Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices
Abstract
:1. Introduction
2. Hydrogen-Bond Supramolecular Assembles
2.1. Liquid Crystals
2.2. Fibers and Gels
2.3. H-Bonded Supramolecules in Solution
2.4. Photoisomerization and Relaxation of H-Bonded Supramolecules
3. Halogen-Bond Supramolecular Assembles
4. Coordination Interaction with Metal Ions
5. Quaternization Reaction
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berna, J.; Leigh, D.A.; Lubomska, M.; Mendoza, S.M.; Perez, E.M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Macroscopic transport by synthetic molecular machines. Nat. Mater. 2005, 4, 704–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C.J.; Ikeda, T. Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47, 4986–4988. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.R.; Rangadurai, P.; Antony, L.; Swaminathan, S.; de Pablo, J.J.; Thayumanavan, S. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. Nat. Chem. 2018, 10, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Shimoboji, T.; Larenas, E.; Fowler, T.; Kulkarni, S.; Hoffman, A.S.; Stayton, P.S. Photoresponsive polymer-enzyme switches. Proc. Natl. Acad. Sci. USA 2002, 99, 16592–16596. [Google Scholar] [CrossRef] [Green Version]
- Banghart, M.; Borges, K.; Isacoff, E.; Trauner, D.; Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 2004, 7, 1381–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvilsted, S.; Sánchez, C.; Alcalá, R. The volume holographic optical storage potential in azobenzene containing polymers. J. Mater. Chem. 2009, 19, 6641. [Google Scholar] [CrossRef]
- Murugesan, M.; Abbineni, G.; Nimmo, S.L.; Cao, B.; Mao, C. Virus-based photo-responsive nanowires formed by linking site-directed mutagenesis and chemical reaction. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179–184. [Google Scholar] [CrossRef]
- Dong, R.; Zhu, B.; Zhou, Y.; Yan, D.; Zhu, X. “breathing” vesicles with jellyfish-like on-off switchable fluorescence behavior. Angew. Chem. Int. Ed. 2012, 51, 11633–11637. [Google Scholar] [CrossRef]
- Zhao, Y. Light-responsive block copolymer micelles. Macromolecules 2012, 45, 3647–3657. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483. [Google Scholar] [CrossRef] [PubMed]
- Bandara, H.M.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef] [PubMed]
- Bujak, K.; Orlikowska, H.; Małecki, J.G.; Schab-Balcerzak, E.; Bartkiewicz, S.; Bogucki, J.; Sobolewska, A.; Konieczkowska, J. Fast dark cis-trans isomerization of azopyridine derivatives in comparison to their azobenzene analogues: Experimental and computational study. Dyes Pigm. 2019, 160, 654–662. [Google Scholar] [CrossRef]
- Goulet-Hanssens, A.; Barrett, C.J. Photo-control of biological systems with azobenzene polymers. J. Polym. Sci. A Polym. Chem. 2013, 51, 3058–3070. [Google Scholar] [CrossRef] [Green Version]
- Gelebart, A.H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.W.; Selinger, R.L.B.; Broer, D.J. Making waves in a photoactive polymer film. Nature 2017, 546, 632–636. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym. Chem. 2019, 1, 5686–5720. [Google Scholar] [CrossRef]
- Beharry, A.A.; Sadovski, O.; Woolley, G.A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 2011, 133, 19684–19687. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; White, T.J. Photochemical mechanism and photothermal considerations in the mechanical response of monodomain, azobenzene-functionalized liquid crystal polymer networks. Macromolecules 2012, 45, 7163–7170. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Quan, M.; Zhang, L.; Yang, H.; Lu, Y. Photothermal effect of azopyridine compounds and their applications. RSC Adv. 2015, 5, 4675–4680. [Google Scholar] [CrossRef]
