Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices
Abstract
:1. Introduction
2. Working Principle of PEF for Enzyme Inactivation
3. Major Applications of PEF in Fruit Juices
3.1. Effect of Electric Fields on Apple Juice Enzymes
3.2. Effect of Electric Fields on Citrus Juice Enzymes
3.3. Effect of Electric Fields on Miscellaneous Juices Enzymes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjha, M.M.A.N.; Shafique, B.; Wang, L.; Irfan, S.; Safdar, M.N.; Murtaza, M.A.; Nadeem, M.; Mahmood, S.; Mueen-ud-Din, G.; Nadeem, H.R. A Comprehensive Review on Phytochemistry, Bioactivity and Medicinal Value of Bioactive Compounds of Pomegranate (Punica Granatum). Adv. Tradit. Med. 2021. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of Polyphenols from Apple and Pomegranate Peels Employing Different Extraction Techniques for the Development of Functional Date Bars. Int. J. Fruit Sci. 2020, 20, S1201–S1221. [Google Scholar] [CrossRef]
- Salehi, F. Physico-Chemical Properties of Fruit and Vegetable Juices as Affected by Pulsed Electric Field: A Review. Int. J. Food Prop. 2020, 23, 1036–1050. [Google Scholar] [CrossRef]
- Thirumdas, R.; Annapure, U.S. Enzyme Inactivation in Model Systems and Food Matrixes by Cold Plasma. Adv. Cold Plasma Appl. Food Saf. Preserv. 2020, 229–252. [Google Scholar] [CrossRef]
- Aadil, R.M.; Roobab, U.; Iqbal Khan, M.K.; Rahman, U.U. Effect of Storage on Fruit Bioactives. In Encyclopedia of Food Chemistry; Elsevier Science & Technology: New York, NY, USA, 2018; Volume 2, pp. 83–91. ISBN 9780128140451. [Google Scholar]
- Marszałek, K.; Kruszewski, B.; Woźniak, Ł.; Skąpska, S. The Application of Supercritical Carbon Dioxide for the Stabilization of Native and Commercial Polyphenol Oxidases and Peroxidases in Cloudy Apple Juice (Cv. Golden Delicious). Innov. Food Sci. Emerg. Technol. 2017, 39, 42–48. [Google Scholar] [CrossRef]
- Iqbal, A.; Murtaza, A.; Hu, W.; Ahmad, I.; Ahmed, A.; Xu, X. Activation and Inactivation Mechanisms of Polyphenol Oxidase during Thermal and Non-Thermal Methods of Food Processing. Food Bioprod. Process. 2019, 117, 170–182. [Google Scholar] [CrossRef]
- Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Appl. Sci. 2022, 12, 2202. [Google Scholar] [CrossRef]
- Riener, J.; Noci, F.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. Combined Effect of Temperature and Pulsed Electric Fields on Soya Milk Lipoxygenase Inactivation. Eur. Food Res. Technol. 2008, 227, 1461–1465. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Artés-Hernández, F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021, 11, 59. [Google Scholar] [CrossRef]
- Salinas-Roca, B.; Elez-Martínez, P.; Welti-Chanes, J.; Martín-Belloso, O. Quality Changes in Mango Juice Treated by High-Intensity Pulsed Electric Fields Throughout the Storage. Food Bioprocess Technol. 2017, 10, 1970–1983. [Google Scholar] [CrossRef]
- Pham, H.T.T.; Kityo, P.; Buvé, C.; Hendrickx, M.E.; Van Loey, A.M. Influence of Ph and Composition on Nonenzymatic Browning of Shelf-Stable Orange Juice during Storage. J. Agric. Food Chem. 2020, 68, 5402–5411. [Google Scholar] [CrossRef] [PubMed]
- Atencio, S.; Verkempinck, S.H.E.; Bernaerts, T.; Reineke, K.; Hendrickx, M.; Van Loey, A. Impact of Processing on the Production of a Carotenoid-Rich Cucurbita Maxima Cv. Hokkaido Pumpkin Juice. Food Chem. 2022, 380, 132191. [Google Scholar] [CrossRef] [PubMed]
- Kantala, C.; Supasin, S.; Intra, P.; Rattanadecho, P. Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods 2022, 11, 1102. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, R.; Zhao, W. The Effect of Pulsed Electric Fields (PEF) Combined with Temperature and Natural Preservatives on the Quality and Microbiological Shelf-Life of Cantaloupe Juice. Foods 2021, 10, 2606. [Google Scholar] [CrossRef]
