Study on the Effect of Mentha × piperita L. Essential Oil on Electroencephalography upon Stimulation with Different Visual Effects
Abstract
:1. Introduction
2. Results
2.1. Volatile Chemicals Comprising PEO
2.2. Comparison of Amplitudes before and after Inhalation of PEO
2.2.1. Comparison of Spectrograms
2.2.2. Variations in the Ratio of Each Electrode Point
2.3. Comparison of Energies before and after PEO Inhalation
2.3.1. Results of Energy Comparisons
2.3.2. Energy Changes in Alpha, Beta Waves
3. Discussion
4. Materials and Methods
4.1. GC-MS Analysis of PEO
4.2. Preparation of Colours
4.3. Subjects
4.4. Experimental Design
4.5. EEG Signal Acquisition
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Diego, M.A.; Jones, N.A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; Galamaga, M.; McAdam, V.; Galamaga, R. Aromatherapy positively affects mood, eeg patterns of alertness and math computations. Int. J. Neurosci. 1998, 96, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Schnaubelt, K. The Healing Intelligence of Essential Oils: The Science of Advanced Aromatherapy; Simon & Schuster, Inc.: New York, NY, USA, 2011. [Google Scholar]
- Itai, T.; Amayasu, H.; Kuribayashi, M.; Kawamura, N.; Okada, M.; Momose, A.; Tateyama, T.; Narumi, K.; Uematsu, W.; Kaneko, S. Psychological effects of aromatherapy on chronic hemodialysis patients. Psychiatry Clin. Neurosci. 2000, 54, 393–397. [Google Scholar] [CrossRef]
- Mahdood, B.; Imani, B.; Khazaei, S. Effects of Inhalation Aromatherapy with Rosa damascena (Damask Rose) on the State Anxiety and Sleep Quality of Operating Room Personnel during the COVID-19 Pandemic: A Randomized Controlled Trial. Perianesth Nurs. 2021; in press. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Price, L. Aromatherapy for Health Professionals, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Mckay, D.; Blumberg, J. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Soleimani, M.; Kashfi, L.S.; Ghods, A.A. The effect of aromatherapy with peppermint essential oil on anxiety of cardiac patients in emergency department: A placebo-controlled study. Complement Ther. Clin. Pract. 2022, 46, 101533. [Google Scholar] [CrossRef] [PubMed]
- Mahdavikian, S.; Fallahi, M.; Khatony, A. Comparing the Effect of Aromatherapy with Peppermint and Lavender Essential Oils on Fatigue of Cardiac Patients: A Randomized Controlled Trial. Evid. Based Complement Altern. Med. 2021, 2021, 9925945. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Osawa, M.; Nishitani, N.; Iwata, M. Effects of incense on brain function: Evaluation using electroencephalograms and event-related potentials. Neuropsychobiology 2009, 59, 80–86. [Google Scholar] [CrossRef]
- Lorig, T.; Schwartz, G.E. Brain and odor: I. alteration of human eeg by odor administration. Psychobiology 1988, 16, 281–284. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, H.; Du, B.; Dang, Q.; Chang, Q.; Zhang, Z.; Zhang, M.; Ding, G.; Lu, C.; Guo, T. The cerebellum and cognition: Further evidence for its role in language control. Cereb. Cortex 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Feng, C.; Zhou, Z.; Cao, W.; He, D.; Jiang, Z.; Lin, F. Imbalanced Gamma-band Functional Brain Networks of Autism Spectrum Disorders. Neuroscience, 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Wartik, N. Making sense of aromatherapy. Am. Health 1995, 14, 73. [Google Scholar]