- Mahmoud, M.A. Electromagnetic field of plasmonic nanoparticles extends the photoisomerization lifetime of azobenzene. J. Phys. Chem. C 2017, 121, 18144–18152. [Google Scholar] [CrossRef]
- Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149–2180. [Google Scholar] [CrossRef] [PubMed]
- Yu, H. Photoresponsive liquid crystalline block copolymers: From photonics to nanotechnology. Prog. Polym. Sci. 2014, 39, 781–815. [Google Scholar] [CrossRef]
- Crespi, S.; Simeth, N.A.; König, B. Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem. 2019, 3, 133–146. [Google Scholar] [CrossRef]
- Ren, H.; Qiu, X.; Shi, Y.; Yang, P.; Winnik, F.M. Ph-dependent morphology and photoresponse of azopyridine-terminated poly(n-isopropylacrylamide) nanoparticles in water. Macromolecules 2019, 52, 2939–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emsley, J. Very strong hydrogen bonding. Chem. Soc. Rev. 1980, 9, 91–124. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Seddon, K.R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 1993, 22, 397–407. [Google Scholar] [CrossRef]
- Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the hydrogen bond energy. J. Phys. Chem. A 2010, 114, 9529–9536. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Painter, P.C.; Coleman, M.M. Hydrogen bonding in polymer blends. 4. Blends involving polymers containing methacrylic acid and vinylpyridine groups. Macromolecules 1988, 21, 954–960. [Google Scholar] [CrossRef]
- Kato, T.; Frechet, J.M.J. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J. Am. Chem. Soc. 1989, 111, 8533–8534. [Google Scholar] [CrossRef]
- Mallia, V.A.; Antharjanam, P.S.; Das, S. Synthesis and studies of some 4-substituted phenyl-4′-azopyridine-containing hydrogen-bonded supramolecular mesogens. Liq. Cryst. 2003, 30, 135–141. [Google Scholar] [CrossRef]
- Rogness, D.C.; Riedel, P.J.; Sommer, J.R.; Reed, D.F.; Wiegel, K.N. Supramolecular main chain liquid crystalline polymers utilizing azopyridine derivatives. Liq. Cryst. 2006, 33, 567–572. [Google Scholar] [CrossRef]
- Hagar, M.; Hagar, M.; Ahmed, H.A.; Ahmed, H.A.; Alhaddad, O.A. Experimental and theoretical approaches of molecular geometry and mesophase behaviour relationship of laterally substituted azopyridines. Liq. Cryst. 2019, 46, 1440–1451. [Google Scholar] [CrossRef]
- Alaasar, M.; Tschierske, C. Nematic phases driven by hydrogen-bonding in liquid crystalline nonsymmetric dimers. Liq. Cryst. 2019, 46, 124–130. [Google Scholar] [CrossRef]
- Song, X.Z.; Li, J.X.; Zhang, S.W. Supramolecular liquid crystals induced by intermolecular hydrogen bonding between benzoic acid and 4-(alkoxyphenylazo) pyridines. Liq. Cryst. 2003, 30, 331–335. [Google Scholar] [CrossRef]
- Santana, C.M.; Reinheimer, E.W.; Krueger, H.R.; Macgillivray, L.R.; Groeneman, R.H. Edge-to-edge c–h···n hydrogen bonds in two-component co-crystals aide a [2 + 2] photodimerization. Cryst. Growth Des. 2017, 17, 2054–2058. [Google Scholar] [CrossRef]
- Pfletscher, M.; Hölscher, S.; Wölper, C.; Mezger, M.; Giese, M. Structure–property relationships in hydrogen-bonded liquid crystals. Chem. Mater. 2017, 29, 8462–8471. [Google Scholar] [CrossRef]
