asian J. Org. Chem. 2016, 5, 1128–1133. [Google Scholar] [CrossRef]
- Yoshimura, A.; Jarvi, M.E.; Shea, M.T.; Makitalo, C.L.; Rohde, G.T.; Yusubov, M.S.; Saito, A.; Zhdankin, V.V. Hypervalent Iodine(III) Reagent Mediated Regioselective Cycloaddition of Aldoximes with Enaminones. Eur. J. Org. Chem. 2019, 2019, 6682–6689. [Google Scholar] [CrossRef]
- Chennaiah, A.; Verma, A.K.; Vankar, Y.D. TEMPO-Catalyzed Oxidation of 3- O-Benzylated/Silylated Glycals to the Corresponding Enones Using a PIFA-Water Reagent System. J. Org. Chem. 2018, 83, 10535–10540. [Google Scholar] [CrossRef] [PubMed]
- Chennaiah, A.; Vankar, Y.D. One-Step TEMPO-Catalyzed and Water-Mediated Stereoselective Conversion of Glycals into 2-Azido-2-Deoxysugars with a PIFA-Trimethylsilyl Azide Reagent System. Org. Lett. 2018, 20, 2611–2614. [Google Scholar] [CrossRef]
- Subramanian, P.; Kaliappan, K.P. Transition-Metal-Free Multicomponent Approach to Stereoenriched Cyclopentyl-Isoxazoles through C−C Bond Cleavage. Chem. Asian J. 2018, 13, 2031–2039. [Google Scholar] [CrossRef]
- Han, L.; Zhang, B.; Xiang, C.; Yan, J. One-Pot Synthesis of Isoxazolines from Aldehydes Catalyzed by Iodobenzene. Synthesis 2013, 46, 503–509. [Google Scholar] [CrossRef]
- Xiang, C.; Li, T.; Yan, J. Hypervalent Iodine–Catalyzed Cycloaddition of Nitrile Oxides to Alkenes. Synth. Commun. 2013, 44, 682–688. [Google Scholar] [CrossRef]
- Yoshimura, A.; Middleton, K.R.; Todora, A.D.; Kastern, B.J.; Koski, S.R.; Maskaev, A.V.; Zhdankin, V.V. Hypervalent Iodine Catalyzed Generation of Nitrile Oxides from Oximes and Their Cycloaddition with Alkenes or Alkynes. Org. Lett. 2013, 15, 4010–4013. [Google Scholar] [CrossRef]
- Yoshimura, A.; Nguyen, K.C.; Rohde, G.T.; Saito, A.; Yusubov, M.S.; Zhdankin, V.V. Oxidative Cycloaddition of Aldoximes with Maleimides Using Catalytic Hydroxy(Aryl)Iodonium Species. Adv. Synth. Catal. 2016, 358, 2340–2344. [Google Scholar] [CrossRef]
- Das, B.; Holla, H.; Mahender, G.; Venkateswarlu, K.; Bandgar, B.P. A Convenient Method for the Preparation of Benzopyrano- and Furopyrano-2-Isoxazoline Derivatives Using Hypervalent Iodine Reagents. Synthesis 2005, 2005, 1572–1574. [Google Scholar] [CrossRef]
- Yoshimura, A.; Klasen, S.C.; Shea, M.T.; Nguyen, K.C.; Rohde, G.T.; Saito, A.; Postnikov, P.S.; Yusubov, M.S.; Nemykin, V.N.; Zhdankin, V.V. Preparation, Structure, and Reactivity of Pseudocyclic Benziodoxole Tosylates: New Hypervalent Iodine Oxidants and Electrophiles. Chem. A Eur. J. 2017, 23, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Pandit, P.; Halder, S.; Patra, A.; Maiti, D.K. Generation of Nitrile Oxides under Nanometer Micelles Built in Neutral Aqueous Media: Synthesis of Novel Glycal-Based Chiral Synthons and Optically Pure 2,8-Dioxabicyclo[4.4.0]Decene Core. J. Org. Chem. 2008, 73, 7775–7778. [Google Scholar] [CrossRef]
- Ghosh, H.; Patel, B.K. Hypervalent Iodine(iii)-Mediated Oxidation of Aldoximes to N-Acetoxy or N -Hydroxy Amides. Org. Biomol. Chem. 2009, 8, 384–390. [Google Scholar] [CrossRef]
- Booth, S.E.; Jerkins, P.R.; Swain, C.J.; Sweeney, J.B. Intramolecular Addition of Vinyl and Aryl Radicals to Oxime Ethers in the Synthesis of Five-, Six- and Seven-Membered Ring Systems. J. Chem. Soc. Perkin Trans. 1 1994, 23, 3499–3508. [Google Scholar] [CrossRef]
- Fusco, R.; Garanti, L.; Zecchi, G. Intramolecular Cycloadditions of Nitrile Oxides to Double and Triple Carbon-Carbon Bonds. Chem. Inf. 1975, 6, 115. [Google Scholar] [CrossRef]