- Yıkmış, S. Sensory, Physicochemical, Microbiological and Bioactive Properties of Red Watermelon Juice and Yellow Watermelon Juice after Ultrasound Treatment. J. Food Meas. Charact. 2020, 14, 1417–1426. [Google Scholar] [CrossRef]
- Yıkmış, S.; Bozgeyik, E.; Şimşek, M.A. Ultrasound Processing of Verjuice (Unripe Grape Juice) Vinegar: Effect on Bioactive Compounds, Sensory Properties, Microbiological Quality and Anticarcinogenic Activity. J. Food Sci. Technol. 2020, 57, 3445–3456. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Irfan, S.; Lorenzo, J.M.; Shafique, B.; Kanwal, R.; Pateiro, M.; Arshad, R.N.; Wang, L.; Nayik, G.A.; Roobab, U.; et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes 2021, 9, 1406. [Google Scholar] [CrossRef]
- Roobab, U.; Abida, A.; Afzal, R.; Madni, G.M.; Zeng, X.A.; Rahaman, A.; Aadil, R.M. Impact of High-Pressure Treatments on Enzyme Activity of Fruit-Based Beverages: An Overview. Int. J. Food Sci. Technol. 2022, 57, 801–815. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Roobab, U.; Afzal, R.; Ranjha, M.M.A.N.; Zeng, X.-A.; Ahmed, Z.; Aadil, R.M. High Pressure-Based Hurdle Interventions for Raw and Processed Meat: A Clean-Label Prospective. Int. J. Food Sci. Technol. 2022, 57, 816–826. [Google Scholar] [CrossRef]
- Roobab, U.; Aadil, R.M.; Madni, G.M.; Bekhit, A.E.D. The Impact of Nonthermal Technologies on the Microbiological Quality of Juices: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [Google Scholar] [CrossRef] [PubMed]
- Roobab, U.; Shabbir, M.A.; Khan, A.W.; Arshad, R.N.; Bekhit, A.E.D.; Zeng, X.A.; Inam-Ur-Raheem, M.; Aadil, R.M. High-Pressure Treatments for Better Quality Clean-Label Juices and Beverages: Overview and Advances. LWT 2021, 149, 111828. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Dróżdż, T.; Kiełbasa, P.; Ostafin, M.; Bulski, K.; Oziembłowski, M. Effect of Pulsed Electric Field Treatment on Shelf Life and Nutritional Value of Apple Juice. J. Food Sci. Technol. 2019, 56, 1184–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindgren, M.; Aronsson, K.; Galt, S.; Ohlsson, T. Simulation of the Temperature Increase in Pulsed Electric Field (PEF) Continuous Flow Treatment Chambers. Innov. Food Sci. Emerg. Technol. 2002, 3, 233–245. [Google Scholar] [CrossRef]
- Zhang, Q.; Barbosa-Cánovas, G.V.; Swanson, B.G. Engineering Aspects of Pulsed Electric Field Pasteurization. J. Food Eng. 1995, 25, 261–281. [Google Scholar] [CrossRef]
- Sulaiman, A.; Farid, M.; Silva, F.V.M. Quality Stability and Sensory Attributes of Apple Juice Processed by Thermosonication, Pulsed Electric Field and Thermal Processing. Food Sci. Technol. Int. 2017, 23, 265–276. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Boioli, P.; Barbosa-Cánovas, G.V. Assessment of the Effects of Ultrasonics and Pulsed Electric Fields on Nutritional and Rheological Properties of Raspberry and Blueberry Purees. Food Bioprocess Technol. 2016, 9, 520–531. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A. Accepted Manuscript Recent Advances in Controlling Polyphenol Oxidase Activity of Fruit and Vegetable Products. Innov. Food Sci. Emerg. Technol. 2018, 50, 73–83. [Google Scholar] [CrossRef]
- Wibowo, S.; Essel, E.A.; De Man, S.; Bernaert, N.; Van Droogenbroeck, B.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Comparing the Impact of High Pressure, Pulsed Electric Field and Thermal Pasteurization on Quality Attributes of Cloudy Apple Juice Using Targeted and Untargeted Analyses. Innov. Food Sci. Emerg. Technol. 2019, 54, 64–77. [Google Scholar] [CrossRef]
- Agcam, E.; Akyildiz, A.; Evrendilek, G.A. Effects of PEF and Heat Pasteurization on PME Activity in Orange Juice with Regard to a New Inactivation Kinetic Model. Food Chem. 2014, 165, 70–76. [Google Scholar] [CrossRef]