- Ainsworth, R.; Simpson, L.; Cassell, D. Effects of three colors in an office interior on mood and performance. Percept. Mot. Ski. 1993, 76, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Sowndharararajan, K.; Kim, S. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response. Sci. Pharm. 2016, 84, 724–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowndharararajan, K.; Seo, M.; Kim, M.; Kim, H.; Kim, S. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity. Complement Ther. Clin. Pract. 2017, 28, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yao, L. Anxiolytic Effect of Essential Oils and Their Constituents: A Review. J. Agric. Food Chem. 2019, 67, 13790–13808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, J.; Wu, Q.; Chen, Z.; Wang, G. Seasonal dynamics of vocs released from cinnamomun camphora forests and the associated adjuvant therapy for geriatric hypertension. Ind. Crops Prod. 2021, 174, 114131. [Google Scholar] [CrossRef]
- Koomhin, P.; Sattayakhom, A.; Chandharakool, S.; Sinlapasorn, J.; Suanjan, S.; Palipoch, S.; Na-Ek, P.; Punsawad, C.; Matan, N. Michelia Essential Oil Inhalation Increases Fast Alpha Wave Activity. Sci. Pharm. 2020, 88, 23. [Google Scholar] [CrossRef]
- Sayorwan, W.; Siripornpanich, V.; Piriyapunyaporn, T.; Hongratanaworakit, T.; Kotchabhakdi, N.; Ruangrungsi, N. The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. J. Assoc. Med. 2012, 95, 598–606. [Google Scholar]
- Cho, H.M.; Yu, B.; Sowndhararajan, K.; Jung, J.W.; Jhoo, J.-W.; Jin, C.W. Effect of Essential Oil from San-Jo-In (Zizyphus jujuba Mill. seeds) on Human Electroencephalographic Activity. J. Life Sci. 2013, 23, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Toller, S.V.; Behan, J.; Howells, P.; Kendal-Reed, M.; Richardson, A.; Warwick Human Chemoreception Research Group. An analysis of spontaneous human cortical EEG activity to odours. Chem. Senses 1993, 18, 1–16. [Google Scholar] [CrossRef]
- Agaronyan, A.; Syed, R.; Kim, R.; Hsu, C.; Love, S.; Hooker, J.; Reid, A.; Wang, P.; Ishibashi, N.; Kang, Y.; et al. A Baboon Brain Atlas for Magnetic Resonance Imaging and Positron Emission Tomography Image Analysis. Front. Neuroanat. 2021, 15, 778769. [Google Scholar] [CrossRef] [PubMed]
- Chandharakool, S.; Koomhin, P.; Sinlapasorn, J.; Suanjan, S.; Phungsai, J.; Suttipromma, N.; Songsamoe, S.; Matan, N.; Sattayakhom, A. Effects of Tangerine Essential Oil on Brain Waves, Moods, and Sleep Onset Latency. of Tangerine Essential Oil on Brain Waves, Moods, and Sleep Onset Latency. Molecules 2020, 25, 4865. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, E.; Hongratanaworakit, T.; Böhm, C.; Weber, R.; Buchbauer, G. Effects of chiral fragrances on human autonomic nervous system parameters and self-evaluation. Chem. Senses 2001, 26, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurahashi, T.; Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 1997, 385, 725–729. [Google Scholar] [CrossRef]
- Lee, B.G.; Lee, B.L.; Chung, W. mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals. Sensors 2014, 14, 17915–17936. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.; Mueller, H. “Too Many betas do not Spoil the Broth”: The Role of Beta Brain Oscillations in Language Processing. Front. Psychol. 2012, 3, 201. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, K.; Blandino, S. Effects of color of paper on which the Profile of Mood States is printed on the psychological states it measures. Percept. Mot. Ski. 1992, 75, 267–271. [Google Scholar] [CrossRef]
