Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Chemistry
2.1.1. Spectroscopic and Crystallographic Characterization of Cycloadducts 4
2.1.2. Hirshfeld Surface Analysis
2.2. Molecular Dynamics and Binding Modes Analysis
3. Materials and Methods
3.1. Apparatus and General Information
3.2. General Procedure for the Synthesis of (E,E)-3,5-bisarylidene-N-[(S)-(-)-methylbenzyl]-4-piperidones 1a–e
3.3. General Procedure for the Synthesis of Spiroxindolopyrrolidine-Piperidones 4
3.4. Crystal Structure Determination
3.5. Molecular Modelling
3.5.1. Molecular Docking
3.5.2. Molecular Dynamics Simulations
3.5.3. Free Energy Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsuya, H.; Kokudo, N. Sustaining Containment of COVID-19: Global Sharing for Pandemic Response. Glob. Health Med. 2020, 2, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The Socio-Economic Implications of the Coronavirus Pandemic (COVID-19): A Review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Weekly Epidemiological Update on COVID-19—1 March 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---1-march-2022 (accessed on 22 April 2022).
- Kumar, S.; Singh, R.; Kumari, N.; Karmakar, S.; Behera, M.; Siddiqui, A.J.; Rajput, V.D.; Minkina, T.; Bauddh, K.; Kumar, N. Current Understanding of the Influence of Environmental Factors on SARS-CoV-2 Transmission, Persistence, and Infectivity. Environ. Sci. Pollut. Res. 2021, 28, 6267–6288. [Google Scholar] [CrossRef]
- Gao, S.; Huang, T.; Song, L.; Xu, S.; Cheng, Y.; Cherukupalli, S.; Kang, D.; Zhao, T.; Sun, L.; Zhang, J.; et al. Medicinal Chemistry Strategies towards the Development of Effective SARS-CoV-2 Inhibitors. Acta Pharm. Sin. B 2022, 12, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Luttens, A.; Gullberg, H.; Abdurakhmanov, E.; Vo, D.D.; Akaberi, D.; Talibov, V.O.; Nekhotiaeva, N.; Vangeel, L.; De Jonghe, S.; Jochmans, D.; et al. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. J. Am. Chem. Soc. 2022, 144, 2905–2920. [Google Scholar] [CrossRef] [PubMed]
- Villas-Boas, G.R.; Rescia, V.C.; Paes, M.M.; Lavorato, S.N.; De Magalhães-Filho, M.F.; Cunha, M.S.; Simões, R.D.C.; De Lacerda, R.B.; Freitas-Júnior, R.; Ramos, B.H.D.S.; et al. The New Coronavirus (SARS-CoV-2): A Comprehensive Review on Immunity and the Application of Bioinformatics and Molecular Modeling to the Discovery of Potential Anti-SARS-CoV-2 Agents. Molecules 2020, 25, 4086. [Google Scholar] [CrossRef]
- Lyu, J.; Wang, S.; Balius, T.E.; Singh, I.; Levit, A.; Moroz, Y.S.; O’Meara, M.J.; Che, T.; Algaa, E.; Tolmachova, K.; et al. Ultra-Large Library Docking for Discovering New Chemotypes. Nature 2019, 566, 224–229. [Google Scholar] [CrossRef]
- De la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2022, 27, 1075. [Google Scholar] [CrossRef]
- Omar, A. Review article.; anticancer activities of some fused heterocyclic moieties containing nitrogen and/or sulfur heteroatoms. Al-Azhar J. Pharm. Sci. 2020, 62, 39–54. [Google Scholar] [CrossRef]
- Abed, N.A.; Hammouda, M.M.; Ismail, M.A.; Abdel-Latif, E. Synthesis of New Heterocycles Festooned with Thiophene and Evaluating Their Antioxidant Activity. J. Heterocycl. Chem. 2020, 57, 4153–4163. [Google Scholar] [CrossRef]