- Pfletscher, M.; Wölper, C.; Gutmann, J.S.; Mezger, M.; Giese, M. A modular approach towards functional supramolecular aggregates—subtle structural differences inducing liquid crystallinity. Chem. Commun. 2016, 52, 8549–8552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanke, M.; Balszuweit, J.; Saccone, M.; Wolper, C.; Doblas, J.D.; Mezger, M.; Voskuhl, J.; Giese, M. Photo-switching and -cyclisation of hydrogen bonded liquid crystals based on resveratrol. Chem. Commun. 2020, 56, 1105–1108. [Google Scholar] [CrossRef]
- Balszuweit, J.; Blanke, M.; Saccone, M.; Mezger, M.; Daniliuc, C.G.; Wölper, C.; Giese, M.; Voskuhl, J. Naturally occurring polyphenols as building blocks for supramolecular liquid crystals—substitution pattern dominates mesomorphism. Mol. Syst. Des. Eng. 2021, 6, 390–397. [Google Scholar] [CrossRef]
- Alaasar, M.; Cai, X.; Kraus, F.; Giese, M.; Liu, F.; Tschierske, C. Controlling ambidextrous mirror symmetry breaking in photosensitive supramolecular polycatenars by alkyl-chain engineering. J. Mol. Liq. 2022, 351, 118597. [Google Scholar] [CrossRef]
- Malotke, F.; Saccone, M.; Wölper, C.; Dong, R.Y.; Michal, C.A.; Giese, M. Chiral mesophases of hydrogen-bonded liquid crystals. Mol. Syst. Des. Eng. 2020, 5, 1299–1306. [Google Scholar] [CrossRef]
- Saccone, M.; Pfletscher, M.; Dautzenberg, E.; Dong, R.Y.; Michal, C.A.; Giese, M. Hydrogen-bonded liquid crystals with broad-range blue phases. J. Mater. Chem. C 2019, 7, 3150–3153. [Google Scholar] [CrossRef]
- Saccone, M.; Pfletscher, M.; Kather, S.; Wölper, C.; Daniliuc, C.; Mezger, M.; Giese, M. Improving the mesomorphic behaviour of supramolecular liquid crystals by resonance-assisted hydrogen bonding. J. Mater. Chem. C 2019, 7, 8643–8648. [Google Scholar] [CrossRef]
- Pfletscher, M.; Wysoglad, J.; Gutmann, J.S.; Giese, M. Polymorphism of hydrogen-bonded star mesogens—a combinatorial DFT-d and FTIR spectroscopy study. RSC Adv. 2019, 9, 8444–8453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.A.; Hagar, M.; Aljuhani, A. Mesophase behavior of new linear supramolecular hydrogen-bonding complexes. RSC Adv. 2018, 8, 34937–34946. [Google Scholar] [CrossRef] [Green Version]
- Abdullah Alshabanah, L.; Al-Mutabagani, L.A.; Ahmed, H.A.; Hagar, M. Induced wide nematic phase by seven-ring supramolecular h-bonded systems: Experimental and computational evaluation. Molecules 2020, 25, 1694. [Google Scholar] [CrossRef] [Green Version]
- Alhaddad, O.A.; Abu Al-Ola, K.A.; Hagar, M.; Ahmed, H.A. Chair- and v-shaped of h-bonded supramolecular complexes of azophenyl nicotinate derivatives; Mesomorphic and DFT molecular geometry aspects. Molecules 2020, 25, 1510. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.A.; Hagar, M.; Alhaddad, O.A.; Zaki, A.A. Optical and geometrical characterizations of non-linear supramolecular liquid crystal complexes. Crystals 2020, 10, 701. [Google Scholar] [CrossRef]
- Alaasar, M.; Schmidt, J.; Cai, X.; Liu, F.; Tschierske, C. Controlling liquid and liquid crystalline network formation by core-fluorination of hydrogen bonded supramolecular polycatenars. J. Mol. Liq. 2021, 332, 115870. [Google Scholar] [CrossRef]
- Alaasar, M.; Schmidt, J.; Darweesh, A.F.; Tschierske, C. Azobenzene-based supramolecular liquid crystals: The role of core fluorination. J. Mol. Liq. 2020, 310, 113252. [Google Scholar] [CrossRef]
- Devadiga, D.; Ahipa, T.N. Heterodimeric hydrogen-bonded mesogens comprising pyridine moiety: A review. Liq. Cryst. Rev. 2020, 8, 5–28. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, Y. Azopyridine side chain polymers: An efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem. Mater. 2004, 16, 2076–2082. [Google Scholar] [CrossRef]