- Jacobs, K.; Suess, J. Effects of four psychological primary colors on anxiety state. Percept Mot. Ski. 1975, 41, 207–210. [Google Scholar] [CrossRef]
- Moon, S.; Bae, J.; Kim, K.; Cho, S.; Kwon, G.; Lee, R.; Ko, S.; Lim, S.; Moon, C. EEG Revealed That Fragrances Positively Affect Menopausal Symptoms in Mid-life Women. Exp. Neurobiol. 2020, 29, 389–401. [Google Scholar] [CrossRef]
- Rodrigues, J.; Weiß, M.; Hewig, J.; Allen, J. EPOS: EEG Processing Open-Source Scripts. Front. Neurosci. 2021, 15, 660449. [Google Scholar] [CrossRef]
- Nie, D.; Wang, X.; Shi, L.; Lu, B. EEG-based emotion recognition during watching movies. In Proceedings of the Neural Engineering (NER), 5th International IEEE/EMBS Conference, Cancun, Mexico, 27 April–1 May 2011. [Google Scholar]
- Bos, D.O. EEG-Based Emotion Recognition; The Influence of Visual and Auditory Stimuli; Department of Computer Science, University of Twente: Enschede, The Netherlands, 2006. [Google Scholar]
NO. | RI a | RI b | Compound c | Area% d |
---|---|---|---|---|
Terpenes | ||||
1 | 1016 | 1022 | (+)-Limonene | 15.99% |
2 | 1118 | 1116 | β-pinene | 7.71% |
3 | 924 | 994 | pinene | 4.88% |
4 | 1032 | 1097 | α-Pinene | 1.29% |
6 | 1255 | 1251 | γ-Terpinene | 0.39% |
7 | 1695 | 1632 | (+)-ledene | 0.23% |
8 | 1662 | 1619 | α-Caryophyllene | 0.17% |
9 | 1755 | 1673 | (+)-δ-cadinene | 0.15% |
10 | 1290 | 1322 | Terpinolene | 0.15% |
11 | 1458 | 1316 | ε-Muurolene | 0.14% |
12 | 1130 | 1086 | Sabinene | 0.04% |
13 | 1878 | 1772 | 1-Methylnaphthalene | 0.03% |
14 | 899 | 894 | fenchene | 0.02% |
Alcohols | ||||
15 | 1172 | 1277 | L-Menthol | 11.57% |
16 | 1380 | 1381 | 3-Octanol | 3.78% |
17 | 1614 | 1597 | Menthol | 1.91% |
18 | 1710 | 1725 | α-terpineol | 0.95% |
19 | 1363 | 1358 | cis-3-Hexen-1-ol | 0.10% |
20 | 1642 | 1629 | Isoborneol | 0.07% |
21 | 1764 | 1766 | Citronellol | 0.07% |
22 | 1872 | 1882 | Phenylethyl alcohol | 0.07% |
23 | 1820 | 1820 | 2-(4-Methylphenyl)propan-2-ol | 0.04% |
24 | 1890 | 1854 | Benzyl alcohol | 0.03% |
25 | 2138 | 2159 | Spathulenol | 0.03% |
Aldehydes | ||||
26 | 960 | 1160 | Benzaldehyde | 0.07% |
27 | 2055 | 2085 | 4-Methoxybenzaldehyde | 0.03% |
28 | 2115 | 2088 | 3-Formylbenzoic acid | 0.01% |
29 | 2341 | 1777 | Isophthalaldehyde | 0.01% |
Ketones | ||||
30 | 1380 | 1450 | l-menthone | 20.14% |
31 | 1130 | 1140 | p-Menthone | 6.43% |
32 | 1740 | 1761 | piperitone | 2.95% |
33 | 1662 | 1607 | Pulegone | 1.84% |
34 | 975 | 1010 | (3R)-3-Methylcyclohexan-1-one | 0.57% |
35 | 937 | 1015 | 3-Methylcyclohexanone | 0.37% |
36 | 1234 | 1362 | (+)-carvone | 0.34% |
37 | 1940 | 1915 | Jasmone | 0.03% |
38 | 1832 | 1861 | 3,4-Dimethylacetophenone | 0.02% |
39 | 1867 | 1837 | Geranylacetone | 0.01% |
Acids | ||||
40 | 2448 | 2515 | benzoic acid | 0.02% |
41 | 2187 | 2060 | 4-Ethylbenzoic acid | 0.01% |
Esters | ||||
42 | 1594 | 1543 | Isomenthol acetate | 8.58% |
43 | 1574 | 1548 | (−)-Menthyl Acetate | 3.67% |
44 | 1770 | 1786 | Methyl salicylate | 0.11% |
45 | 1314 | 1329 | menthalactone | 0.19% |
46 | 2655 | 2584 | benzyl benzoate | 0.03% |
47 | 2014 | 1920 | Dibutyl phthalate | 0.01% |
48 | 2218 | 2234 | Methyl palmitate | 0.01% |
Phenols | ||||
49 | 1265 | 1298 | Thymol | 0.03% |
50 | 2156 | 2191 | Eugenol | 0.01% |
Other | ||||
51 | 932 | 989 | 2,6-Dimethyloctane | 0.01% |
52 | 1279 | 1318 | cis-Anethol | 0.10% |
53 | 1029 | 929 | o-Cymene | 0.67% |
54 | 1414 | 1412 | 2-p-Tolyl-1-propene | 0.33% |