- Kumar Verma, S.; Verma, R.; Xue, F.; Kumar Thakur, P.; Girish, Y.R.; Rakesh, K.P. Antibacterial Activities of Sulfonyl or Sulfonamide Containing Heterocyclic Derivatives and Its Structure-Activity Relationships (SAR) Studies: A Critical Review. Bioorganic Chem. 2020, 105, 104400. [Google Scholar] [CrossRef] [PubMed]
- Martín-Montes, Á.; Clares, M.P.; Martín-Escolano, R.; Delgado-Pinar, E.; Marín, C.; Verdejo, B.; Martínez-Camarena, Á.; Molina-Carreño, D.; García-España, E.; Sánchez-Moreno, M. Heterocyclic Diamines with Leishmanicidal Activity. ACS Infect. Dis. 2021, 7, 3168–3181. [Google Scholar] [CrossRef] [PubMed]
- Atukuri, D.; Gunjal, R.; Holagundi, N.; Korlahalli, B.; Gangannavar, S.; Akkasali, K. Contribution of N -heterocycles towards Anti-tubercular Drug Discovery (2014–2019); Predicted and Reengineered Molecular Frameworks. Drug Dev. Res. 2021, 82, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Bibik, I.V.; Bibik, E.Y.; Dotsenko, V.V.; Frolov, K.A.; Krivokolysko, S.G.; Aksenov, N.A.; Aksenova, I.V.; Shcherbakov, S.V.; Ovcharov, S.N. Synthesis and Analgesic Activity of New Heterocyclic Cyanothioacetamide Derivatives. Russ. J. Gen. Chem. 2021, 91, 154–166. [Google Scholar] [CrossRef]
- Savjani, J.; Variya, B.; Patel, S.; Mulamkattil, S.; Amin, H.; Butani, S.; Allam, A.; Ajarem, J.; Shah, H. Drug Design, Synthesis and Biological Evaluation of Heterocyclic Molecules as Anti-Inflammatory Agents. Molecules 2022, 27, 1262. [Google Scholar] [CrossRef]
- Chugh, A.; Kumar, A.; Verma, A.; Kumar, S.; Kumar, P. A Review of Antimalarial Activity of Two or Three Nitrogen Atoms Containing Heterocyclic Compounds. Med. Chem. Res. 2020, 29, 1723–1750. [Google Scholar] [CrossRef]
- Hagar, M.; Ahmed, H.A.; Aljohani, G.; Alhaddad, O.A. Investigation of Some Antiviral N-Heterocycles as COVID 19 Drug: Molecular Docking and DFT Calculations. IJMS 2020, 21, 3922. [Google Scholar] [CrossRef] [PubMed]
- Babalola, B.A.; Adetobi, T.E.; Akinsuyi, O.S.; Adebisi, O.A.; Folajimi, E.O. Computational Study of the Therapeutic Potential of Novel Heterocyclic Derivatives against SARS-CoV-2. COVID 2021, 1, 757–774. [Google Scholar] [CrossRef]
- Negi, M.; Chawla, P.A.; Faruk, A.; Chawla, V. Role of Heterocyclic Compounds in SARS and SARS CoV-2 Pandemic. Bioorganic Chem. 2020, 104, 104315. [Google Scholar] [CrossRef]
- Das, G.; Ghosh, S.; Garg, S.; Ghosh, S.; Jana, A.; Samat, R.; Mukherjee, N.; Roy, R.; Ghosh, S. An Overview of Key Potential Therapeutic Strategies for Combat in the COVID-19 Battle. RSC Adv. 2020, 10, 28243–28266. [Google Scholar] [CrossRef]
- Kumar, S.; Kovalenko, S.; Bhardwaj, S.; Sethi, A.; Gorobets, N.Y.; Desenko, S.M.; Poonam; Rathi, B. Drug Repurposing against SARS-CoV-2 Using Computational Approaches. Drug Discov. Today 2022, 27, 2015–2027. [Google Scholar] [CrossRef] [PubMed]
- Khetmalis, Y.M.; Shivani, M.; Murugesan, S.; Chandra Sekhar, K.V.G. Oxindole and Its Derivatives: A Review on Recent Progress in Biological Activities. Biomed. Pharmacother. 2021, 141, 111842. [Google Scholar] [CrossRef] [PubMed]
- Le Tourneau, C.; Raymond, E.; Faivre, S. Sunitinib: A Novel Tyrosine Kinase Inhibitor. A Brief Review of Its Therapeutic Potential in the Treatment of Renal Carcinoma and Gastrointestinal Stromal Tumors (GIST). Ther. Clin. Risk Manag. 2007, 3, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendel, D.; Laird, A.; Smolich, B.; Blake, R.; Liang, C.; Hannah, A.; Shaheen, R.; Ellis, L.; Weitman, S.; Shawver, L.; et al. Development of SU5416, a Selective Small Molecule Inhibitor of VEGF Receptor Tyrosine Kinase Activity, as an Anti-Angiogenesis Agent. Anti-Cancer Drug Des. 2000, 15, 29–41. [Google Scholar]