- Aghajanzadeh, S.; Ziaiifar, A.M. Accepted Manuscript A Review of Pectin Methylesterase Inactivation in Citrus Juice during Pasteurization. Trends Food Sci. Technol. 2017, 71, 1–12. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Morales-de la Peña, M.; Rojas-Graü, M.A.; Martín-Belloso, O. Microbial and Enzymatic Stability of Fruit Juice-Milk Beverages Treated by High Intensity Pulsed Electric Fields or Heat during Refrigerated Storage. Food Control 2011, 22, 1639–1646. [Google Scholar] [CrossRef]
- Andreou, V.; Dimopoulos, G.; Katsaros, G.; Taoukis, P. Comparison of the Application of High Pressure and Pulsed Electric Fields Technologies on the Selective Inactivation of Endogenous Enzymes in Tomato Products. Innov. Food Sci. Emerg. Technol. 2016, 38, 349–355. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Novel Thermal and Non-Thermal Processing of Watermelon Juice. Trends Food Sci. Technol. 2019, 93, 234–243. [Google Scholar] [CrossRef]
- Meneses, N.; Jaeger, H.; Knorr, D. PH-Changes during Pulsed Electric Field Treatments-Numerical Simulation and in Situ Impact on Polyphenoloxidase Inactivation. Innov. Food Sci. Emerg. Technol. 2011, 12, 499–504. [Google Scholar] [CrossRef]
- Morren, J.; Roodenburg, B.; de Haan, S.W.H. Electrochemical Reactions and Electrode Corrosion in Pulsed Electric Field (PEF) Treatment Chambers. Innov. Food Sci. Emerg. Technol. 2003, 4, 285–295. [Google Scholar] [CrossRef]
- Min, S.; Evrendilek, G.A.; Zhang, H.Q. Pulsed Electric Fields: Processing System, Microbial and Enzyme Inhibition, and Shelf Life Extension of Foods. IEEE Trans. Plasma Sci. 2007, 35, 59–73. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. High-Intensity Pulsed Electric Fields Processing Parameters Affecting Polyphenoloxidase Activity of Strawberry Juice. J. Food Sci. 2010, 75, 641–646. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Changes in Quality Attributes throughout Storage of Strawberry Juice Processed by High-Intensity Pulsed Electric Fields or Heat Treatments. LWT Food Sci. Technol. 2009, 42, 813–818. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Changes in Viscosity and Pectolytic Enzymes of Tomato and Strawberry Juices Processed by High-Intensity Pulsed Electric Fields. Int. J. Food Sci. Technol. 2009, 44, 2268–2277. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Optimizing Critical High-Intensity Pulsed Electric Fields Treatments for Reducing Pectolytic Activity and Viscosity Changes in Watermelon Juice. Eur. Food Res. Technol. 2010, 231, 509–517. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Color and Viscosity of Watermelon Juice Treated by High-Intensity Pulsed Electric Fields or Heat. Innov. Food Sci. Emerg. Technol. 2010, 11, 299–305. [Google Scholar] [CrossRef]
- Rodrigo, D.; Barbosa-Cánovas, G.V.; Martínez, A.; Rodrigo, M. Pectin Methyl Esterase and Natural Microflora of Fresh Mixed Orange and Carrot Juice Treated with Pulsed Electric Fields. J. Food Prot. 2003, 66, 2336–2342. [Google Scholar] [CrossRef] [PubMed]
- Sørhaug, T.; Stepaniak, L. Psychrotrophs and Their Enzymes in Milk and Dairy Products: Quality Aspects. Trends Food Sci. Technol. 1997, 8, 35–41. [Google Scholar] [CrossRef]
- Ho, S.Y.; Mittal, G.S.; Cross, J.D. Effects of High Field Electric Pulses on the Activity of Selected Enzymes. J. Food Eng. 1997, 31, 69–84. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Sobrino-López, Á.; Soliva-Fortuny, R.; Martín-Belloso, O. Influence of High-Intensity Pulsed Electric Field Processing on Lipoxygenase and β-Glucosidase Activities in Strawberry Juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 455–462. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, R. The Effect of Pulsed Electric Fields on the Inactivation and Structure of Lysozyme. Food Chem. 2008, 110, 334–343. [Google Scholar] [CrossRef]