55 | 1152 | 1204 | 5-tert-Butyl-m-xylene | 0.01% |
56 | 1497 | 1197 | menthofuran | 2.16% |
57 | 1056 | 969 | m-cymene | 1.36% |
58 | 1400 | 1465 | 2,6-dimethylnaphthalene | 0.03% |
59 | 1989 | 1953 | Caryophyllene Oxide | 0.03% |
Site | Colour | Wave | Before Inhalation (μv2) | After Inhalation (μv2) |
---|---|---|---|---|
Fp | white | delta | 8.69 ± 0.25 | 10.26 ± 0.82 ** |
theta | 2.72 ± 0.29 | 4.05 ± 0.13 ** | ||
alpha | 1.94 ± 0.16 | 3.41 ± 0.04 *** | ||
beta | 0.89 ± 0.02 | 1.17 ± 0.10 ** | ||
red | delta | 4.60 ± 0.45 | 7.90 ± 0.34 *** | |
theta | 1.76 ± 0.03 | 7.19 ± 0.96 *** | ||
alpha | 1.18 ± 0.05 | 2.39 ± 0.14 *** | ||
beta | 0.88 ± 0.09 | 1.68 ± 0.12 *** | ||
blue | delta | 6.07 ± 0.26 | 6.18 ± 0.45 | |
theta | 1.95 ± 0.04 | 2.68 ± 0.13 | ||
alpha | 1.45 ± 0.05 | 1.98 ± 0.05 *** | ||
beta | 0.46 ± 0.03 | 1.13 ± 0.08 ** | ||
F | white | delta | 5.77 ± 1.30 | 7.35 ± 1.68 |
theta | 2.43 ± 0.76 | 2.32 ± 0.57 | ||
alpha | 1.36 ± 0.35 | 2.47 ± 0.61 *** | ||
beta | 0.59 ± 0.10 | 0.74 ± 0.16 | ||
red | delta | 3.60 ± 0.98 | 4.27 ± 1.05 | |
theta | 1.56 ± 0.57 | 4.64 ± 2.84 ** | ||
alpha | 0.88 ± 0.22 | 1.36 ± 0.39 | ||
beta | 0.54 ± 0.07 | 0.82 ± 0.18 ** | ||
blue | delta | 3.88 ± 0.89 | 4.65 ± 1.00 | |
theta | 1.64 ± 0.64 | 1.88 ± 0.59 | ||
alpha | 0.92 ± 0.22 | 1.25 ± 0.30 | ||
beta | 0.52 ± 0.09 | 0.54 ± 0.10 | ||
P | white | delta | 3.77 ± 0.85 | 3.59 ± 1.06 |
theta | 1.64 ± 0.28 | 1.28 ± 0.39 | ||
alpha | 1.56 ± 0.24 | 2.26 ± 0.32 *** | ||
beta | 0.54 ± 0.05 | 0.65 ± 0.06 * | ||
red | delta | 3.32 ± 1.02 | 3.29 ± 1.14 | |
theta | 1.09 ± 0.32 | 1.64 ± 0.43 * | ||
alpha | 0.92 ± 0.16 | 1.76 ± 0.10 *** | ||
beta | 0.47 ± 0.05 | 0.62 ± 0.04 *** | ||
blue | delta | 2.71 ± 0.70 | 3.61 ± 1.15 | |
theta | 1.08 ± 0.35 | 1.44 ± 0.42 | ||
alpha | 0.92 ± 0.17 | 1.43 ± 0.35 ** | ||
beta | 0.46 ± 0.06 | 0.52 ± 0.08 | ||
O | white | delta | 3.28 ± 0.23 | 3.42 ± 0.05 |
theta | 1.47 ± 0.14 | 1.09 ± 0.06 *** | ||
alpha | 1.99 ± 0.06 | 2.27 ± 0.36 | ||
beta | 0.78 ± 0.04 | 0.94 ± 0.10 | ||
red | delta | 2.82 ± 0.03 | 2.88 ± 0.19 | |
theta | 1.01 ± 0.04 | 1.48 ± 0.04 *** | ||
alpha | 1.10 ± 0.14 | 2.14 ± 0.35 ** | ||
beta | 0.71 ± 0.07 | 1.02 ± 0.06 ** | ||
blue | delta | 2.43 ± 0.23 | 3.19 ± 0.02 *** | |
theta | 0.92 ± 0.05 | 1.30 ± 0.08 *** | ||
alpha | 1.34 ± 0.14 | 1.80 ± 0.23 | ||
beta | 0.71 ± 0.10 | 0.76 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Wang, Y.; Wu, K.; Yu, G.; Liu, C.; Su, C.; Yi, F. Study on the Effect of Mentha × piperita L. Essential Oil on Electroencephalography upon Stimulation with Different Visual Effects. Molecules 2022, 27, 4059. https://doi.org/10.3390/molecules27134059
Lin S, Wang Y, Wu K, Yu G, Liu C, Su C, Yi F. Study on the Effect of Mentha × piperita L. Essential Oil on Electroencephalography upon Stimulation with Different Visual Effects. Molecules. 2022; 27(13):4059. https://doi.org/10.3390/molecules27134059
Chicago/Turabian StyleLin, Shifan, Yue Wang, Kaiwen Wu, Genfa Yu, Chuanxiang Liu, Chang Su, and Fengping Yi. 2022. "Study on the Effect of Mentha × piperita L. Essential Oil on Electroencephalography upon Stimulation with Different Visual Effects" Molecules 27, no. 13: 4059. https://doi.org/10.3390/molecules27134059
APA StyleLin, S., Wang, Y., Wu, K., Yu, G., Liu, C., Su, C., & Yi, F. (2022). Study on the Effect of Mentha × piperita L. Essential Oil on Electroencephalography upon Stimulation with Different Visual Effects. Molecules, 27(13), 4059. https://doi.org/10.3390/molecules27134059