- Kauffman, R.F.; Robertson, D.W.; Franklin, R.B.; Sandusky, G.E.; Dies, F.; McNay, J.L.; Hayes, J.S. Indolidan: A Potent, Long-Acting Cardiotonic and Inhibitor of Type IV Cyclic AMP Phosphodiesterase. Cardiovasc. Drug Rev. 1990, 8, 303–322. [Google Scholar] [CrossRef]
- Zhou, L.-M.; Qu, R.-Y.; Yang, G.-F. An Overview of Spirooxindole as a Promising Scaffold for Novel Drug Discovery. Expert Opin. Drug Discov. 2020, 15, 603–625. [Google Scholar] [CrossRef]
- Tian, Y.; Nam, S.; Liu, L.; Yakushijin, F.; Yakushijin, K.; Buettner, R.; Liang, W.; Yang, F.; Ma, Y.; Horne, D.; et al. Spirooxindole Derivative SOID-8 Induces Apoptosis Associated with Inhibition of JAK2/STAT3 Signaling in Melanoma Cells. PLoS ONE 2012, 7, e49306. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Aguilar, A.; Bernard, D.; Wang, S. Small-Molecule Inhibitors of the MDM2–P53 Protein–Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment: Miniperspective. J. Med. Chem. 2015, 58, 1038–1052. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, X.-J.; Liu, J.-J.; Ding, Q.; Zhang, J.; Bartkovitz, D.; Jiang, N.; Karnachi, P.; So, S.-S.; Tovar, C.; et al. Discovery of Potent and Orally Active P53-MDM2 Inhibitors RO5353 and RO2468 for Potential Clinical Development. ACS Med. Chem. Lett. 2014, 5, 124–127. [Google Scholar] [CrossRef] [Green Version]
- De Silva, N.H.; Pyreddy, S.; Blanch, E.W.; Hügel, H.M.; Maniam, S. Microwave-Assisted Rapid Synthesis of Spirooxindole-Pyrrolizidine Analogues and Their Activity as Anti-Amyloidogenic Agents. Bioorg. Chem. 2021, 114, 105128. [Google Scholar] [CrossRef]
- Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Siva Krishna, V.; Sriram, D.; Dege, N. Stereoselective Synthesis and Discovery of Novel Spirooxindolopyrrolidine Engrafted Indandione Heterocyclic Hybrids as Antimycobacterial Agents. Bioorg. Chem. 2021, 110, 104798. [Google Scholar] [CrossRef] [PubMed]
- Alaqeel, S.I.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Ponmurugan, K.; Abdullah Al-Dhabi, N.; Brindhadevi, K.; Perumal, K. Synthesis and Antimicrobial Potential of Spirooxindolopyrrolidine Tethered Oxindole Heterocyclic Hybrid against Multidrug Resistant Microbial Pathogens. Process Biochem. 2022, 114, 66–70. [Google Scholar] [CrossRef]
- Ye, N.; Chen, H.; Wold, E.A.; Shi, P.-Y.; Zhou, J. Therapeutic Potential of Spirooxindoles as Antiviral Agents. ACS Infect. Dis. 2016, 2, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Kotresha, D.; Manohar, T.S.; Venketesh, S. Cholinesterase Inhibitory Activity of Highly Functionalized Fluorinated Spiropyrrolidine Heterocyclic Hybrids. Saudi J. Biol. Sci. 2021, 28, 754–761. [Google Scholar] [CrossRef]
- Kumar, R.S.; Antonisamy, P.; Almansour, A.I.; Arumugam, N.; Periyasami, G.; Altaf, M.; Kim, H.-R.; Kwon, K.-B. Functionalized Spirooxindole-Indolizine Hybrids: Stereoselective Green Synthesis and Evaluation of Anti-Inflammatory Effect Involving TNF-α and Nitrite Inhibition. Eur. J. Med. Chem. 2018, 152, 417–423. [Google Scholar] [CrossRef]
- Zheng, Y.; Tice, C.M.; Singh, S.B. The Use of Spirocyclic Scaffolds in Drug Discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Das, S.; Das, U.; Doroudi, A.; Zhu, J.; Dimmock, J.R. Novel Hybrid Molecules of 3,5-Bis(Benzylidene)-4-Piperidones and Dichloroacetic Acid Which Demonstrate Potent Tumour-Selective Cytotoxicity. Bioorg. Med. Chem. Lett. 2020, 30, 126878. [Google Scholar] [CrossRef]
