Electrophile-Dependent Reactivity of Lithiated N-Benzylpyrene-1-Carboxamide
Abstract
:1. Introduction
2. Results
2.1. Synthesis of 3–9
2.2. Dehydrogenation of 6
2.3. Photophysical Properties of 2, 6 and 7
3. Conclusions
4. Materials and Methods
4.1. Synthesis of 3–7
4.1.1. Lithiation–Electrophilic Quenching of N-Benzylpyrene-1-Carboxamide 2
4.1.2. Dehydrogenation of Compound 6
4.1.3. Synthesis of Amides 8a-b
4.2. UV/Vis Measurements
4.3. X-ray Diffraction Measurement
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zheng, Q.; Liu, C.; Chen, J.; Rao, G. C–H Functionalization of Aromatic Amides. Adv. Synth. Catal. 2020, 362, 1406–1446. [Google Scholar] [CrossRef]
- Das, R.; Kumar, G.S.; Kapur, M. Amides as Weak Coordinating Groups in Proximal C-H Bond Activation. Eur. J. Org. Chem. 2017, 2017, 5439–5459. [Google Scholar] [CrossRef]
- Zhu, R.-Y.; Farmer, M.E.; Chen, Y.Q.; Yu, J.-Q. A Simple and Versatile Amide Directing Group for CH Functionalizations. Angew. Chem. Int. Ed. 2016, 55, 10578–10599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, S.; Kuppusamy, R.; Cheng, C.-H. Cobalt-Catalyzed Annulation Reactions via C-H Bond Activation. ChemCatChem 2018, 10, 683–705. [Google Scholar] [CrossRef]
- Mortier, J. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Epsztajn, J.; Jóźwiak, A.; Szcześniak, A.K. Secondary Amides as ortho-Directed Metallation Groups for Arenes; a Useful Construction Way of the Polysubstituted Aromatic and Heteroaromatic Systems. Curr. Org. Chem. 2006, 10, 1817–1848. [Google Scholar] [CrossRef]
- Whisler, M.C.; MacNeil, S.; Snieckus, V.; Beak, P. Beyond Thermodynamic Acidity: A Perspective on the Complex-Induced Proximity Effect (CIPEE) in Deprotonation Reactions. Angew. Chem. Int. Ed. 2004, 43, 2206–2225. [Google Scholar] [CrossRef]
- Wheatley, A.E.H. The Directed Lithiation of Benzenoid Aromatic Systems. Eur. J. Inorg. Chem. 2003, 2003, 3291–3303. [Google Scholar] [CrossRef]
- Snieckus, V. Directed Ortho Metalation. Tertiary Amide and O-Carbamate Directors in Synthetic Strategies for Polysubstituted Aromatics. Chem. Rev. 1990, 90, 879–933. [Google Scholar] [CrossRef]
- Nair, S.K.; Rocke, B.N.; Sutton, S. Chapter 11. Lithium, Magnesium, and Copper: Contemporary Applications of Organometallic Chemistry in the Pharmaceutical Industry, in Syntetic Methods in Drug Discovery. RSC 2016, 2, 1–74. [Google Scholar] [CrossRef]
- Bechara, W.S.; Pelletier, G.; Charette, A.B. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides. Nat. Chem. 2012, 4, 228–234. [Google Scholar] [CrossRef]
- Liu, C.; Szostek, M. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives. Angew. Chem. Int. Ed. 2017, 56, 12718–12722. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-G.; Dixon, D.J. Iridium-catalyzed reductive Ugi-type reactions of tertiary amides. Nat. Commun. 2018, 9, 2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Guo, W.; Daniel, S.; Li, Y.; Liu, C.; Zeng, Z. Fluoride-catalyzed Esterification of Amides. Chem. Eur. J. 2018, 24, 3444–3447. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Ishikawa, S.; Nakagawa, Y.; Tomishige, K. Selective Hydrogenation of Amides to Alcohols in Water Solvent over Heterogeneous CeO2-Supported Ru Catalyst. ChemComm 2018, 54, 7503–7506. [Google Scholar] [CrossRef] [PubMed]