- Huang, W.; Han, C.D. Dispersion characteristics and rheology of organoclay nanocomposites based on a segmented main-chain liquid-crystalline polymer having side-chain azopyridine with flexible spacer. Polymer 2006, 47, 4400–4410. [Google Scholar] [CrossRef]
- Millaruelo, M.; Chinelatto, L.S.; Oriol, L.; Piñol, M.; Serrano, J.; Tejedor, R.M. Synthesis and characterization of supramolecular polymeric materials containing azopyridine units. Macromol. Chem. Phys. 2006, 207, 2112–2120. [Google Scholar] [CrossRef]
- Michinobu, T.; Eto, R.; Kumazawa, H.; Fujii, N.; Shigehara, K. Photochromism of azopyridine side chain polymer controlled by supramolecular self-assembly. J. Macromol. Sci. A 2011, 48, 625–631. [Google Scholar] [CrossRef]
- Schab-Balcerzak, E.; Konieczkowska, J.; Siwy, M.; Sobolewska, A.; Wojtowicz, M.; Wiacek, M. Comparative studies of polyimides with covalently bonded azo-dyes with their supramolecular analoges: Thermo-optical and photoinduced properties. Opt. Mater. 2014, 36, 892–902. [Google Scholar] [CrossRef]
- Wu, S.; Duan, S.; Lei, Z.; Su, W.; Zhang, Z.; Wang, K.; Zhang, Q. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. J. Mater. Chem. 2010, 20, 5202. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Kobayashi, T. Fabrication and photoresponse of supramolecular liquid−crystalline microparticles. ACS Appl. Mater. Inter. 2011, 3, 1333–1340. [Google Scholar] [CrossRef]
- Aoki, K.; Nakagawa, M.; Ichimura, K. Fibrous self-organization of an azopyridine carboxylic acid through head-to-tail hydrogen bonds. Chem. Lett. 1999, 11, 1205–1206. [Google Scholar] [CrossRef]
- Aoki, K.; Nakagawa, M.; Ichimura, K. Self-assembly of amphoteric azopyridine carboxylic acids: Organized structures and macroscopic organized morphology influenced by heat, pH change, and light. J. Am. Chem. Soc. 2000, 122, 10997–11004. [Google Scholar] [CrossRef]
- Aoki, K.I.; Nakagawa, M.; Seki, T.; Ichimura, K. Self-assembly of amphoteric azopyridine carboxylic acids ii: Aspect ratio control of anisotropic self-assembled fibers by tuning the π–π stacking interaction. B. Chem. Soc. Jpn. 2002, 75, 2533–2539. [Google Scholar] [CrossRef]
- Aoki, K.; Nakagawa, M.; Seki, T.; Ichimura, K. Solvent effect on morphology of self-assembled fibrous materials derived from an azopyridine carboxylic acid. Chem. Lett. 2002, 3, 378–379. [Google Scholar] [CrossRef]
- Nakagawa, M.; Ishii, D.; Aoki, K.; Seki, T.; Iyoda, T. Tubular and twisted ni-p fibers molded from morphology-tunable and recyclable organic templates of hydrogen-bonded supramolecular assemblages. Adv. Mater. 2005, 17, 200–205. [Google Scholar] [CrossRef]
- Liu, G.; Sheng, J.; Wu, H.; Yang, C.; Yang, G.; Li, Y.; Ganguly, R.; Zhu, L.; Zhao, Y. Controlling supramolecular chirality of two-component hydrogels by j- and h-aggregation of building blocks. J. Am. Chem. Soc. 2018, 140, 6467–6473. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ji, W.; Feng, C. Installing logic gates to multiresponsive supramolecular hydrogel co-assembled from phenylalanine amphiphile and bis(pyridinyl) derivative. Langmuir 2015, 31, 7122–7128. [Google Scholar] [CrossRef]
- Gupta, P.; Karothu, D.P.; Ahmed, E.; Naumov, P.; Nath, N.K. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals. Angew. Chem. Int. Ed. 2018, 57, 8498–8502. [Google Scholar] [CrossRef]