- Qian, J.Y.; Ma, L.J.; Wang, L.J.; Jiang, W. Effect of Pulsed Electric Field on Structural Properties of Protein in Solid State. LWT Food Sci. Technol. 2016, 74, 331–337. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.J.; Jiang, W.; Qian, J.Y. Effect of Pulsed Electric Field on Functional and Structural Properties of Canola Protein by Pretreating Seeds to Elevate Oil Yield. LWT Food Sci. Technol. 2017, 84, 73–81. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, R.; Zhang, H.Q. Recent Advances in the Action of Pulsed Electric Fields on Enzymes and Food Component Proteins. Trends Food Sci. Technol. 2012, 27, 83–96. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, R.; Zhao, W.; Liang, Q.; Zhang, Z. The First ESR Observation of Radical Species Generated under Pulsed Electric Fields Processing. LWT Food Sci. Technol. 2011, 44, 1233–1235. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Flavour Retention and Related Enzyme Activities during Storage of Strawberry Juices Processed by High-Intensity Pulsed Electric Fields or Heat. Food Chem. 2009, 116, 59–65. [Google Scholar] [CrossRef]
- Orruño, E.; Orruño, O.; Apenten, R.O.; Zabetakis, I. The Role of B-Glucosidase in the Biosynthesis of 2,5-Dimethyl-4-Hydroxy-3(2H)-Furanone in Strawberry (Fragaria × Ananassa Cv. Elsanta). Flavour Fragr. J. 2001, 16, 81–84. [Google Scholar] [CrossRef]
- Zhang, R.; Luo, W.; Cheng, L.; Wang, L.; Guan, Z. Effects of Pulsed Electric Field (PEF) on Activativity and Conformation Changes of Lipoxygenase (LOX). Gaodianya Jishu/High Volt. Eng. 2007, 33, 94–96. [Google Scholar]
- Huang, K.; Tian, H.; Gai, L.; Wang, J. A Review of Kinetic Models for Inactivating Microorganisms and Enzymes by Pulsed Electric Field Processing. J. Food Eng. 2012, 111, 191–207. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Impact of High-Intensity Pulsed Electric Field Variables Affecting Peroxidase and Lipoxygenase Activities of Watermelon Juice. LWT Food Sci. Technol. 2010, 43, 897–902. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Noci, F.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. The Effect of Pulsed Electric Fields, Ultraviolet Light or High Intensity Light Pulses in Combination with Manothermosonication on Selected Physico-Chemical and Sensory Attributes of an Orange and Carrot Juice Blend. Food Bioprod. Process. 2012, 90, 442–448. [Google Scholar] [CrossRef]
- Vervoort, L.; Van Der Plancken, I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Van Loey, A. Comparing Equivalent Thermal, High Pressure and Pulsed Electric Field Processes for Mild Pasteurization of Orange Juice: Part II: Impact on Specific Chemical and Biochemical Quality Parameters. Innov. Food Sci. Emerg. Technol. 2011, 12, 466–477. [Google Scholar] [CrossRef]
- Bi, X.; Liu, F.; Rao, L.; Li, J.; Liu, B.; Liao, X.; Wu, J. Effects of Electric Field Strength and Pulse Rise Time on Physicochemical and Sensory Properties of Apple Juice by Pulsed Electric Field. Innov. Food Sci. Emerg. Technol. 2013, 17, 85–92. [Google Scholar] [CrossRef]
- Noci, F.; Riener, J.; Walkling-Ribeiro, M.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. Ultraviolet Irradiation and Pulsed Electric Fields (PEF) in a Hurdle Strategy for the Preservation of Fresh Apple Juice. J. Food Eng. 2008, 85, 141–146. [Google Scholar] [CrossRef]
- Marsellés-Fontanet, Á.R.; Martín-Belloso, O. Optimization and Validation of PEF Processing Conditions to Inactivate Oxidative Enzymes of Grape Juice. J. Food Eng. 2007, 83, 452–462. [Google Scholar] [CrossRef]
- Yeom, H.W.; Zhang, Q.H.; Chism, G.W. Inactivation of Pectin Methyl Esterase in Orange Juice by Pulsed Electric Fields. J. Food Sci. 2002, 67, 2154–2159. [Google Scholar] [CrossRef]
- Yeom, H.W.; Streaker, C.B.; Zhang, Q.H.; Min, D.B.; Howard Zhang, Q.; Min, D.B. Effects of Pulsed Electric Fields on the Quality of Orange Juice and Comparison with Heat Pasteurization. J. Agric. Food Chem. 2000, 48, 4597–4605. [Google Scholar] [CrossRef] [PubMed]
- Elez-Martínez, P.; Suárez-Recio, M.; Martín-Belloso, O. Modeling the Reduction of Pectin Methyl Esterase Activity in Orange Juice by High Intensity Pulsed Electric Fields. J. Food Eng. 2007, 78, 184–193. [Google Scholar] [CrossRef]