- Takise, R.; Muto, K.; Yamaguchi, J. Cross-coupling of aromatic esters and amides. Chem. Soc. Rev. 2017, 46, 5864–5888. [Google Scholar] [CrossRef]
- Dander, J.E.; Garg, N.K. Breaking Amides using Nickel Catalysis. ACS Catal. 2017, 7, 1413–1423. [Google Scholar] [CrossRef]
- Shi, S.; Nolan, S.P.; Szostek, M. Well-Defined Palladium(II)-NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N-C/O-C Cleavage. Acc. Chem. Res. 2018, 51, 2589–2599. [Google Scholar] [CrossRef]
- Hie, L.; Fine Nathek, N.F.; Shah, T.K.; Baker, E.L.; Hong, X.; Yang, Y.-F.; Houk, K.N.; Garg, N.K. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds. Nature 2015, 524, 79–83. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, Z.; Zhuang, R.; Xu, J.; Zhang, P.; Tang, G.; Zhao, Y. Direct Transformation of Amides into α-Amino Phosphonates via a Reductive Phosphination Process. Org. Lett. 2013, 15, 4214–4217. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Nickel-Catalyzed Decarbonylative Borylation of Amides: Evidence for Acyl C-N Bond Activation. Angew. Chem. Int. Ed. 2016, 55, 8718–8722. [Google Scholar] [CrossRef]
- Wrona-Piotrowicz, A.; Zakrzewski, J.; Métivier, R.; Brosseau, A.; Makal, A.; Woźniak, K. Efficient synthesis of pyrene-1-carbothioamides and carboxamides. Tunable solid-state fluorescence of pyrene-1-carboxamides. RSC Adv. 2014, 4, 56003–56012. [Google Scholar] [CrossRef] [Green Version]
- Niko, Y.; Hiroshige, Y.; Kawauchi, S.; Konishi, G.-I. Additional Insights into Luminescence Process of Polycyclic Aromatic Hydrocarbons with Carbonyl Groups: Photophysical Properties of Secondary N-alkyl and Tertiary N,N-Dialkyl Carboxamides of Naphthalene, Anthracene, and Pyrene. J. Org. Chem. 2012, 77, 3986–3996. [Google Scholar] [CrossRef]
- Hirai, Y.; Wrona-Piotrowicz, A.; Zakrzewski, J.; Brosseau, A.; Guillot, R.; Métivier, R.; Allain, C. Mechanofluorochromism of pyrene-derived amidophosphonates. Photochem. Photobiol. Sci. 2020, 19, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Figueira-Durate, T.M.; Müllen, K. Pyrene-Based Materials for Organic Electronics. Chem. Rev. 2011, 111, 7260–7314. [Google Scholar] [CrossRef]
- Feng, X.; Hu, J.-Y.; Redshaw, C.; Yamato, T. Functionalization of Pyrene To Prepare Luminescent Materials-Typical Examples of Synthetic Methodology. Chem. Eur. J. 2016, 22, 11898–11916. [Google Scholar] [CrossRef]
- Casas-Solvas, J.M.; Howgego, J.D.; Davis, A.P. Synthesis of substituted pyrenes by indirect methods. Org. Biomol. Chem. 2014, 12, 212–232. [Google Scholar] [CrossRef] [Green Version]
- Wrona-Piotrowicz, A.; Ciechańska, M.; Zakrzewski, J.; Métivier, R.; Brosseau, A.; Makal, A. Directed lithiation of a pyrene-1-carboxamide as a route to new pyrenyl fluorophores. Dye. Pigment. 2016, 125, 331–338. [Google Scholar] [CrossRef]
- Wrona-Piotrowicz, A.; Ciechańska, M.; Zakrzewski, J.; Makal, A. Pyrene fluorophores bearing two carbonyl groups in 1,2-positions: Synthesis and photophysical properties of pyrene-1,2-dicarboximides and a pyrene-1,2-dicarboxamide. J. Photochem. Photobiol. Chem. 2016, 330, 15–21. [Google Scholar] [CrossRef]
- Ciechańska, M.; Wrona-Piotrowicz, A.; Makal, A.; Zakrzewski, J. Alkylation of the K-Region in a Sterically Hindered Pyrene Carboxamide via Directed Reaction with Alkyllithiums under Air. J. Org. Chem. 2018, 83, 12793–12797. [Google Scholar] [CrossRef] [PubMed]