- Wei, R.; Wang, Y.; Wang, N.; Hao, Y.; Huang, X.; Wang, T.; Hao, H. Cocrystallization enabling photoinduced rotation of an azopyridine crystal. Cryst. Growth Des. 2021, 21, 3936–3946. [Google Scholar] [CrossRef]
- Ni, Y.; Li, X.; Hu, J.; Huang, S.; Yu, H. Supramolecular liquid-crystalline polymer organogel: Fabrication, multiresponsiveness, and holographic switching properties. Chem. Mater. 2019, 31, 3388–3394. [Google Scholar] [CrossRef]
- Han, K.; Su, W.; Zhong, M.; Yan, Q.; Luo, Y.; Zhang, Q.; Li, Y. Reversible photocontrolled swelling-shrinking behavior of micron vesicles self-assembled from azopyridine-containing diblock copolymer. Macromol. Rapid Comm. 2008, 29, 1866–1870. [Google Scholar] [CrossRef]
- Lin, L.; Yan, Z.; Gu, J.; Zhang, Y.; Feng, Z.; Yu, Y. Uv-responsive behavior of azopyridine-containing diblock copolymeric vesicles: Photoinduced fusion, disintegration and rearrangement. Macromol. Rapid Comm. 2009, 30, 1089–1093. [Google Scholar] [CrossRef]
- Wei, J.; Yan, Z.; Lin, L.; Gu, J.; Feng, Z.; Yu, Y. Photo/pH dual-responsive behavior of azopyridine-containing copolymer vesicles. React. Funct. Polym. 2013, 73, 1009–1014. [Google Scholar] [CrossRef]
- Yuan, W.; Guo, W.; Zou, H.; Ren, J. Tunable thermo-, ph- and light-responsive copolymer micelles. Polym. Chem. 2013, 4, 3934–3937. [Google Scholar] [CrossRef]
- Garcia-Amorós, J.; Nonell, S.; Velasco, D. Photo-driven optical oscillators in the khz range based on push-pull hydroxyazopyridines. Chem. Commun. 2011, 47, 4022–4024. [Google Scholar] [CrossRef] [PubMed]
- Michinobu, T.; Eto, R.; Shigehara, K. Photochromic behaviors of n-isopropylacrylamide copolymers containing azopyridine-dyes. Kobunshi Ronbunshu 2011, 68, 195–197. [Google Scholar] [CrossRef]
- Ren, H.; Yang, P.; Winnik, F.M. Azopyridine: A smart photo- and chemo-responsive substituent for polymers and supramolecular assemblies. Polym. Chem. 2020, 11, 5955–5961. [Google Scholar] [CrossRef]
- Halperin, A.; Kröger, M.; Winnik, F.M. Poly(n-isopropylacrylamide) phase diagrams: Fifty years of research. Angew.Chem. Int. Edit. 2015, 54, 15342–15367. [Google Scholar] [CrossRef]
- Strandman, S.; Zhu, X.X. Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions. Prog. Polym. Sci. 2015, 42, 154–176. [Google Scholar] [CrossRef]
- S Zhou, C.; Zhou, S. First observation of the molten globule state of a single homopolymer chain. Phys. Rev. Lett. 1996, 77, 3053–3055. [Google Scholar]
- Ren, H.; Qiu, X.; Shi, Y.; Yang, P.; Winnik, F.M. Light, temperature, and pH control of aqueous azopyridine-terminated poly(n-isopropylacrylamide) solutions. Polym. Chem. 2019, 10, 5080–5086. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.K.; Bannwarth, C.; Liang, R.; Hohenstein, E.G.; Martínez, T.J. Nonadiabatic dynamics simulation of the wavelength-dependent photochemistry of azobenzene excited to the nπ* and ππ* excited states. J. Am. Chem. Soc. 2020, 142, 20680–20690. [Google Scholar] [CrossRef]
- Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc. Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Eliason, J.K.; Moliva, A.C.D.; Olson, J.L.; Flancher, S.M.; Gealy, M.W.; Ulness, D.J. Halogen bonding in iodo-perfluoroalkane/pyridine mixtures. J. Phys. Chem. A 2009, 113, 14052–14059. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. 2008, 47, 6114–6127. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. The halogen bond in the design of functional supramolecular materials: Recent advances. Acc. Chem. Res. 2013, 46, 2686–2695. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, F. Xxviii.—on the iodide of iodammonium. J. Chem. Soc. 1863, 16, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Legon, A.C. Prereactive complexes of dihalogens xy with lewis bases b in the gas phase: A systematic case for the halogen analogue b...Xy of the hydrogen bond b...Hx. Angew. Chem. Int. Ed. 1999, 38, 2686–2714. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Horton, P.N.; Hursthouse, M.B.; Legon, A.C.; Bruce, D.W. Halogen bonding: A new interaction for liquid crystal formation. J. Am. Chem. Soc. 2004, 126, 16–17. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Zhang, L.; Yang, H.; Lu, Y. Photoresponsive liquid crystals based on halogen bonding of azopyridines. Chem. Commun. 2014, 50, 9647–9649. [Google Scholar] [CrossRef]
- Alaasar, M.; Poppe, S.; Tschierske, C. Photoresponsive halogen bonded polycatenar liquid crystals. J. Mol. Liq. 2019, 277, 233–240. [Google Scholar] [CrossRef]
- Du, M.; Li, L.; Zhang, J.; Li, K.; Cao, M.; Mo, L.; Hu, G.; Chen, Y.; Yu, H.; Yang, H. Photoresponsive iodine-bonded liquid crystals based on azopyridine derivatives with a low phase-transition temperature. Liq. Cryst. 2019, 46, 37–44. [Google Scholar] [CrossRef]
- Saccone, M.; Spengler, M.; Pfletscher, M.; Kuntze, K.; Virkki, M.; Wölper, C.; Gehrke, R.; Jansen, G.; Metrangolo, P.; Priimagi, A.; et al. Photoresponsive halogen-bonded liquid crystals: The role of aromatic fluorine substitution. Chem. Mater. 2018, 31, 462–470. [Google Scholar] [CrossRef]
- Hu, H.; Qiu, Y.; Wang, J.; Zhao, D.; Wang, H.; Wang, Q.; Liao, Y.; Peng, H.; Xie, X. Photomodulated morphologies in halogen bond–driven assembly during gel–sol transition. Macromol. Rapid Comm. 2019, 40, 1800629. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Qiu, Y.; Zhao, X.; Xiong, B.; Liao, R.; Peng, H.; Liao, Y.; Xie, X. Visible light-triggered gel-to-sol transition in halogen-bond-based supramolecules. Soft Matter 2019, 15, 6411–6417. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, S.; Wang, T.; Yu, H. Enhanced ordering and efficient photoalignment of nanostructures in block copolymers enabled by halogen bond. Macromolecules 2020, 53, 1486–1493. [Google Scholar] [CrossRef]
- Pal, S. Pyridine: A useful ligand in transition metal complexes. Pyridine 2018, 57. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.J.H.; Williams, C.S. The far-infrared spectra of metal-halide complexes of pyridine and related ligands. Inorg. Chem. 1965, 4, 350–357. [Google Scholar] [CrossRef]
- Zacher, D.; Schmid, R.; Wöll, C.; Fischer, R.A. Surface chemistry of metal–organic frameworks at the liquid–solid interface. Angew. Chem. Int. Ed. 2011, 50, 176–199. [Google Scholar] [CrossRef]
- Suh, B.L.; Chong, S.; Kim, J. Photochemically induced water harvesting in metal–organic framework. ACS Sustain. Chem. Eng. 2019, 7, 15854–15859. [Google Scholar] [CrossRef]
- Bianchi, A.; Delgado-Pinar, E.; García-España, E.; Giorgi, C.; Pina, F. Highlights of metal ion-based photochemical switches. Coordin. Chem. Rev. 2014, 260, 156–215. [Google Scholar] [CrossRef]
- Kim, D.; Jo, A.; Seo, B.; Lee, K.; Park, W.H.; Lee, T.S. Colorimetric detection of transition metal ions with azopyridine-based probing molecule in aqueous solution and in PMMA film. Fiber. Polym. 2013, 14, 1993–1998. [Google Scholar] [CrossRef]
- Park, J.; Suh, B.L.; Kim, J. Computational design of a photoresponsive metal–organic framework for post combustion carbon capture. J. Phys. Chem. C 2020, 124, 13162–13167. [Google Scholar] [CrossRef]