- Elez-Martínez, P.; Soliva-Fortuny, R.C.; Martín-Belloso, O. Comparative Study on Shelf Life of Orange Juice Processed by High Intensity Pulsed Electric Fields or Heat Treatment. Eur. Food Res. Technol. 2006, 222, 321–329. [Google Scholar] [CrossRef]
- Elez-Martínez, P.; Aguií O-Aguayo, I.; Martín-Belloso, O. Inactivation of Orange Juice Peroxidase by High-Intensity Pulsed Electric Fields as Influenced by Process Parameters. J. Sci. Food Agric. J Sci Food Agric 2006, 86, 71–81. [Google Scholar] [CrossRef]
- Mannozzi, C.; Rompoonpol, K.; Fauster, T.; Tylewicz, U.; Romani, S.; Rosa, M.D.; Jaeger, H. Influence of Pulsed Electric Field and Ohmic Heating Pretreatments on Enzyme and Antioxidant Activity of Fruit and Vegetable Juices. Foods 2019, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Brochier, B.; Mercali, G.D.; Marczak, L.D.F. Influence of Moderate Electric Field on Inactivation Kinetics of Peroxidase and Polyphenol Oxidase and on Phenolic Compounds of Sugarcane Juice Treated by Ohmic Heating. LWT Food Sci. Technol. 2016, 74, 396–403. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Liao, T.; Zhou, L.; Zou, L.; Liu, Y.; Zhang, L.; Liu, W.; Paton, D. Thermal Inactivation Kinetics of Kudzu (Pueraria Lobata) Polyphenol Oxidase and the Influence of Food Constituents. Foods 2021, 10, 1320. [Google Scholar] [CrossRef]
- Schilling, S.U.; Schmid, S.A.; Jager, H.; Ludwig, M.; Dietrich, H.; Toepfl, S.; Knorr, D.; Neidhart, S.; Shieber, A.; Reinhold, C. Comparative Study of Pulsed Electric Field and Thermal Processing of Apple Juice with Particular Deactivation. J. Assoc. Off. Anal. Chem. 2008, 56, 4545–4554. [Google Scholar]
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Riener, J.; Lyng, J.G.; Morgan, D.J. Reduction of Staphylococcus Aureus and Quality Changes in Apple Juice Processed by Ultraviolet Irradiation, Pre-Heating and Pulsed Electric Fields. J. Food Eng. 2008, 89, 267–273. [Google Scholar] [CrossRef]
- Schilling, S.; Alber, T.; Toepfl, S.; Neidhart, S.; Knorr, D.; Schieber, A.; Carle, R. Effects of Pulsed Electric Field Treatment of Apple Mash on Juice Yield and Quality Attributes of Apple Juices. Innov. Food Sci. Emerg. Technol. 2007, 8, 127–134. [Google Scholar] [CrossRef]
- Evrendilek, G.A.; Jin, Z.T.; Ruhlman, K.T.; Qiu, X.; Zhang, Q.H.; Richter, E.R. Microbial Safety and Shelf-Life of Apple Juice and Cider Processed by Bench and Pilot Scale PEF Systems. Innov. Food Sci. Emerg. Technol. 2000, 1, 77–86. [Google Scholar] [CrossRef]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-Related Enzymes in Plant-Based Products: Effects of Novel Food Processing Technologies Part 2: Pulsed Electric Field Processing. Crit. Rev. Food Sci. Nutr. 2014, 55, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Riener, J.; Noci, F.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. Combined Effect of Temperature and Pulsed Electric Fields on Apple Juice Peroxidase and Polyphenoloxidase Inactivation. Food Chem. 2008, 109, 402–407. [Google Scholar] [CrossRef]
- Zhong, K.; Wu, J.; Wang, Z.; Chen, F.; Liao, X.; Hu, X.; Zhang, Z. Inactivation Kinetics and Secondary Structural Change of PEF-Treated POD and PPO. Food Chem. 2007, 100, 115–123. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, R.B.; Wang, L.M.; Chen, J.; Guan, Z.C. Conformation Changes of Polyphenol Oxidase and Lipoxygenase Induced by PEF Treatment. J. Appl. Electrochem. 2010, 40, 295–301. [Google Scholar] [CrossRef]
- Katiyo, W.; Yang, R.; Zhao, W.; Hua, X.; Gasmalla, M.A.A. Optimization of Combined Pulsed Electric Fields and Mild Temperature Processing Conditions for Red Apple Juice Polyphenol Oxidase and Peroxidase Inactivation. Adv. J. Food Sci. Technol. 2014, 6, 638–646. [Google Scholar] [CrossRef]
