Enzymatic Synthesis of Novel and Highly Soluble Puerarin Glucoside by Deinococcus geothermalis Amylosucrase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biotransformation of Puerarin by DgAS
2.2. Identification of the Biotransformation Product
2.3. Aqueous Solubility of Puerarin and Its Derivatives
3. Materials and Methods
3.1. Microorganism and Chemicals
3.2. Biotransformation Using DgAS
3.3. HPLC Analysis
3.4. Purification and Identification of the Biotransformation Metabolite
3.5. Determination of Solubility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Xie, B.; Wang, Q.; Zhou, C.; Wu, J.; Xu, D. Efficacy and Safety of the Injection of the Traditional Chinese Medicine Puerarin for the Treatment of Diabetic Peripheral Neuropathy: A Systematic Review and Meta-Analysis of 53 Randomized Controlled Trials. Evid.-Based Complementary Altern. Med. 2018, 2018, 2834650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, B.; Khan, S.; Liu, Y.; Xue, M.; Nabi, G.; Kumar, S.; Alshwmi, M.; Qarluq, A.W. Molecular Mechanisms of Anticancer Activities of Puerarin. Cancer Manag. Res. 2020, 12, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv. 2019, 26, 860–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yu, J.; Shi, J. Management of diabetes mellitus with puerarin, a natural isoflavone from Pueraria lobata. Am. J. Chin. Med. 2018, 46, 1771–1789. [Google Scholar] [CrossRef]
- Kren, V.; Martínková, L. Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr. Med. Chem. 2001, 8, 1303–1328. [Google Scholar] [CrossRef]
- Desmet, T.; Soetaert, W.; Bojarova, P.; Kren, V.; Dijkhuizen, L.; Eastwick-Field, V.; Schiller, A. Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chemistry 2012, 18, 10786–10801. [Google Scholar] [CrossRef]
- Mestrom, L.; Przypis, M.; Kowalczykiewicz, D.; Pollender, A.; Kumpf, A.; Marsden, S.R.; Bento, I.; Jarzebski, A.B.; Szymanska, K.; Chrusciel, A.; et al. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int. J. Mol. Sci. 2019, 20, 5263. [Google Scholar] [CrossRef] [Green Version]
- Overwin, H.; Wray, V.; Seeger, M.; Sepulveda-Boza, S.; Hofer, B. Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases. J. Biotechnol. 2016, 233, 121–128. [Google Scholar] [CrossRef]
- Li, D.; Park, S.H.; Shim, J.H.; Lee, H.S.; Tang, S.Y.; Park, C.S.; Park, K.H. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 2004, 339, 2789–2797. [Google Scholar] [CrossRef]
- Choi, C.H.; Kim, S.H.; Jang, J.H.; Park, J.T.; Shim, J.H.; Kim, Y.W.; Park, K.H. Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from Bacillus stearothermophilus expressed in Bacillus subtilis. J. Sci. Food Agric. 2010, 90, 1179–1184. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Park, S.H.; Gao, C.; Park, K.H.; Gu, L. Identification and antioxidative properties of transglycosylated puerarins synthesised by an archaeal maltogenic amylase. Food Chem. 2011, 124, 603–608. [Google Scholar] [CrossRef]
- Ko, J.A.; Ryu, Y.B.; Park, T.S.; Jeong, H.J.; Kim, J.H.; Park, S.J.; Kim, J.S.; Kim, D.; Kim, Y.M.; Lee, W.S. Enzymatic synthesis of puerarin glucosides using Leuconostoc dextransucrase. J. Microbiol. Biotechnol. 2012, 22, 1224–1229. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; He, Q.; Zhou, Z.R.; He, H.B.; Jiang, R.W. Enzymatic Synthesis of Puerarin Glucosides Using Cyclodextrin Glucanotransferase with Enhanced Antiosteoporosis Activity. ACS Omega 2020, 5, 12251–12258. [Google Scholar] [CrossRef]