- Sudhadevi Antharjanam, P.K.; Mallia, V.A.; Das, S. Novel azopyridine-containing silver mesogens: Synthesis, liquid-crystalline, and photophysical properties. Chem. Mater. 2002, 14, 2687–2692. [Google Scholar] [CrossRef]
- Antharjanam, P.K.S.; Mallia, V.A.; Das, S. Synthesis and study of novel azopyridine-containing hexacatenar silver mesogens. Liq. Cryst. 2004, 31, 713–717. [Google Scholar] [CrossRef]
- Cui, L.; Dahmane, S.; Tong, X.; Zhu, L.; Zhao, Y. Using self-assembly to prepare multifunctional diblock copolymers containing azopyridine moiety. Macromolecules 2005, 38, 2076–2084. [Google Scholar] [CrossRef]
- Dahmane, S.; Lasia, A.; Zhao, Y. Thermal, optical and electrochemical properties of side-chain azopyridine polymers complexed with metalloporphyrins. Macromol. Chem. Phys. 2006, 207, 1485–1491. [Google Scholar] [CrossRef]
- Dahmane, S.; Zhao, Y. Photoregulated complexation, redox behavior, and photoluminescence of a supramolecular polymer solution. J. Appl. Polym. Sci. 2006, 102, 744–750. [Google Scholar] [CrossRef]
- Suzuki, T.; Moriya, T.; Endo, R.; Iwasaki, N. A photo-responsive polymeric azopyridine ligand with metal-complexation sensitivity: Application to coordination equilibrium studies on the polymer complexes of a cobalt(ii) schiff base. Polym. Chem. 2017, 8, 761–768. [Google Scholar] [CrossRef]
- Liu, G.; Sheng, J.; Teo, W.L.; Yang, G.; Wu, H.; Li, Y.; Zhao, Y. Control on dimensions and supramolecular chirality of self-assemblies through light and metal ions. J. Am. Chem. Soc. 2018, 140, 16275–16283. [Google Scholar] [CrossRef]
- Peng, B.; Li, H.; Li, Y.; Lv, Z.; Wu, M.; Zhao, C. A photoresponsive azopyridine-based supramolecular elastomer for self-healing strain sensors. Chem. Eng. J. 2020, 395, 125079. [Google Scholar] [CrossRef]
- Li, B.; Xiao, D.; Gai, X.; Yan, B.; Ye, H.; Tang, L.; Zhou, Q. A multi-responsive organogel and colloid based on the self-assembly of a ag(i)-azopyridine coordination polymer. Soft Matter 2021, 17, 3654–3663. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hao, Y.; Gao, L.; Hao, H. Photomechanical molecular crystals of an azopyridine derivative and its zinc(ii) complex: Synthesis, crystallization and photoinduced motion. Crystals 2020, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Buncel, E.; Keum, S. Studies of azo and azoxy dyestuffs-1611this series is an extension of our previous studies on the wallach rearrangement of azoxyarenes. Part 15: E. Buncel, r.a. Cox and a. Dolenko, tetrahedron letters 215 (1975): Investigations of the protonation and tautomeric equilibria of 4-(p’-hydroxyphenylazo)pyridine and related substrates. Tetrahedron 1983, 39, 1091–1101. [Google Scholar]
- Garcia-Amorós, J.; Massad, W.A.; Nonell, S.; Velasco, D. Fast isomerizing methyl iodide azopyridinium salts for molecular switches. Org. Lett. 2010, 12, 3514–3517. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amorós, J.; Gómez, E.; Vallés, E.; Velasco, D. Photo-controllable electronic switches based on azopyridine derivatives. Chem. Commun. 2012, 48, 9080. [Google Scholar] [CrossRef] [PubMed]