- Sanchez-Vega, R.; Mujica-Paz, H.; Marquez-Melendez, R.; Ngadi, M.O.; Ortega-Rivas, E. Enzyme Inactivation on Apple Juice Treated by Ultrapasteurization and Pulsed Electric Fields Technology. J. Food Process. Preserv. 2009, 33, 486–499. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, S.; Yan, W.; Tang, Y.; Yang, R.; Zhao, W. Inactivation of Apple (Malus Domestica Borkh) Polyphenol Oxidases by Radio Frequency Combined with Pulsed Electric Field Treatment. Int. J. Food Sci. Technol. 2018, 53, 2054–2063. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. The Role of Peroxidase on the Antioxidant Potential of Fresh-Cut “Piel de Sapo” Melon Packaged under Different Modified Atmospheres. Food Chem. 2008, 106, 1085–1092. [Google Scholar] [CrossRef]
- Riener, J.; Noci, F.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. Combined Effect of Temperature and Pulsed Electric Fields on Pectin Methyl Esterase Inactivation in Red Grapefruit Juice (Citrus Paradisi). Eur. Food Res. Technol. 2009, 228, 373–379. [Google Scholar] [CrossRef]
- Van Den Broeck, I.; Ludikhuyze, L.R.; Van Loey, A.M.; Weemaes, C.A.; Hendrickx, M.E. Thermal and Combined Pressure-Temperature Inactivation of Orange Pectinesterase: Influence of PH and Additives. J. Agric. Food Chem. 1999, 47, 2950–2958. [Google Scholar] [CrossRef]
- Rivas, A.; Rodrigo, D.; Martínez, A.; Barbosa-Cánovas, G.V.; Rodrigo, M. Effect of PEF and Heat Pasteurization on the Physical-Chemical Characteristics of Blended Orange and Carrot Juice. LWT Food Sci. Technol. 2006, 39, 1163–1170. [Google Scholar] [CrossRef]
- Espachs-Barroso, A.; Van Loey, A.; Hendrickx, M.; Martín-Belloso, O. Inactivation of Plant Pectin Methylesterase by Thermal or High Intensity Pulsed Electric Field Treatments. Innov. Food Sci. Emerg. Technol. 2006, 7, 40–48. [Google Scholar] [CrossRef]
- Perez, O.E.; Pilosof, A.M.R. Pulsed Electric Fields Effects on the Molecular Structure and Gelation of β-Lactoglobulin Concentrate and Egg White. Food Res. Int. 2004, 37, 102–110. [Google Scholar] [CrossRef]
- Tsong, T.Y. Electrical Modulation of Membrane Proteins: Enforced Conformational Oscillations and Biological Energy and Signal Transductions. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 83–106. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Riener, J.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. The Impact of Thermosonication and Pulsed Electric Fields on Staphylococcus Aureus Inactivation and Selected Quality Parameters in Orange Juice. Food Bioprocess Technol. 2009, 2, 422–430. [Google Scholar] [CrossRef]
- Leong, S.Y.; Oey, I. Effect of Pulsed Electric Field Treatment on Enzyme Kinetics and Thermostability of Endogenous Ascorbic Acid Oxidase in Carrots (Daucus Carota Cv. Nantes). Food Chem. 2014, 146, 538–547. [Google Scholar] [CrossRef]
- Noda, A.; Hasan Susan, M.A.B.; Kudo, K.; Mitsushima, S.; Hayamizu, K.; Watanabe, M. Brønsted Acid-Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes. J. Phys. Chem. B 2003, 107, 4024–4033. [Google Scholar] [CrossRef]
- Van Loey, A.; Verachtert, B.; Hendrickx, M. Effects of High Electric Field Pulses on Enzymes. Trends Food Sci. Technol. 2001, 12, 94–102. [Google Scholar] [CrossRef]
- Sampedro, F.; Geveke, D.J.; Fan, X.; Zhang, H.Q. Effect of PEF, HHP and Thermal Treatment on PME Inactivation and Volatile Compounds Concentration of an Orange Juice-Milk Based Beverage. Innov. Food Sci. Emerg. Technol. 2009, 10, 463–469. [Google Scholar] [CrossRef]
Sample | Target Enzyme | Experimental Design | Compared with | Effect | Ref. | ||
---|---|---|---|---|---|---|---|
Electric Field Strength + Time | Frequency | Pulse Width | |||||
Strawberry juice (cv. Camarosa) | PG, PME, LOX, and β-GLUC | 35 kV/cm for 1700 µs. | 100 Hz | 4 µs, bipolar mode. | TP: 90 °C for 60 s and 30 s. | 73%, 10%, and 66.7%, RA of PG, PME, and LOX, respectively. 15.6% increase in β-GLUC activity. | [40,47,53] |