- Wang, S.; Liu, G.; Zhang, W.; Cai, N.; Cheng, C.; Ji, Y.; Sun, L.; Zhan, J.; Yuan, S. Efficient glycosylation of puerarin by an organic solvent-tolerant strain of Lysinibacillus fusiformis. Enzym. Microb. Technol. 2014, 57, 42–47. [Google Scholar] [CrossRef]
- Wu, X.; Chu, J.; Wu, B.; Zhang, S.; He, B. An efficient novel glycosylation of flavonoid by beta-fructosidase resistant to hydrophilic organic solvents. Bioresour. Technol. 2013, 129, 659–662. [Google Scholar] [CrossRef]
- Nunez-Lopez, G.; Herrera-Gonzalez, A.; Hernandez, L.; Amaya-Delgado, L.; Sandoval, G.; Gschaedler, A.; Arrizon, J.; Remaud-Simeon, M.; Morel, S. Fructosylation of phenolic compounds by levansucrase from Gluconacetobacter diazotrophicus. Enzym. Microb. Technol. 2019, 122, 19–25. [Google Scholar] [CrossRef]
- Nunez-Lopez, G.; Morel, S.; Hernandez, L.; Musacchio, A.; Amaya-Delgado, L.; Gschaedler, A.; Remaud-Simeon, M.; Arrizon, J. One-pot bi-enzymatic cascade synthesis of puerarin polyfructosides. Carbohydr. Polym. 2020, 247, 116710. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, W.; Zhang, W.; Zhang, T.; Guang, C.; Mu, W. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnol. Adv. 2018, 36, 1540–1552. [Google Scholar] [CrossRef]
- Seo, D.H.; Yoo, S.H.; Choi, S.J.; Kim, Y.R.; Park, C.S. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci. Biotechnol. 2020, 29, 1–16. [Google Scholar] [CrossRef]
- Hyunsu, P.; Jieun, K.; Ji-Hae, P.; Nam-In, B.; Cheon-Seok, P.; Hee-Seob, L. Bioconversion of Piceid to Piceid Glucoside Using Amylosucrase from Alteromonas macleodii Deep Ecotype. J. Microbiol. Biotechnol. 2012, 22, 1698–1704. [Google Scholar]
- Cho, H.K.; Kim, H.H.; Seo, D.H.; Jung, J.H.; Park, J.H.; Baek, N.I.; Kim, M.J.; Yoo, S.H.; Cha, J.; Kim, Y.R.; et al. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzym. Microb. Technol. 2011, 49, 246–253. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, Y.D.; Park, H.; Moon, K.O.; Ha, K.T.; Baek, N.I.; Park, C.S.; Joo, M.; Cha, J. Synthesis and biological evaluation of a novel baicalein glycoside as an anti-inflammatory agent. Eur. J. Pharmacol. 2014, 744, 147–156. [Google Scholar] [CrossRef]
- Rha, C.S.; Choi, J.M.; Jung, Y.S.; Kim, E.R.; Ko, M.J.; Seo, D.H.; Kim, D.O.; Park, C.S. High-efficiency enzymatic production of α-isoquercitrin glucosides by amylosucrase from Deinococcus geothermalis. Enzym. Microb. Technol. 2019, 120, 84–90. [Google Scholar] [CrossRef]
- Rha, C.S.; Kim, H.G.; Baek, N.I.; Kim, D.O.; Park, C.S. Using Amylosucrase for the Controlled Synthesis of Novel Isoquercitrin Glycosides with Different Glycosidic Linkages. J. Agric. Food Chem. 2020, 68, 13798–13805. [Google Scholar] [CrossRef]
- Kim, M.D.; Jung, D.H.; Seo, D.H.; Jung, J.H.; Seo, E.J.; Baek, N.I.; Yoo, S.H.; Park, C.S. Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives. J. Microbiol. Biotechnol. 2016, 26, 1845–1854. [Google Scholar] [CrossRef] [Green Version]
- Overwin, H.; Wray, V.; Hofer, B. Biotransformation of phloretin by amylosucrase yields three novel dihydrochalcone glucosides. J. Biotechnol. 2015, 211, 103–106. [Google Scholar] [CrossRef]
- Jang, S.W.; Cho, C.H.; Jung, Y.S.; Rha, C.; Nam, T.G.; Kim, D.O.; Lee, Y.G.; Baek, N.I.; Park, C.S.; Lee, B.H.; et al. Enzymatic synthesis of alpha-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis. PLoS ONE 2018, 13, e0207466. [Google Scholar] [CrossRef]
- Chang, T.S.; Wang, T.Y.; Yann, S.Y.; Kao, Y.H.; Wu, J.Y.; Chiang, C.M. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis. Molecules 2019, 24, 2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, C.M.; Wang, T.Y.; Wu, J.Y.; Zhang, Y.R.; Lin, S.Y.; Chang, T.S. Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. Fermentation 2021, 7, 232. [Google Scholar] [CrossRef]