- García-Amorós, J.; Velasco, D. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem. 2012, 8, 1003–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Amors, J.; Nonell, S.; Velasco, D. Light-controlled real time information transmitting systems based on nanosecond thermally-isomerising amino-azopyridinium salts. Chem. Commun. 2012, 48, 3421–3423. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amorós, J.; Díaz-Lobo, M.; Nonell, S.; Velasco, D. Fastest thermal isomerization of an azobenzene for nanosecond photoswitching applications under physiological conditions. Angew. Chem. Int. Ed. 2012, 51, 12820–12823. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, H. Conductive hybrid nanofibers self-assembled with three different amphiphilic salts. ACS Appl. Mater. Inter. 2012, 4, 2154–2159. [Google Scholar] [CrossRef]
- Zhou, W.; Kobayashi, T.; Zhu, H.; Yu, H. Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chem. Commun. 2011, 47, 12768. [Google Scholar] [CrossRef]
- Chen, Y.; Quan, M.; Yu, H.; Zhang, L.; Yang, H.; Lu, Y. Fabrication of nanofibres with azopyridine compounds in various acids and solvents. RSC Adv. 2015, 5, 31219–31225. [Google Scholar] [CrossRef]
- Xue, X.; Qing, F.; Huang, W.; Yang, H.; Jiang, Q.; Zhou, L.; Jiang, B. Preparation and multiple responsiveness of copolymers of PNIPAM containing azo pyridine in side chain. Acta Polym. Sin. 2018, 1175–1183. [Google Scholar]
- Li, X.; Ma, S.; Hu, J.; Ni, Y.; Lin, Z.; Yu, H. Photo-activated bimorph composites of kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of albizia julibrissin leaves. J. Mater. Chem. C 2019, 7, 622–629. [Google Scholar] [CrossRef]
- Borchers, T.H.; Topić, F.; Christopherson, J.C.; Bushuyev, O.S.; Vainauskas, J.; Titi, H.M.; Friščić, T.; Barrett, C.J. Cold photo-carving of halogen-bonded co-crystals of a dye and a volatile co-former using visible light. Nat. Chem. 2022, 14, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Konieczkowska, J.; Janeczek, H.; Małecki, J.; Trzebicka, B.; Szmigiel, D.; Kozanecka-Szmigiel, A.; Schab-Balcerzak, E. Noncovalent azopoly(ester imide)s: Experimental study on structure-property relations and theoretical approach for prediction of glass transition temperature and hydrogen bond formation. Polymer 2017, 113, 53–66. [Google Scholar] [CrossRef]
- Konieczkowska, J.; Kozanecka-Szmigiel, A.; Piecek, W.; Weglowski, R.; Schab-Balcerzak, E. Azopolyimides-influence of chemical structure on azochromophore photo-orientation efficiency. Polimery 2018, 63, 481–487. [Google Scholar] [CrossRef]
- Konieczkowska, J.; Wojtowicz, M.; Sobolewska, A.; Noga, J.; Jarczyk-Jedryka, A.; Kozanecka-Szmigiel, A.; Schab-Balcerzak, E. Thermal, optical and photoinduced properties of a series of homo and co-polyimides with two kinds of covalently bonded azo-dyes and their supramolecular counterparts. Opt. Mater. 2015, 48, 139–149. [Google Scholar] [CrossRef]
- Roppolo, I.; Chiappone, A.; Angelini, A.; Stassi, S.; Frascella, F.; Pirri, C.F.; Ricciardi, C.; Descrovi, E. 3d printable light-responsive polymers. Mater. Horiz. 2017, 4, 396–401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Yang, P.; Yu, H. Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices. Molecules 2022, 27, 3977. https://doi.org/10.3390/molecules27133977
Ren H, Yang P, Yu H. Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices. Molecules. 2022; 27(13):3977. https://doi.org/10.3390/molecules27133977
Chicago/Turabian StyleRen, Hao, Peng Yang, and Haifeng Yu. 2022. "Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices" Molecules 27, no. 13: 3977. https://doi.org/10.3390/molecules27133977
APA StyleRen, H., Yang, P., & Yu, H. (2022). Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices. Molecules, 27(13), 3977. https://doi.org/10.3390/molecules27133977