Strawberry juice (cv. Camarosa) | PPO | 35 kV/cm for 1000–2000 µs. | 50–250 Hz | 1.0–7.0 µs, monopolar or bipolar mode. | N.A.I | RA of PPO reduced by 2.5%. | [39] |
Apple juice (Malus domestica Fuji) | PPO and POD | 0–35 kV/cm. Pulse rise time (0.2–2 µs). | RA of PPO and POD was 7.1–98.5% and 9.6–94.2%, respectively. | [60] | |||
Red raspberry (Rubus strigosus) and blueberry (Vaccinium corymbosum) | PPO | 25 kV for 66 µs. | 600 Hz | N.A.I | US: 24 kHz, 400 W, 20 min. PEF+US: 600 Hz, 25 kV for 66 μs + 24 kHz for 20 min. | 98 and 80% RA of raspberry and blueberry purees were observed respectively. | [28] |
Apple juice | POD and PPO | 40 kV/cm for 1–100 µs. | N.A.I | UV: 254 nm, 30 W for 30 min. | 42% and 47.5% RA of PPO and POD, respectively. | [61] | |
Apple (M. domestica cv. Royal Gala) | PPO | PEF: 24.8 kV/cm for 169 ms, pulses 60, 53.8 °C. Storage: 3 °C and 20 °C for 30 days. | N.A.I | N.A.I | TP: 75 °C, 20 min. TS: 1.3 W/mL for 10 min, 58 °C. | 17.7% RA of PPO decreased to 13.5% and 11.5% during storage at 3 and 20 °C, respectively. | [27] |
Cloudy apple juice (Belgian apple cultivars) | PPO, POD, and PME | 12.5 kV/cm, 27.6 L/h, Tinlet 37.6 °C, Toutlet 59.5 °C. | 62 Hz | N.A.I | TP: 72 °C for 15 s and 85 °C for 30 s. HPP: 400 MPa for 3 min, 600 MPa for 3 min. | 36%, 49%, and 50% reduction in PPO, POD, and PME activity. | [30] |
12.3 kV/cm, 24.5 L/h, Tinlet 37.3 °C, Toutlet 72.8–73.8 °C. | 94 Hz | N.A.I | TP: 72 °C for 15 s and 85 °C for 30 s. HPP: 400–600 MPa for 3 min. | >90% PPO and POD inactivation and no PME activity. | |||
Grape juice (Vitis vinifera cv. Parellada) | PPO and POD | 25–35 kV/cm for 1–5 µs. | 200–1000 Hz | 100% PPO and 50% POD inactivation. | [62] | ||
Mango juice (M. indica L.) cv. tommy atkins | PPO, POD, LOX | 35 kV/cm for 50–2000 µs. Storage, 4 °C for 75 days. | 200 Hz | N.A.I | TP: 90 °C for 60 s. | 70%, 53%, and 44%, PPO, LOX, and POD RA respectively in 1800 µs. | [11] |
Orange-carrot juice | PME | 24 kV/cm for 93 µs. | 18 Hz | N.A.I | TP: 72 °C for 3.5 min. UV: 10.62 J/cm 2 for 1 min. HILP: 3 Hz, 3.3 J/cm 2 for 360 µs, 30 °C. MTS: 20 kHz, 1000 W, 400 kPa for 2.2 min, 35 °C. | 86% RA of PME. | [58] |
Orange juice (Kozan-specific variety) | PME | 13.8-25.3 kV/cm for 1033–1206 µs; | 500 Hz | N.A.I | TP: 90 °C for 10 s and 20 s. | 93.8% enzyme inactivation at 25.26 kV/cm–1206.2 µs. | [31] |
Orange juice (Valencia oranges) | PME | 0–35kV/cm for 184 and 250 ms at 10–50 °C. | N.A.I | N.A.I | TP: 10–50 °C. | 90% enzyme inactivation at 25 kV/cm at 50 °C. | [63] |
Orange juice (Valencia oranges) | PME | 35 kV/cm for 59 µs. | N.A.I | TP: 94.6 °C for 30 s. | 88% enzyme inactivation. | [64] | |
Orange juice (Navelina oranges) | PME and POD | 35 kV/cm for 1000 µs. | 200 Hz | 4 μs pulses in bipolar mode. | TP: 90 °C for 1 min. | 81.6% and 100% inactivation of PME and POD, respectively. | [65] [66] |
Orange juice | PME and POD | 23 kV/cm | 90 Hz | 2 μs pulses in a monopolar mode. | TP: 72 °C for 20 s. | 60.7% and 68.4% RA of PME and POD, respectively. | [59] |
Orange juice (Navelina oranges) | POD | 5–35 kV/cm for 1500 µs at <40 °C. | 50–450 Hz | Pulse width (1–10 µs) in mono and bipolar mode. | TP: 90 °C for 1 min. | 5% RA of POD at monopolar and 7% at bipolar. The monopolar mode was more effective. | [67] |
Watermelon juice (Citrullus lanatus cv. Sugar Baby) | POD, LOX, PME, and PG | 35 kV/cm for 1727 µs. Storage, 56 days. | 188 Hz | 4 µs pulses in bipolar mode. | TP: 90 °C for 30 s and 60 s. | 1.7%, 85%, 34.8% and 86.4% RA of POD, LOX, PME and PG. | [43] |
Watermelon juice (Citrullus lanatus cv. Sugar Baby) | POD, LOX, PME, and PG | 35 kV/cm for 1000 µs. | 50–250 Hz | Pulse width (1.0–7.0 µs) in monopolar or bipolar mode. | N.A.I | 0.16%, 48.02%, 15%, and 60% RA of POD, LOX, PME, and PG. | [42,57] |