- Bhosale, S.; Kurhade, S.; Prasad, U.V.; Palle, V.P.; Bhuniya, D. Efficient Synthesis of Isoxazoles and Isoxazolines from Aldoximes Using Magtrieve™ (CrO2). Tetrahedron Lett. 2009, 50, 3948–3951. [Google Scholar] [CrossRef]
- Liaskopoulos, T.; Skoulika, S.; Tsoungas, P.G.; Varvounis, G. Novel Synthesis of Naphthopyranoisoxazoles and Versatile Access to Naphthopyranoisoxazolines. Synthesis 2008, 2008, 711–718. [Google Scholar] [CrossRef]
- Lambruschini, C.; Basso, A.; Moni, L.; Pinna, A.; Riva, R.; Banfi, L. Diversity-oriented synthesis of bicyclic heterocycles from levulinic acid through a fast and operationally simple multicomponent approach. Eur. J. Org. Chem. 2018, 2018, 5445–5455. [Google Scholar] [CrossRef]
- Lee, J.I.; SanLee, H.; HyeanKim, B. An Efficient Synthesis of Benzopyrano-2-Isoxazolines. Synth. Commun. 1996, 26, 3201–3215. [Google Scholar] [CrossRef]
- Shimizu, T.; Hayashi, Y.; Teramura, K. Intramolecular [3+ + 2] cycloaddition of 2-alkenyloxy-1-naphthaldehyde oximes. Bull. Chem. Soc. Jpn. 1985, 58, 397–398. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; N De, R.; Hazra, S. Synthesis of novel isoxazolidines and medium-ring heterocycles oxazocines and oxazonines. Lett. Org. Chem. 2011, 8, 391–400. [Google Scholar] [CrossRef]
- Bala, K.; Hailes, H.C. Nitrile oxide 1, 3-dipolar cycloadditions in water: Novel isoxazoline and cyclophane synthesis. Synthesis 2005, 2005, 3423–3427. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Sheldrick, GM: SHELXT-Integrated space-group and crystal-structure determination. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
Entry | Solvent | Iodine Reagent 2 | p-TsOH·H2O (mol%) | 3a Yield (%) b |
---|---|---|---|---|
1 | CH2Cl2 | 2-IC6H4CO2H 2a | 20 | 94 (94) |
2 | CHCl3 | 2-IC6H4CO2H 2a | 20 | 52 (50) c |
3 | Et2O | 2-IC6H4CO2H 2a | 20 | 32 (31) c |
4 | MeCN | 2-IC6H4CO2H 2a | 20 | 81 (80) c |
5 | Hexane | 2-IC6H4CO2H 2a | 20 | 56 (52) c |
6 | PhH | 2-IC6H4CO2H 2a | 20 | 73 (73) c |
7 | THF | 2-IC6H4CO2H 2a | 20 | 81 (81) c |
8 | MeOH | 2-IC6H4CO2H 2a | 20 | 70 (70) c |
9 | CH2Cl2 | 2-IC6H4CO2H 2a | 10 | 61 (61) c |
10 | CH2Cl2 | 2-IC6H4CO2H 2a | none | 36 (35) c |
11 | CH2Cl2 | 2-IC6H4CO2H 2a | – d | 86 (81) |
12 e | CH2Cl2 | 2-IC6H4CO2H 2a | 20 | 73 (72) c |
13 | CH2Cl2 | 2-IC6H4CO2H 2a f | 20 | 81 |
14 | CH2Cl2 | 2-IC6H4CO2H 2a g | 20 | 62 |
15 | CH2Cl2 | PhI 2b | 20 | 73 (54) c |
16 | CH2Cl2 | TBAI 2c | 20 | 20 (20) c |
17 | CH2Cl2 | I2 2d | 20 | 15 c |
18 | CH2Cl2 | none | 20 | 9 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironova, I.A.; Nenajdenko, V.G.; Postnikov, P.S.; Saito, A.; Yusubov, M.S.; Yoshimura, A. Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules 2022, 27, 3860. https://doi.org/10.3390/molecules27123860
Mironova IA, Nenajdenko VG, Postnikov PS, Saito A, Yusubov MS, Yoshimura A. Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules. 2022; 27(12):3860. https://doi.org/10.3390/molecules27123860
Chicago/Turabian StyleMironova, Irina A., Valentine G. Nenajdenko, Pavel S. Postnikov, Akio Saito, Mekhman S. Yusubov, and Akira Yoshimura. 2022. "Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes" Molecules 27, no. 12: 3860. https://doi.org/10.3390/molecules27123860
APA StyleMironova, I. A., Nenajdenko, V. G., Postnikov, P. S., Saito, A., Yusubov, M. S., & Yoshimura, A. (2022). Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules, 27(12), 3860. https://doi.org/10.3390/molecules27123860