- Ramalingam, A.; Sambandam, S.; Medimagh, M.; Al-Dossary, O.; Issaoui, N.; Wojcik, M.J. Study of a New Piperidone as an Anti-Alzheimer Agent: Molecular Docking, Electronic and Intermolecular Interaction Investigations by DFT Method. J. King Saud Univ. Sci. 2021, 33, 101632. [Google Scholar] [CrossRef]
- Basiri, A.; Abd Razik, B.M.; Ezzat, M.O.; Kia, Y.; Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Murugaiyah, V. Synthesis and Cholinesterase Inhibitory Activity Study of New Piperidone Grafted Spiropyrrolidines. Bioorg. Chem. 2017, 75, 210–216. [Google Scholar] [CrossRef]
- Lawson, S.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Thangamani, S. Dispiropyrrolidine Tethered Piperidone Heterocyclic Hybrids with Broad-Spectrum Antifungal Activity against Candida Albicans and Cryptococcus Neoformans. Bioorg. Chem. 2020, 100, 103865. [Google Scholar] [CrossRef]
- Kumar, R.S.; Al-Thamili, D.M.; Almansour, A.I.; Arumugam, N.; Mohammad, F. A One-Pot Three-Component Synthesis and Investigation of the In Vitro Mechanistic Anticancer Activity of Highly Functionalized Spirooxindole-Pyrrolidine Heterocyclic Hybrids. Molecules 2020, 25, 5581. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.; Boudriga, S.; Porzio, F.; Soldera, A.; Askri, M.; Sriram, D.; Yogeeswari, P.; Knorr, M.; Rousselin, Y.; Kubicki, M.M. Synthesis of Novel Dispiropyrrolothiazoles by Three-Component 1,3-Dipolar Cycloaddition and Evaluation of Their Antimycobacterial Activity. RSC Adv. 2014, 4, 59462–59471. [Google Scholar] [CrossRef]
- Haddad, S.; Boudriga, S.; Akhaja, T.N.; Raval, J.P.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; et al. A Strategic Approach to the Synthesis of Functionalized Spirooxindole Pyrrolidine Derivatives: In Vitro Antibacterial, Antifungal, Antimalarial and Antitubercular Studies. New J. Chem. 2015, 39, 520–528. [Google Scholar] [CrossRef]
- Toumi, A.; Boudriga, S.; Hamden, K.; Daoud, I.; Askri, M.; Soldera, A.; Lohier, J.-F.; Strohmann, C.; Brieger, L.; Knorr, M. Diversity-Oriented Synthesis of Spiropyrrolo[1,2-a ]Isoquinoline Derivatives via Diastereoselective and Regiodivergent Three-Component 1,3-Dipolar Cycloaddition Reactions: In Vitro and in Vivo Evaluation of the Antidiabetic Activity of Rhodanine Analogues. J. Org. Chem. 2021, 86, 13420–13445. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, M.B.; Boudriga, S.; Hamden, K.; Askri, M.; Knorr, M.; Strohmann, C.; Brieger, L.; Krupp, A.; Anouar, E.H.; Snoussi, M.; et al. New Spiropyrrolothiazole Derivatives Bearing an Oxazolone Moiety as Potential Antidiabetic Agent: Design, Synthesis, Crystal Structure, Hirshfeld Surface Analysis, ADME and Molecular Docking Studies. J. Mol. Struct. 2022, 1254, 132398. [Google Scholar] [CrossRef]
- Kuehne, M.E.; Matson, P.A.; Bornmann, W.G. Enantioselective Syntheses of Vinblastine, Leurosidine, Vincovaline and 20’-Epi-Vincovaline. J. Org. Chem. 1991, 56, 513–528. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Bank, R.P.D. RCSB PDB—6W63: Structure of COVID-19 Main Protease Bound to Potent Broad-Spectrum Non-Covalent Inhibitor X77. Available online: https://www.rcsb.org/structure/6w63 (accessed on 23 April 2022).