- Prasain, J.K.; Jones, K.; Brissie, N.; Moore, R.; Wyss, J.M.; Barnes, S. Identification of Puerarin and Its Metabolites in Rats by Liquid Chromatography−Tandem Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 3708–3712. [Google Scholar] [PubMed]
- Hein, E.M.; Rose, K.; Slot, G.V.; Friedrich, A.W.; Humpf, H.U. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH). J. Agric. Food Chem. 2008, 56, 2281–2290. [Google Scholar] [CrossRef]
- Jang, D.; Jung, Y.S.; Seong, H.; Kim, M.S.; Rha, C.S.; Nam, T.G.; Han, N.S.; Kim, D.O. Stability of enzyme-modified flavonoid C- and O-glycosides from common buckwheat sprout extracts during in vitro digestion and colonic fermentation. J. Agric. Food Chem. 2021, 69, 5764–5773. [Google Scholar] [CrossRef]
- Wu, J.Y.; Ding, H.Y.; Wang, T.Y.; Tsai, Y.L.; Ting, H.J.; Chang, T.S. Improving Aqueous Solubility of Natural Antioxidant Mangiferin through Glycosylation by Maltogenic Amylase from Parageobacillus galactosidasius DSM 18751. Antioxidants 2021, 10, 1817. [Google Scholar] [CrossRef]
- Rha, C.S.; Kim, E.R.; Kim, Y.J.; Jung, Y.S.; Kim, D.O.; Park, C.S. Simple and efficient production of highly soluble daidzin glycosides by amylosucrase from Deinococcus geotherFmalis. J. Agri. Food Chem. 2019, 67, 12824–12832. [Google Scholar] [CrossRef]
Compound | Aqueous Solubility (mg/L) | Fold 1 |
---|---|---|
Puerarin | 2.02 × 103 ± 3.37 × 102 | 1.0 |
Puerarin-4′-O-α-glucoside (1) | 2.60 × 105 ± 2.86 × 103 | 128.7 |
Puerarin Glycoside | Catalyzed Enzymes | Sugar Donor | Added Sugar | Relative Solubility 1 | Reference |
---|---|---|---|---|---|
Puerarin | - | - | 0 | 1 | [9,12,13,16], this study |
Puerarin-4′-α-glucoside | Amylosucrase (DgAS) | Sucrose | 1 | 129 | This study |
Glucosyl-α-(1→6′′)-puerarin | Maltogenic amylase (BsMA); Dextransucrase (LlDexT) | Maltotriose | 1 | 14–15 | [9,12] |
Maltosyl-α-(1→6′′)-puerarin | Sucrose | 2 | 168–202 | [9,12] | |
Glucosyl-α-(1→4′′)-puerarin | Glucanotransferase (BlCGT) Glucanotransferase (BlCGT) Glucanotransferase (BlCGT) | Cyclodextrin | 1 | 15 | [13] |
Maltosyl-α-(1→4′′)-puerarin | Cyclodextrin | 2 | 100 | [13] | |
Maltotriosyl-α-(1→4′′)-puerarin | Cyclodextrin | 3 | 179 | [13] | |
Fructosyl-β-(2→6′′)-puerarin | Levansucrase (LsdA) | Sucrose | 1 | 23 | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.-Y.; Wang, T.-Y.; Wu, J.-Y.; Tsai, Y.-L.; Chang, T.-S. Enzymatic Synthesis of Novel and Highly Soluble Puerarin Glucoside by Deinococcus geothermalis Amylosucrase. Molecules 2022, 27, 4074. https://doi.org/10.3390/molecules27134074
Ding H-Y, Wang T-Y, Wu J-Y, Tsai Y-L, Chang T-S. Enzymatic Synthesis of Novel and Highly Soluble Puerarin Glucoside by Deinococcus geothermalis Amylosucrase. Molecules. 2022; 27(13):4074. https://doi.org/10.3390/molecules27134074
Chicago/Turabian StyleDing, Hsiou-Yu, Tzi-Yuan Wang, Jiumn-Yih Wu, Yu-Li Tsai, and Te-Sheng Chang. 2022. "Enzymatic Synthesis of Novel and Highly Soluble Puerarin Glucoside by Deinococcus geothermalis Amylosucrase" Molecules 27, no. 13: 4074. https://doi.org/10.3390/molecules27134074
APA StyleDing, H. -Y., Wang, T. -Y., Wu, J. -Y., Tsai, Y. -L., & Chang, T. -S. (2022). Enzymatic Synthesis of Novel and Highly Soluble Puerarin Glucoside by Deinococcus geothermalis Amylosucrase. Molecules, 27(13), 4074. https://doi.org/10.3390/molecules27134074