Fruit juices blend (orange, kiwi, mango, and pineapple) | PME and PG | 35 kV/cm | 200 Hz | 4 μs pulses in bipolar mode. | TP: 90 °C for 1 min. | 58.77%, and 73.08% RA of PME and PG, respectively. | [33] |
Sample | Target Enzyme | Treatment | Experimental Design | Effect | Ref. |
---|---|---|---|---|---|
Red raspberry (R. strigosus) and blueberry (V. corymbosum) | PPO | PEF+US | PEF: 600 Hz, 25 KV for 66 µs. PEF+US: 600 Hz, 25 kV for 66 µs, 24 kHz for 20 min; US, 24 kHz, 400 W, 20 min. | Significant (p < 0.01) reduction of PPO activity in both raspberry and blueberry. | [28] |
Orange juice | PME | PEF+TS | PEF: 30 kV/cm for 25–150 µs, 55 °C for 10 min. HTST: 94 °C for 26 s. | RA decreases 86.5 to 43.2%. | [89] |
PEF: 40 kV/cm for 25–150 µs, 55 °C for 10 min. HTST, 94 °C for 26 s. | RA decreases 82.7 to 12.8%. | ||||
Orange-carrot juice | PME | PEF+MTS | PEF: 24 kV/cm, 18 Hz, 93 µs. MTS: US, 560 W, 5 min; H, 40 °C; HPP, 350 MPa. | 19% PME RA. | [58] |
Orange-carrot juice | PME | PEF+H | PEF: 767–904 Hz 25 kV/cm, 280–330 µs, 112–132 pulses. H: 68, 70 °C. HTST: 98 °C for 21 s. | 75.6–81.4% enzyme inactivation | [85] |
Orange-carrot juice | PME | PEF+H | PEF: 25–40 kV/cm, 0–340 µs. H: 63 °C. | 81.4% enzyme inactivation. | [44] |
Orange juice, milk-based beverage | PME | PEF+H | PEF: 15–30 kV/cm, 25–65 °C H: 60 to 90 °C for 1 min. | At 25 °C increase in PME activity was between 11 and 60%. At 65 °C (30 kV/cm), 91% inactivation. At 80 °C (3–5 kV/cm, 3000–3500 Hz, 1 μs) <10%. PME inactivation. | [93] |
Apple juice | PPO | PEF+H | PEF: 33–42 kV/cm, 150–300 pulses/s H: 50 °C. UHT: 115, 125, and 135 °C for 3 and 5 s. | 70% reduction of RA at 38.5 kV/cm. | [80] |
Apple juice | POD and PPO | PEF+H | PEF: 20–40 kV/cm for 25–100 µs. H: 25, 35, and 50 °C. CP: 72 °C for 26 s. | 71% and 68% highest decrease in the enzymatic activity of PPO and POD, respectively. | [76] |
Apple juice cv. (Braeburn) | POD and PPO | PEF+H | PEF: 15–35 kV/cm, pulse width (3 to 8 µs). H: 60 °C. | 79.8 to 0% and 92 to 6.9% RA of POD and PPO, respectively. | [71] |
Apple juice (Malus pumila Niedzwetzkyana Dieck) | POD and PPO | PEF+H | PEF: 10–30 kV/cm for 200–1000 µs, 20–60 °C. H: 80, 90, and 115 °C for 10 min, 5 min, and 5 s. | 0.04% and 0.16% RA of POD and PPO at 30 kV/cm for 1000 µs and 60 °C, respectively. | [79] |
Apple juice | POD and PPO | UV+PEF | PEF: 40 kV/cm for 100 µs. UV: 254 nm, 30 W for 30 min. 40 kV/cm for 1 µs. | 47.2% and 42.8% RA of POD and PPO, respectively. | [61] |
PEF+UV | 49.5%, and 41.3% RA of POD and PPO, respectively. | ||||
Apple juice (M. domestica Borkh. cv. Red Fuji) | PPO | PEF+RF | PEF: 15–35 kV/cm for 400 µs. RF: 27.12 MHz 3.5 kW, 35 mm pole space. H: 60–70 °C for 10 min. | 13.57% RA after 10 min preprocessing, 5% RA, 15 kV/cm for 400 µs increase lightness and maintain flavor. | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roobab, U.; Abida, A.; Chacha, J.S.; Athar, A.; Madni, G.M.; Ranjha, M.M.A.N.; Rusu, A.V.; Zeng, X.-A.; Aadil, R.M.; Trif, M. Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices. Molecules 2022, 27, 4031. https://doi.org/10.3390/molecules27134031
Roobab U, Abida A, Chacha JS, Athar A, Madni GM, Ranjha MMAN, Rusu AV, Zeng X-A, Aadil RM, Trif M. Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices. Molecules. 2022; 27(13):4031. https://doi.org/10.3390/molecules27134031
Chicago/Turabian StyleRoobab, Ume, Afeera Abida, James S. Chacha, Aiman Athar, Ghulam Muhammad Madni, Muhammad Modassar Ali Nawaz Ranjha, Alexandru Vasile Rusu, Xin-An Zeng, Rana Muhammad Aadil, and Monica Trif. 2022. "Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices" Molecules 27, no. 13: 4031. https://doi.org/10.3390/molecules27134031
APA StyleRoobab, U., Abida, A., Chacha, J. S., Athar, A., Madni, G. M., Ranjha, M. M. A. N., Rusu, A. V., Zeng, X. -A., Aadil, R. M., & Trif, M. (2022). Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices. Molecules, 27(13), 4031. https://doi.org/10.3390/molecules27134031