- Jones, G.; Willett, P.; Glen, R.C. Molecular Recognition of Receptor Sites Using a Genetic Algorithm with a Description of Desolvation. J. Mol. Biol. 1995, 245, 43–53. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Mandour, Y.M.; Zlotos, D.P.; Alaraby Salem, M. A Multi-Stage Virtual Screening of FDA-Approved Drugs Reveals Potential Inhibitors of SARS-CoV-2 Main Protease. J. Biomol. Struct. Dyn. 2022, 40, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.C., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; et al. Amber 2021; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- Goyal, B.; Goyal, D. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. ACS Comb. Sci. 2020, 22, 297–305. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Bruker, Apex 4; Bruker AXS Inc.: Madison, WI, USA, 2021.
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Schrodinger, Inc. The PyMOL Molecular Graphics System, Version 1.8; Schrodinger, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Turner, P.J. XMGRACE, Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology; Oregon Graduate Institute of Science & Technology: Beaverton, OR, USA, 2005. [Google Scholar]
- Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin Dynamics of Peptides: The Frictional Dependence of Isomerization Rates Of N-Acetylalanyl-N-Methylamide. Biopolymers 1992, 32, 523–535. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
HB-Acceptor | HB-Donor | Donor | % * | Average H-bond | |
---|---|---|---|---|---|
Distance (Å) | Angle | ||||
Compound 4a | |||||
HIS_164@O | LIG_307@H2 | LIG_307@N2 | 45% | 2.78 | 157.1 |
LIG_307@O6 | GLY_143@H | GLY_143@N | 16% | 2.88 | 149.0 |
LIG_307@O2 | ASN_142@HD22 | ASN_142@ND2 | 12% | 2.84 | 157.2 |
Compound 4b | |||||
LIG_307@O1 | HIS_41@HE2 | HIS_41@NE2 | 78% | 2.76 | 154.3 |
HIS_164@O | LIG_307@H2 | LIG_307@N2 | 62% | 2.82 | 154.6 |
LIG_307@O6 | GLY_143@H | GLY_143@N | 43% | 2.85 | 149.0 |
LIG_307@O2 | ASN_142@HD21 | ASN_142@ND2 | 21% | 2.92 | 157.2 |
Compound 4e | |||||
LIG_307@O2 | ASN_142@HD22 | ASN_142@ND2 | 32% | 2.88 | 158.9 |
HIS_164@O | LIG_307@H2 | LIG_307@N2 | 19% | 2.8525 | 156.1 |
Compound | MMGBSA (kcal/mol) | Std Deviation | Std. Error of Mean |
---|---|---|---|
4a | −30.7 | 7.7 | 1.4 |
4b | −35.2 | 8.2 | 1.5 |
4e | −30.4 | 7.1 | 0.7 |
Control “X77” [53] | −39.5 | 3.2 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toumi, A.; Boudriga, S.; Mandour, Y.M.; Mekki, A.A.; Knorr, M.; Strohmann, C.; Kirchhoff, J.-L.; Sobeh, M. Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies. Molecules 2022, 27, 3945. https://doi.org/10.3390/molecules27123945
Toumi A, Boudriga S, Mandour YM, Mekki AA, Knorr M, Strohmann C, Kirchhoff J-L, Sobeh M. Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies. Molecules. 2022; 27(12):3945. https://doi.org/10.3390/molecules27123945
Chicago/Turabian StyleToumi, Amani, Sarra Boudriga, Yasmine M. Mandour, Ahmed A. Mekki, Michael Knorr, Carsten Strohmann, Jan-Lukas Kirchhoff, and Mansour Sobeh. 2022. "Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies" Molecules 27, no. 12: 3945. https://doi.org/10.3390/molecules27123945
APA StyleToumi, A., Boudriga, S., Mandour, Y. M., Mekki, A. A., Knorr, M., Strohmann, C., Kirchhoff, J. -L., & Sobeh, M. (2022). Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies. Molecules, 27(12), 3945. https://doi.org/10.3390/molecules27123945