- Murai, T.; Aso, H.; Tatematsu, Y.; Itoh, Y.; Niwa, H.; Kato, S. Reaction and Characterization of Thioamide Dianions Derived from N-Benzyl Thioamides. J. Org. Chem. 2003, 68, 8514–8519. [Google Scholar] [CrossRef]
- Murai, T. Chemistry of Thioamides; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Brikci-Nigassa, N.M.; Bentabed-Ababsa, G.; Erb, W.; Mongin, F. In Situ ‘Trans-Metal Trapping‘: An Efficient Way to Extend the Scope of Aromatic Deprotometalation. Synthesis 2018, 50, 3615–3633. [Google Scholar] [CrossRef]
- Fañanás, F.J.; Sanz, R. The Chemistry of Organolithium Compounds; The Chemistry of Functional Groups Patai Series; Wiley: Chichester, UK, 2006. [Google Scholar]
- Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Amide activation: An emerging tool for chemoselective synthesis. Chem. Soc. Rev. 2018, 47, 7899–7925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, K.-J.; Wang, A.-E.; Huang, Y.-H.; Huang, P.-Q. Versatile and Direct Transformation of Secondary Amides into Ketones by Deaminative Alkylation with Organocerium Reagents. Asian J. Org. Chem. 2012, 1, 130–132. [Google Scholar] [CrossRef]
- Stępień, M.; Gońka, E.; Żyła, M.; Sprutta, N. Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chem. Rev. 2017, 117, 3479–3716. [Google Scholar] [CrossRef] [PubMed]
- Borissv, A.; Maurya, Y.K.; Moshniaha, L.; Wong, W.-S.; Żyła-Karwowska, M.; Stępień, M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem. Rev. 2022, 122, 565–788. [Google Scholar] [CrossRef] [PubMed]
- Alsharif, M.A.; Raja, Q.A.; Majeed, N.A.; Jassas, R.S.; Alsimaree, A.A.; Sadiq, A.; Naeem, N.; Mughal, E.U.; Alsantali, R.I.; Moussa, Z.; et al. DDQ as a versatile and easily recyclable oxidant: A systematic review. RSC Adv. 2021, 11, 29826–29858. [Google Scholar] [CrossRef]
- Papper, V.; Wu, Y.; Kharlanov, V.; Sukharaharja, A.; Steele, T.W.J.; Marks, R.S. Theoretical and Experimental Studies of N,N-Dimethyl-N’-Picryl-4,4′-Stilbenediamine. J. Fluoresc. 2018, 27, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUOAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
Compound | Absorption λmax [nm]/ε [M−1·cm−1] | Emission [nm] | ΦF |
---|---|---|---|
2 | 331/31,620, 345/44,560, 379/1900 | 385, 404 | 0.32 |
6 | 310/31,100, 322/30860, 343/5180, 360/2340 | 363, 382, 402, 425 | 0.36 |
7 | 337/20,200, 354/19,740, 361/20,860, 369/20,380, 389/24,580, 408/23,460, 434/24,240 * | 391, 413, 438 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciechańska, M.; Wrona-Piotrowicz, A.; Koprowska, K.; Makal, A.; Zakrzewski, J. Electrophile-Dependent Reactivity of Lithiated N-Benzylpyrene-1-Carboxamide. Molecules 2022, 27, 3930. https://doi.org/10.3390/molecules27123930
Ciechańska M, Wrona-Piotrowicz A, Koprowska K, Makal A, Zakrzewski J. Electrophile-Dependent Reactivity of Lithiated N-Benzylpyrene-1-Carboxamide. Molecules. 2022; 27(12):3930. https://doi.org/10.3390/molecules27123930
Chicago/Turabian StyleCiechańska, Magdalena, Anna Wrona-Piotrowicz, Karolina Koprowska, Anna Makal, and Janusz Zakrzewski. 2022. "Electrophile-Dependent Reactivity of Lithiated N-Benzylpyrene-1-Carboxamide" Molecules 27, no. 12: 3930. https://doi.org/10.3390/molecules27123930
APA StyleCiechańska, M., Wrona-Piotrowicz, A., Koprowska, K., Makal, A., & Zakrzewski, J. (2022). Electrophile-Dependent Reactivity of Lithiated N-Benzylpyrene-1-Carboxamide. Molecules, 27(12), 3930. https://doi.org/10.3390/molecules27123930